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ABSTRACT 

 
Time-series classification is widely used approach for classification. Recent development known as time-

series shapelets, based on local patterns from the time-series, shows potential as highly predictive and 

accurate method for data mining. On the other hand, the slow training time remains an acute problem of 

this method. In recent years there was a significant improvement of training time performance, reducing 

the training time in several orders of magnitude. Reducing the training time degrade the accuracy in 

general. This work applies combined classifiers to achieve high accuracies, maintaining low training 

times- in the range from several second to several minutes- for datasets from the popular UCR database. 

The goal is achieved by training small 2,3-nodes decision trees and combining their decisions in pattern 

that uniquely identifies incoming time-series. 
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1. INTRODUCTION 

 
The time-series shapelets classification method was introduced by Ye and Keogh [1] as a new 

type of data mining method, that uses the local features of time-series instead of their global. That 

makes it less sensitive to obstructive noise [1]. This method is successfully applied to a variety of 

application areas benefiting from its short classification time and high accuracy. Despite its 

advantages it has a significant disadvantage- a very slow training time. Current research mostly 

focuses on searching shapelets from all possible combination of time-series derived from a 

dataset [1, 2], keeping the training process relatively slow. A variety of proposals have been 

introduced to reduce the candidate shapelets [1, 2, 4, 5], but training time is still in the range of 

hours for some datasets. A newly introduced method, named scalable discovery (SD) method [7] 

shrinks significantly the training time, making the training process to last from portion of a 

second to several seconds for investigated 45 datasets from UCR collection [9]. It is based on the 

idea of pruning similar shapelets in the Euclidian space. Although, this is the fastest up to date 

training method as of our knowledge, it also maintains high accuracies in compare with other 

state-of-arts methods. In comparison with other popular methods such as Logical Shapelets (LS) 

and Fast Shapelets (FS) methods, the SD method produces better accuracies in 21 out of 45 

datasets from UCR database, according to [7]. In this paper we introduce a new method that 

reaches higher accuracies compared with the method from [7], keeping the training time in 

observable limits. We tested with 24 datasets from [9], focusing on the datasets with number of 

classes higher than five. It was found that proposed method outperforms in terms of accuracy the 



International Journal of Instrumentation and Control Systems (IJICS) Vol.6, No.1, January 2016 

16 

 

method from [7] for most datasets. The achieved training time is kept low, varying from several 

seconds to several minutes, depending on a dataset. High accuracy and relatively short training 

time makes the proposed method very competitive to present state-of-arts methods, which lack 

either accuracy or have huge training time.   
 

The rest of this paper is organized as follows. In section 2 related work is presented. Section 3 

describes the proposed method and gives technical details of its implementation. Section 4 

discusses achieved results. Finally, section 5 summarizes the proposed method and gives ideas for 

further work. 
 

2. RELATED WORK 
 

Shapelet by definition is a sequence of samples that originate from one of the time-series from a 

dataset and maximally represent certain class. The classical method of shapelets discovery, 

known as brute force algorithm [1], employs all possible sub-sequences from all time-series from 

the train dataset and treat them as candidate shapelets. To test a candidate shapelet how well 

separates two classes A and B, all distances between the candidate shapelet and time-series from 

A and B are formed. These distances are ordered into a histogram and the histogram is 

consecutively split into two parts until the best information gain is achieved. The split point is 

named optimal split distance and distances below it considered to belong to class A, but above it  

to class B. If any other candidate shapelet achieves higher information gain, it is selected as 

shapelet. The process continue until all the candidate shapelets are processed. The method 

requires vast amount of calculation time. First improvements include subsequence distance early 

abandon of calculated distances and admissive entropy pruning based on predicted information 

gain [1]. These improvements reduced the total required time for training, but the reduction was 

not that significant [6]. Another idea based on the infrequent shapelets, prunes the non-frequent 

candidate shapelets [4]. More improvements [2] suggests using of so called logical shapelets, that 

reuse the computation and optimize the search space. Recent approach is based on synthesizing 

shapelets from random sequences, using particle swarm optimization techniques [6]. In an effort 

to improve the classification accuracy for time series, Bagnall et al. [15] proposes to transform 

the time series classification problem into another data space for which discriminative features 

are easily discovered. The transformation include spectral approaches, autocorrelation function, 

principal components among others. The classifiers considered into [15] include NN type 

classifiers and ensemble classifiers. In ensemble classifiers the authors train classifiers for the 

transformed datasets and then combine the classifiers decisions through weighted voting. A new 

development in the area [7], vastly improves the training time of the shapelets by pruning 

candidate segments, which shows similarity in Euclidian distance space. This approach [7] is the 

fastest up to date as of our knowledge and in terms of accuracy is competitive with the current 

state-of-arts methods. We selected this method as a reference to proposed method, aiming to 

achieve similar or better accuracies, maintaining  relatively low training time.     
 

3. PROPOSED METHOD 
 

Our previous research [6] changes the traditional way of producing shapelets by synthesizing a 

shapelet from randomly generated sequences using particle swarm optimization (PSO), instead of 

extracting the shapelets from the original time-series. It finds the shapelet for every pair of classes 

presented in a dataset, then combines them in a decision tree and find the decision tree that 

achieves highest accuracy. Producing the most accurate decision tree requires all possible 

combinations of trees to be tested. That is a slow process for  more than four classes and adds 

additional processing time to traditionally slow training time. For this purpose, only datasets with 

less than five classes were investigated in [6]. Datasets with more than five classes are processed 

with the method introduced in this paper. The proposed method utilizes groups of small (up to 4 

classes) decision trees, instead of building one big decision tree that contains all classes. When a 
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time-series comes for classification every classification tree produces a decision. The decision 

path taken during classification is present as string of characters. The decision paths from all 

present trees are combined into decision pattern. Every class from the datasets appears to 

maintain unique decision pattern. The patterns from training datasets are kept and when time-

series from the test dataset arrives for classification, its pattern is compared with the kept patterns. 

The incoming time-series is associated with the class, to which its decision pattern mostly match. 
 

3.1. Training  
 

3.1.1. Extracting subsets 
 

The first step of the training process is to extract subsets of classes out of the original dataset, for 

which the decision trees will be defined. It is best to have uniform distribution of class indexes 

into the subsets, as it allows non dominant class indexes into the final solution. The maximum 

amount of subsets L is defined as:  
 

L = K!/(K - n)!n! (1) 

 
 

where, K is the number of all classes in a dataset and n is the number of classes in a subset n = 

2,3,4.  Instead of taking all possible combinations we can operate with just limited amount of 

subsets, obeying the rule of uniform distribution of class indexes as shown on Fig.1. Taking 

limited amount of subsets will not always fully obey the uniform rule. For example, on Fig.1 

most of classes are present 3 times, but class 21, 29 and 30 are present just two times. Practically, 

it is enough all class indexes to be present into the subsets and the difference between the number 

of times class indexes are present to be no more than one.Fig. 1 Extracted subsets of 4-class 

combinations from a dataset with class indexes [1..37]. 
 

3.1.2. Training decision trees 
 

  [8, 27, 29, 32] 

  [8, 19, 26, 35] 

  [4, 6, 35, 37] 

  [2, 7, 11, 37] 

  [14, 20, 21, 24] 

  [21, 24, 29, 33] 

  [13, 22, 32, 37] 

  [1, 8, 19, 28] 

  [4, 10, 21, 25] 

  [1, 24, 26, 27] 

  [28, 31, 34, 35] 

  [4, 12, 30, 36] 

  [7, 9, 26, 28] 

[1..37]      � [1, 5, 13, 29] 

  [2, 5, 10, 25] 

  [18, 19, 22, 30] 

  [6, 13, 27, 34] 

  [3, 14, 25, 34] 

  [3, 15, 20, 33] 

  [2, 17, 31, 32] 

  [9, 14, 20, 22] 

  [9, 10, 31, 33] 

  [7, 11, 15, 23] 

  [3, 5, 12, 30] 

  [11, 16, 17, 18] 

  [6, 16, 18, 36] 

  [12, 15, 17, 23] 
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Next step of the training process is to create decision trees for extracted subsets. The training 

process in [6] is applied. It starts with random sequences with length from 3 (the smallest possible 

shapelet length) up to N, where N is the length of the time-series into the dataset. Every such 

sequence is considered candidate shapelet. On every iteration step of the training process the 

candidate shapelets are changed in a way to increase the information gain that measures the 

separation between two classes. The decision tree is built by taking into consideration all possible 

combination of trees produced by such two-class separation.  

 

3.1.3. Decision patterns 
 

The decision path is the path taken through the decision tree during decision process. When time-

series comes for classification, the distance between shapelet and the time-series is calculated. If 

such distance is higher than the optimal split distance associated with the shapelet, the process 

takes the right branch of the tree, if not- the process takes the left branch. When right branch is 

taken, character “R” is added to the decision path, when the left branch is taken, character “L” is 

added to the decision path. An example of possible decision paths is shown on Fig.2. To form a 

decision pattern the decision paths from all decision trees are concatenated as shown on Fig. 3.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.2 Possible decision paths of incoming time-series. 
 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.3 Decision pattern, obtained by combining the decision paths from all subsets’ decision trees. 
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3.2. Classification 
 

During the training process, decision pattern for every time-series from the training dataset is 

collected. These decision patterns are kept and used during the classification process. When time-

series from test dataset comes for classification a decision pattern is created for that time-series. 

This pattern is compared with the patterns produced during the training process. Comparison 

process is very simple. The two decision patterns strings are compared character by character in 

place and the comparison coefficients is equal to the number of characters that coincide by place 

and value, divided by the length of the decision string as shown on Fig. 4. After all the 

comparison coefficients are collected we keep only those which are above certain threshold. The 

idea of this classification is that time-series from the same class will produce similar decision 

patterns, but decision patterns from different classes should differ significantly. The incoming 

time-series is identified as class to which it has closest decision pattern. In certain cases more 

than one class index show similar pattern to the investigates time-series. In such cases the 

classification process assign the incoming time-series to the class, that has majority of decision 

patterns closest to the incoming time-series decision pattern.   

 

R - L L R - L L L R 

R L L L L - L R L L 

 
Fig. 4 Comparison between decision patterns of two time-series. Six out of ten characters coincide by place 

and value, therefore the comparison coefficients is 6/10 = 0.6. 

 

4. EXPERIMENTAL RESULTS 
 

The project implementation uses C# and .NET Framework 4.0. Time performance measurements 

were produced with a System.Diagnostics.StopWatch .NET class. In our experiments we used a 

PC with the following parameters: CPU: Intel Core i7, 2.4GHz; RAM: 8 GB; 64-bit Windows 7 

OS. We selected datasets from the UCR collection [9] with a number of classes higher than five 

(Table 1) as for datasets with fewer classes applying proposed method is meaningless. Table 1 

shows parameters of the used datasets. We used method from [7] as a reference method. We 

downloaded the Java implementation of the reference method from [10] and ran it on the same 

hardware as proposed method. Reference method requires to specify threshold p and aggregation 

ratio r. We kept these value the same as defined in [7] to maintain the highest accuracy.  

 

4.1. Accuracy assessment  
 

Table 2 shows the results of both methods in terms of training time and accuracies they produce. 

In 18 out of 24 cases the proposed method outperforms the reference method in terms of 

accuracy, where the improvements vary from 2% up to 23%, where in six of these cases the 

improvement is above 10%. In the rest, 3 cases differ less than 1.0% and we consider that both 

method perform equally for these datasets. Only in 3 cases the reference method outperform the 

proposed method in terms of accuracy, but the difference is less than 2%. Although the reference 

method shows better training times, the proposed method maintains an observable training time- 

varying from several seconds up to several minutes (∼15 min. for Non.FatalECG.1) for datasets 

that have long time-series and higher number of time-series in a train datasets (uWave.X, 

uWave.Y, uWave.Z). 
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4.2. Decision pattern length assessment  
 

The length of the decision pattern may very as shown on Table 2. For datasets, such as “Beef”, 

which consist of 5 classes, the number of subsets is limited to 10 when constructed of 3 class 

indexes or to 5 when constructed of 4 class indexes. In this case to achieve better accuracy, 

combination of all possible trees up to 4 indexes are taken. On the other hand, datasets with more 

class indexes have more varieties to choose from. In the case of “50Word” dataset, which contain 

50 class indexes, the total amount for combinations for two-classes decision tree is 1225. We 

selected 497 of them based on the principle from 3.1.1 and the total length of the decision pattern 

become 994 characters. Rising the number of characters in the decision pattern in all investigated 

cases increased the accuracy in general. Although, it appears that there is certain limit of 

characters above which the accuracy does not increase and even may decrease as shown on Fig.5.  
 

 

    
A.) 

 
B.) 

 

 
C.)     

 
D.)

 
Fig. 5. The influence of the decision pattern  length on accuracy. Datasets: A. “50words“ (50 class 

indexes); B. “Adiac” (37 class indexes); C. “Swidish Leaf” (15 class indexes); D. “Cricket X” (12 class 

indexes).

4.3. Training time assessment 
 

Training the decision trees as mentioned in 3.1.2. is based on the Particle Swarm Optimization 

(PSO) technique. PSO optimizes certain solution by changing its coordinates into the search 

space after estimating it with a fitness function. PSO utilizes number of solutions- particles  that 

form a swarm. The change of the particle’s coordinates is dictated by the best so far particle’s 

position and the best position in the swarm.   

  

Working with N-3 candidate shapelets (where N is the length of the time-series) as initially 

proposed in [6] makes the process of training relatively slow. To make it faster the training 

process initially starts with small amount of time-series extracted from the original datasets. That 

initial training reveal the typical length of the shapelets for that particular datasets, even though it 
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does not create a very accurate classification tree. Once the typical length of the shapelets for a 

datasets are found, only the 10 most typical lengths are considered further. Thus, instead of using 

N-3 candidate shapelets, the training process continues with only 10 candidate shapelets, but with 

all the time-series from the dataset. The achieved time reduction is significant. 

 

In order to achieve even better training times we introduced data compression as suggested in [7]. 

According to [7, 16] averaging the neighboring values of the time-series will not harm the 

accuracy, but will reduce the training time because of the shortened time-series. The compression 

rate is kept as defined in [7] to make the proposed and reference method comparable. 

 

The iteration process of the PSO as proposed in [6], finishes when certain number of iterations are  

achieved and when the information gain improvement from the previous step is considered not 

significant. If the iteration restriction condition is avoided, the training time increases 

significantly, but the accuracies does not deviate much from when both constrains were used, as 

shown on Table 3. In 14 out of 24 investigated datasets the accuracy is higher when both 

constrains are used. In 4 datasets the results are equivalent, but in in 6 cases avoiding iteration 

constrain produce even higher accuracies. These fluctuations in accuracies are mostly seen 

because of the randomized initialization of the candidate shapelets. It also depends on the dataset 

and the user preference for train time vs. accuracy trade off  to include or avoid the iteration 

constrain for the PSO process.  
 

Table 1. Used datasets from UCR database. 

 

Dataset 
Number of 

Classes 

Number of 

time-series in 

the train/test 

dataset 

Time-series 

length 

Beef 5 30 / 30 470 

Haptics 5 155 / 308  1092 

OsuLeaf 6 200 / 242  427 

Symbols 6 25 / 995  398 

synthetic. 6 300 / 300  60 

Fish 7 175 / 175  463 

InlineSkate 7 100 / 550  1882 

Lighting7 7 70 / 73  319 

MALLAT 8 55 / 2345  1024 

uWave.X 8 896 / 3582  315 

uWave.Y 8 896 / 3582  315 

uWave.Z 8 896 / 3582  315 

MedicalImages 10 381 / 760  99 

Cricket X 12 390 / 390  300 

Cricket Y 12 390 / 390  300 

Cricket Z 12 390 / 390  300 

FaceAll 14 560 / 1690  131 

FacesUCR 14 200 / 2050  131 

SwedishLeaf 15 500 / 625  128 

WordsS. 25 267 / 638  270 

Adiac 37 390 / 391  176 

Non.FatalECG.1 42 1800 / 1965  750 

Non.FatalECG.2 42 1800 / 1965  750 

50words 50 450 / 455  270 
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Table 2. Comparison between classification times and accuracies produced by proposed method and the 

reference method. 

 

Dataset 

 

Comp.

Rate 

Proposed method Reference method 

Pattern 

Length 

Train 

Time, 

[sec] 

Accuracy, 

[%] 

Train 

Time, 

[sec] 

Accuracy, 

[%] 

Beef 0.125 70  4.15 52.21 0.05 48.89 

Haptics 0.500 20  70.66 39.39 1.69 34.56 

OsuLeaf 0.125 150  55.84 76.99 0.14 53.31 

Symbols 0.250 150  7.87 94.20 0.05 82.48 

synthetic. 0.250 150  125.58 98.88 0.06 98.44 

Fish 0.250 287  102.51 90.85 0.15 75.05 

InlineSkate 0.125 245  78.57 39.57 0.56 39.88 

Lighting7 0.500 245  42.52 75.79 0.39 65.30 

MALLAT 0.125 280  42.87 92.85 0.10 90.77 

uWave.X 0.250 117  559.22 75.32 4.37 76.45 

uWave.Y 0.250 168  594.66 65.12 3.33 66.72 

uWave.Z 0.125 117  508.93 66.30 1.89 67.48 

Med.Images 0.500 240  139.47 71.27 0.58 67.68 

Cricket X 0.250 471 267.66 77.78 0.61 68.63 

Cricket Y 0.250 408 198.58 79.14 0.50 64.01 

Cricket Z 0.250 414 184.38 75.29 0.66 68.21 

FaceAll 0.500 342 167.02 75.42 1.25 71.63 

FacesUCR 0.500 330 36.97 90.56 0.32 84.61 

SwedishLeaf 0.500 519 342.27 91.14 0.34 85.60 

WordsS. 0.250 600 28.48 65.46 0.29 60.92 

Adiac 0.500 1473 514.63 73.65 0.27 55.67 

Non.FatalECG.1 0.250 836 878.18 85.01 6.90 80.93 

Non.FatalECG.2 0.125 836  349.32 89.19 4.67 86.34 

50words 0.250 994  58.15 68.79 0.35 68.06 

 
 

In a further effort to decrease the training time some parallel processing techniques utilizing .NET 

Parallel.ForEach was applied on candidate shapelets, during PSO iterations. The particle 

coordinates updates are independent from each other, thus parallel processing could be applied 

successfully on them. Parallel processing was also considered during calculating the distances 

between candidate shapelet and the time-series from the dataset. As this calculations are 

independent from each other it was considered as a good place for optimization. Finally, the 

results did not show any significant improvement of training time after applying these parallel 

techniques. That is because in both cases the number of parallel calculation was not significant 

enough. In case of PSO iteration we consider only 10 shapelet candidates, but in case of distance 

calculation the number of parallel calculation is equal to the number of time-series from the two 

classes to be distinguished. Applying parallelism on proposed places did not bring significant 

effects and possibly it will take effect only in case the number of training time-series is 

considerably high.  
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Table 3. Comparison between classification times and accuracies produced by proposed method 

with/without number of iteration constrains during PSO training. 

 

Dataset 

 

Comp.

Rate 

Proposed method with 

iteration constrains  

Proposed method 

without iteration 

constrains 

Pattern 

Length 

Train 

Time, 

[sec] 

Accuracy, 

[%] 

Train 

Time, 

[sec] 

Accuracy, 

[%] 

Beef 0.125 70  4.15 52.21 2.65 46.67 

Haptics 0.500 20  70.66 39.39 13.58 37.98 

OsuLeaf 0.125 150  55.84 76.99 15.45 71.90 

Symbols 0.250 150  7.87 94.20 3.31 92.16 

synthetic. 0.250 150  125.58 98.88 21.67 98.67 

Fish 0.250 287  102.51 90.85 23.39 90.86 

InlineSkate 0.125 245  78.57 39.57 18.14 42.36 

Lighting7 0.500 245  42.52 75.79 11.37 72.60 

MALLAT 0.125 280  42.87 92.85 12.90 94.96 

uWave.X 0.250 117  559.22 75.32 135.60 75.26 

uWave.Y 0.250 168  594.66 65.12 152.84 65.57 

uWave.Z 0.125 117  508.93 66.30 128.49 68.51 

Med.Images 0.500 240  139.47 71.27 62.52 67.37 

Cricket X 0.250 471 267.66 77.78 58.22 72.82 

Cricket Y 0.250 408 198.58 79.14 39.25 76.67 

Cricket Z 0.250 414 184.38 75.29 43.44 71.79 

FaceAll 0.500 342 167.02 75.42 43.77 76.33 

FacesUCR 0.500 330 36.97 90.56 12.51 89.95 

SwedishLeaf 0.500 519 342.27 91.14 64.36 88.96 

WordsS. 0.250 600 28.48 65.46 14.05 60.66 

Adiac 0.500 1473 514.63 73.65 99.10 75.70 

Non.FatalECG.1 0.250 836 878.18 85.01 111.06 84.32 

Non.FatalECG.2 0.125 836  349.32 89.19 83.25 90.48 

50words 0.250 994  58.15 68.79 18.29 66.81 

 

5. CONCLUSION AND FUTURE WORK  
 

This paper proposes a new method for time-series shapelets classification, which demonstrates  

higher accuracies than produced by fastest known state-of-arts method for most of the 

investigated datasets. It maintains an observable time for training, varying from several seconds 

to several minutes. The proposed method is easy to implement and can be possibly applied to 

another classification tasks. As future work we will focus on improving the classification time by 

utilizing parallel processing capabilities that employ all possible processor’s cores on a certain 

machine. This technology could be successfully applied on the comparison between incoming 

time-series pattern and available decision patterns as they are processed independently. That will 

possibly decrease the classification time of the proposed method.   
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