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ABSTRACT 

 
This paper introduces a physics-informed deep learning approach for predicting the replicator equation, 

enabling precise forecasting of population dynamics. This innovative methodology allows for the 

derivation of governing differential or difference equations for systems without explicit mathematical 

models. Using the SINDy framework, as pioneered by Fasel, Kaiser, Kutz, Brunton, and Brunt in 2016, we 

extracted the replicator equation, offering a transformative step forward in understanding evolutionary 
biology, economic systems, and social dynamics. By refining predictive models across multiple disciplines, 

including ecology, social structures, and moral behaviours, our work offers new insights into the complex 

interplay of variables shaping evolutionary outcomes in dynamic systems   
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1. INTRODUCTION 
 

Game theory provides a framework for understanding the evolution and persistence of strategic 

behaviors in biological, social, and economic systems involving interactions among individuals. 

It also sheds light on the development and maintenance of complex social behaviors and 
strategies across diverse scenarios. By applying the principles of Nash equilibrium (NE), as 

defined by John F. Nash, Jr (1), researchers can gain valuable insights into the stability and 

evolution of strategies within populations. This perspective enhances theoretical comprehension 
and offers practical applications in fields such as biology and economics.  

  

The concept of evolutionary game theory was first proposed by John Maynard Smith and George 
R Martin (2) which extends classical game theory by focusing on the dynamics of strategy 

evolution within populations over time. Unlike traditional game theory, which typically analyses 

the strategic interactions of rational, decision-making individuals aiming to maximize their 

payoffs, EGT considers populations of interacting agents whose strategies evolve based on their 
success. In EGT, strategies represent phenotypic traits, such as aggression or body size, that 

impact fitness and survival. The success of a strategy is determined by its reproductive success in 

the population, influenced by selective pressures. This approach permits the mathematical 
analysis of the development of strategies, giving us an understanding of the evolutionary stability 

of behaviours and characteristics in biological populations. The replicator equation plays a key 

role in evolutionary game theory. used to model the dynamics of strategy distribution within a 
population. The replicator is a non-linear differential equation that allows us to capture the real 

world strategies and interactions. The replicator dynamics can be used to find out how the percent 

of people using one particular strategy varies over time and other parameters like changing 

payoffs. Beyond its classical applications, the replicator equation has been employed in diverse 
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optimization and control scenarios, such as bandwidth allocation (4) and service levels in water 
distribution systems (5).   

  

Predicting the behaviour of non-linear differential equations from their trajectories is challenging 

due to non-linear systems often exhibit sensitivity to initial conditions, where small variations in 
starting points can lead to vastly different outcomes due to system the system being chaotic 

(butterfly effect). This sensitivity makes long-term prediction unreliable due to finite precision 

error. Third, the presence of multiple equilibrium and bifurcations in non-linear systems 
complicates the analysis, as trajectories can converge to different stable states depending on 

initial conditions and perturbations. Nonlinear systems can also have tipping points which by just 

monitoring the population we won’t be able to exactly predict when the tipping point may occur.     
A method discovered by Bongard and Lipson (5), as well as Schmidt and Lipson (6), presented a  

method for uncovering the underlying structure of nonlinear dynamical systems from data. This 

approach used genetic programming (7) to derive nonlinear differential equations. Additional 

methods for recognizing dynamic systems from data include methods for extracting governing 
equations from time-series data equation-free modelling (7), empirical dynamic modelling (9, 

10), modelling emergent behaviours (11), and automated dynamic inference (11–13).   

  
In this paper, the aim is to predict the replicator equation using the SINDy (Sparse Identification 

of Nonlinear Dynamical systems) architecture that can be used to solve ordinary and partial 

differential equations and validate its use in this field, first introduced by Steven L. Brunton, 
Joshua L. Proctor, and J. Nathan Kutz in (8). Sparse identification of nonlinear dynamical 

systems (SINDy) uses the fact that the sparsity of most physical systems, only have few functions 

as their basis function to define the dynamics which is generally the case in Evolutionary game 

theory, resulting in governing equations that are sparse in a high-dimensional nonlinear function 
space. The SINDy framework identifies these sparse representations efficiently, even in complex 

systems, and has demonstrated success in capturing the essential dynamics with minimal 

computational overhead. Additionally, a weak form of SINDy was developed by A.Messenger, 
Dall’Anese(14) Bortzto handle noisy data, as there is always some noise in the data collected 

from real world applications. SINDy can be applied to a variety of contexts, including 

discretetime systems, nonlinear systems, and other complex dynamical systems, making it a 

versatile tool for discovering underlying dynamics from data. Its adaptability to different types of 
systems and robustness against noise make it useful for finding the replicator equation.   

  

2. NETWORK ARCHITECTURE 
 
The sparse identification of nonlinear dynamical systems uses the fact that most differential 

equations have very few terms that define the dynamics, making the governing equations sparse 

in a high-dimensional nonlinear function spaceuses sparse regression techniques to reduce the 

unwanted terms in the differential equation due to noise in the data. Progress in compressed 
sensing and sparse regression has made the concept of sparsity advantageous. These 

advancements allow us to identify non-zero terms without resorting to a combinatorial, 

intractable brute-force search. This ensures that we can find the sparse solution with high 
probability using convex methods that efficiently scale to large problems, in line with Moore's 

law. Consequently, the identified sparse model strikes a balance between complexity (i.e., the 

sparsity of the righthand-side dynamics) and accuracy, thus preventing overfitting to the data.    
 

2.1. Data    
 
The sparse identification of nonlinear dynamical systems takes either x(t) or x˙(t) for continuous 

time, or x[n] or ∆x[n] for discrete-time. The sparse identification of nonlinear dynamical systems 
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takes either x(t) or x˙(t) for continuous time, or x[n] or ∆x[n] for discrete-time. The x and x˙ 
sampled over time are arranged in a matrix as shown below, where t1,t2,...,tm are the time points 

sampled in increasing order.    

 
 

Then a matrix Θ(X) consisting of the functions that may be present in the basis functions X. 
needs to be constructed based on the functions that may be present in the differential equations   

  

Θ(X) = [1    X2 · · · sin(X) cos(X)]    
 

Its capabilities were extended to models trained using multiple dynamic trajectories, and the 

generation of many models with subsampling and ensembling methods by U. Fasel, J. N. Kutz, 

B. W. Brunton and S. L. Brunton(15) which will be useful when the dynamics of the replicator 
equation gets complicated helping it in accurately predicting the equation. One recent 

development is that researchers have started considering feedback like Joshua S. Weitza,b,1, 

Ceyhun Eksin a,c, Keith Paarpornc , Sam P. Brown, and William C. Ratcliff .   
 

The weak form of Sparse Identification of Nonlinear Dynamics (SINDy) builds upon the idea of 

discovering governing equations of a system from data by leveraging a variational approach. In 
the weak form, instead of directly fitting differential equations to time series data, the dynamics 

are identified by integrating the equations against a set of compactly supported test functions. 

This reduces sensitivity to noise and irregularities in data. Specifically, the method constructs a 

library of trial functions representing potential dynamics and uses them to form a regression 
problem. By minimizing a least-squares objective, coefficients are learned for the sparse 

representation of the dynamics. The weak form framework integrates flexibility to handle noisy, 

incomplete, or irregularly sampled data, enabling robust and accurate discovery of dynamics in 
reduced-order models or latent spaces.   

 

3. METHODOLOGY 
 

3.1. Data Generation    
 

To train the SINDy model, we generated data by simulating the game under study. Leveraging 

the known dynamics of the game, we derived the replicator equation to model the evolution of 
strategies. To ensure a diverse set of trajectories, we employed the Runge-Kutta algorithm to  

generate random paths. These trajectories were then transformed into barycentric coordinates, 

which are particularly well-suited for capturing the proportions of strategies within a simplex.   
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In real-world scenarios, such data can be obtained by monitoring the population or frequency of 
strategies in a system or by sampling a small subset of the space and generalizing from it. 

However, for this study, we relied on simulation to generate the necessary data.   

 

3.2. Model Training and Prediction    
 

In the context of replicator dynamics for n strategies, the sum of the strategy frequencies xi must 
always equal. This constraint allows us to reduce the number of equations that need to be 

predicted using the SINDy model. Instead of predicting all n equations, we only need to predict 

n-1 equations, as the final one can be determined directly from the constraint. There is no need to 

explicitly substitute one variable (example 𝑥𝑛  ) into the system to match the 

solution for verification.   
  

By reducing the number of equations, the process becomes computationally less taxing, 

especially for smaller models. This allows the already-built SINDy model to perform faster, 
without sacrificing accuracy, making it more efficient while maintaining the ability to accurately 

capture the system's dynamics.    

 

4. REPLICATOR EQUATION 
 
The replicator equation tells how individuals or populations change over time. The most famous 

game is of rock paper scissors with the origin of RPS has been difficult to trace, but there is some 

written evidence suggesting the Chinese played it already in the Han Dynasty more than 2000 
years ago. There are three possible action choices: Rock(R), Paper (P), and Scissors (S) with the 

payoff given below in the table (1).    

 

 
 

The above payoff matrix gives a mixed strategy Nash equilibrium of (1/3, 1/3, 1/3) This simple 
game has many real-life examples. Colour polymorphism of male side-blotched lizards (17) is 

one of the real-world examples. Another instance is when European honeybees after being put in 

the local habitat of Japanese hornets in Japan, invaded the local honeybees but were not 
developed for attacks from Japanese hornets. In contrast, Japanese honeybees have developed a 

collective thermal defence mechanism against the hornets as a result of evolutionary adaptation 

from being in the same environmental place (18). The replicator equations for the 
RockPaperScissors game are given by:    

 

𝑥𝑅̇ =𝑥𝑅(−𝑥𝑃+𝑥𝑆−𝑓̅   ) 

𝑥𝑃 ̇ =𝑥𝑃(𝑥𝑅−𝑥𝑆−𝑓̅   )  
𝑥𝑆̇ =𝑥𝑆(−𝑥𝑅+𝑥𝑃−𝑓̅   ) 

 

where the finesses and the average fitness are:    

 
It has evolved from symmetric games where all the individuals have the same payoff matrix and 

the same strategies available to non-symmetric games where the players have different strategies 

or payoffs assigned to them. One of the most popular non-symmetric games is the Battle of sexes. 
This game illustrates a coordination problem between two players with different preferences. The 

game involves two players who want to spend the evening together but have different preferences 
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over two activities: football and ballet or any other conflicting hobbies. The husband prefers 
football, while the wife prefers ballet. Despite their different preferences, both players would 

prefer to be together than apart. This creates a situation where they need to coordinate their 

choices, leading to multiple equilibria.    

 

 
 

In this matrix, the first number in each pair represents the payoff for Player 1 (the husband) and 

the second number represents the payoff for Player 2 (the wife). There are two pure-strategy 
Nash equilibria: (Football, Football) and (Ballet, Ballet) one mixed-strategy equilibrium where 

both players try to get the best outcome for themselves. 

    
The following equations describe the replicator dynamics for this game. Let x represent the 

likelihood that Player 1 will select football, and y represent the likelihood that Player 2 will select 

football. The replicator equations for the strategies are:    

 

𝑥̇ =𝑥(2𝑦−𝑥(2𝑦+(1−𝑥)(1−𝑦)))  
𝑦̇ =𝑦(𝑥−𝑦(1𝑥+2(1−𝑦)(1−𝑥))) 

 

5. RESULTS AND DISCUSSION 
 

5.1. RPS Game    
 
In the Rock-Paper-Scissors (RPS) game, a Nash equilibrium (NE) occurs when players choose  

Rock, Paper, and Scissors with equal with equal probability to win, tie, or lose. While no player 

benefits from changing their strategy, the equilibrium’s stability depends on the relative payoffs 

for winning, losing, and tying. If a strategy performs better than the population average, its 
frequency rises, while less successful strategies decline. This leads to cyclical dominance, where 

one strategy temporarily prevails but is eventually overtaken, causing the population to oscillate 

in a closed loop as shown by the simulation as show in Figure (1) below.    
 

 
 

Fig. 1: RPS Game Simplex Triangle with Trajectory showing cyclical dominance    

 

The oscillatory behaviour observed in the simulation reflects the dynamic interplay between the 

three strategies. Each strategy dominates for a short time but is ultimately replaced by another, 
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ensuring that no single strategy is stable in the long run. This cyclical dominance is a key 
characteristic of many biological and social systems modelled by evolutionary game theory, 

where species, strategies, or behaviours rise and fall over time due to competition and adaptation.    

For the RPS game, a single trajectory of 1000 data points was enough for sindy to predict the 

replicator equation SINDy is easily able to predict the replicator equation for RPS game taking a 
smaller number of data points than these correctly predict the basis functions but the coefficients 

were slightly off.    

 

5.2. Battle of Sexe    
 

The Battle of the Sexes game has two pure strategy Nash equilibria, where both players 
coordinate on the same outcome: Both players choose Outcome A. The payoffs are (2, 1). Both 

players choose Outcome B. The payoffs are (1, 2).   

  
In addition to these pure strategy equilibria, there is a mixed strategy Nash equilibrium where 

both players play a mix of strategies. In this equilibrium, each player assigns probabilities to their 

choices such that they are indifferent to the other player's strategy. The mixed strategy 
equilibrium can be found by solving the following system:    

 

Let p represent the likelihood that Player 1 choose Outcome A, and 1-p represent the likelihood 

that Player 1 selects Outcome B. Let q represent the likelihood that Player 2 choose Outcome A, 
and let 1-q represent the likelihood that Player 2 selects Outcome B. The mixed strategy 

equilibrium is given by:    

 
P=1/3 Q=2/3    

 

In this equilibrium, each player chooses according to these probabilities, leading to expected 
payoffs where neither player has an incentive to deviate from their mixed strategy.    

  

To analyse the dynamics of the Battle of the Sexes using replicator dynamics, we consider the 

evolution of the strategies over time. The replicator equation for this game describes how the 
proportion of players using each strategy changes based on their relative fitness.   

   

For the battle of sexes game, the number of data points required were considerably more. In order 
to reduce the number of data points, multiple shorter trajectories were generated which gave 

better results compared to a single larger trajectory.    

 

6. CONCLUSION 
 
In conclusion, by applying the SINDy (Sparse Identification of Nonlinear Dynamics) framework, 

we can derive the replicator equation directly from observed data points (changes in the number 

of species). This approach enables us to get the underlying differential equation which will help 
us predicting the future outcomes.    

 

By understanding how the population of a species evolves over time, it will become possible to 

identify critical tipping points where the population of one species may blow up or go extinct due 
to over-harvesting or environmental changes. The governing equation will provide insights for 

preventing a species from being driven to extinction in a local environment.    

 
 



International Journal of Game Theory and Technology (IJGTT), Vol.10, No.4, December 2024 

7 

7. FUTURE WORK  
 
In future research, we aim to explore the application of the weak form of SINDy, developed by 

A. Messenger, Dall’Anese, and Bortz (13), which is specifically designed to handle noisy data. 

This extension would enable us to test the robustness of our approach in scenarios where the data 

is not ideal, as often encountered in real-world applications. The ability of the weak form of 
SINDy needs to be    
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