REVISITING IT PROJECT UNCERTAINTY: OPERATIONALIZING THE SAMBAMURTHY—ZMUD MODEL FOR DE-RISKING DIGITAL TRANSFORMATION PROJECTS

Irshad Abdulla

Beedie School of Business, Simon Fraser University, Vancouver, Canada

ABSTRACT

Uncertainty in project deliverables remains a pervasive source of IT project failure, yet its structural origins are rarely operationalized. Sambamurthy and Zmud (2017) proposed a conceptual model linking IT project uncertainty to two fundamental dimensions: (1) the clarity or ambiguity of project deliverable specifications and (2) the number, diversity, and power of stakeholders involved. Despite its strong resonance with practice, this framework has not been empirically developed or tested.

This paper extends and operationalizes the Sambamurthy–Zmud model by defining measurable constructs for project deliverable specification clarity and stakeholder structure complexity and by theorizing their joint effect on IT project risk. Drawing on information processing theory, stakeholder theory, and sociotechnical systems perspectives, the paper argues that IT project uncertainty is not merely a descriptive condition, but a primary driver of project risk. A conceptual model and testable hypotheses are proposed to guide future empirical research and managerial practice in digital transformation projects.

KEYWORDS

Digital Transformation, Technology Project Uncertainty, Technology Project Risk, Deliverable Specification, Project Stakeholders

1. Introduction

Information technology (IT) projects continue to experience high rates of failure, budget overruns, and benefit shortfalls. Decades of empirical and practitioner studies identify "uncertainty" as one of the most persistent causes of risk (Lyytinen et al., 1998; Wallace et al., 2004; Tiwana & Keil, 2004). Yet, the term *uncertainty* remains conceptually diffuse and operationally underdeveloped.

Sambamurthy and Zmud (2017) proposed a compelling and practice-aligned model that frames IT project uncertainty along two dimensions: (1) the *clarity or ambiguity of project deliverable specifications* and (2) the *number, diversity, and power of stakeholders* who influence project outcomes. According to this model, projects characterized by ambiguous deliverables and complex stakeholder structures exhibit higher levels of uncertainty, which in turn heightens project risk.

While their framework provides a clear conceptual foundation, it remains largely pedagogical — introduced in their book *Guiding the Digital Transformation of Organizations* — and has not yet been elaborated or validated in the academic literature. This paper seeks to extend that model by

DOI: 10.5121/ijist.2025.15601

defining the constructs, grounding them in established theories, and linking them explicitly to project risk outcomes.

The central premise is that *reducing uncertainty reduces risk*. Clarifying deliverable specifications and managing stakeholder structure structure complexity are therefore not administrative niceties, but core mechanisms of *de-risking* IT projects. The research question motivating this study is:

How do deliverable specification clarity and stakeholder structure complexity jointly influence IT project risk?

2. THEORETICAL BACKGROUND

2.1. IT Project Risk and Uncertainty

Risk in IT projects is commonly defined as the likelihood and impact of adverse events affecting project objectives (Barki et al., 1993). Uncertainty, by contrast, refers to the *lack of clarity or predictability* regarding those objectives and events. In project management research, uncertainty is viewed as a precursor to risk: ambiguous or unstable conditions increase the probability of negative outcomes (Chapman & Ward, 2003).

IT projects, particularly large-scale digital transformation initiatives, operate under high uncertainty because deliverables evolve alongside emerging technologies and shifting organizational needs. Requirements often remain partially specified or contested across stakeholder groups, creating fertile ground for scope creep, design rework, and schedule delays.

2.2. The Sambamurthy–Zmud Model of Project Uncertainty

Sambamurthy and Zmud (2017) position IT project uncertainty within a two-dimensional framework:

- **1.** Clarity vs. Ambiguity in Deliverable Specifications the degree to which project outputs are well-defined and understood.
- 2. Number / Diversity of Stakeholders the structural complexity of the stakeholder environment influencing the project.

Projects with high ambiguity and high stakeholder structure complexity are expected to experience the greatest uncertainty and therefore the highest risk. This framework offers a powerful lens for examining project failure causes but has not been translated into measurable constructs or empirically validated.

This paper advances the model by defining each dimension operationally and theorizing their interaction through established organizational theories.

3. THEORETICAL FOUNDATIONS

3.1. Information Processing Theory (Galbraith, 1973)

Organizations must process information to resolve uncertainty. The amount of information processing required increases with task ambiguity and interdependence. Deliverable specification

clarity reduces the need for information processing; ambiguity increases it. Projects overloaded with unprocessed information are more prone to coordination failure and risk.

3.2. Stakeholder Theory (Freeman, 1984; Mitchell, Agle & Wood, 1997)

Projects involve multiple stakeholders with varying salience (power, legitimacy, urgency). As stakeholder diversity and power asymmetry increase, alignment becomes harder, leading to contested interpretations of deliverables. This misalignment magnifies the impact of specification ambiguity.

3.3. Socio-Technical Systems Theory

Projects succeed when the technical (specifications, systems, methods) and social (stakeholders, governance, communication) subsystems are aligned. Misalignment—such as ambiguous deliverables coupled with fragmented stakeholder interests—creates systemic project risk.

Together, these theories help explain how ambiguity and stakeholder structure complexity interact to produce risk through elevated information processing demands, goal misalignment, and socio-technical imbalance.

4. CONCEPTUAL MODEL

The proposed model conceptualizes *IT Project Risk* as an outcome of *IT Project Uncertainty*, which emerges from the interaction between **deliverable specification clarity (DSC)** and **stakeholder structure complexity (SSC)**.

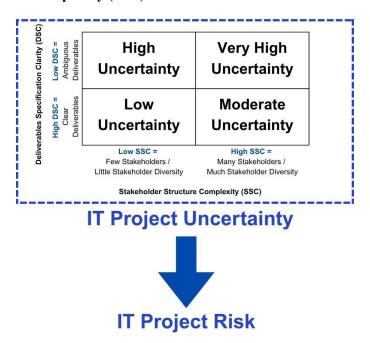


Figure 1. Conceptual Model of IT Project Risk as an outcome of IT Project Project Uncertainty (Adapted from Sambamurthy and Zmud, 2017)

When **DSC** is low (ambiguous deliverables), projects face greater risk due to misinterpretation of what actually needs to be delivered. When **SSC** is high (large number of stakeholders, or

stakeholders representing varying interests / parts of the organization), coordination challenges / meeting competing needs of stakeholders amplify the impact of any deliverable ambiguity. Thus SSC by itself is not of significance, the moderating impact of SSC on DSC is relevant. Conversely, **high DSC and low SSC** conditions yield lower uncertainty and reduced project risk.

5. CONSTRUCT DEFINITIONS AND OPERATIONALIZATION

This section defines the key constructs underpinning the model of IT project uncertainty adapted from **Sambamurthy&Zmud** (2017). Following their proposition that *uncertainty in project deliverable specifications* and *stakeholder structure complexity* increase IT project risk, we expand each construct and provide preliminary operationalization guidance for empirical testing.

5.1. Project Deliverable Specifications

Defining Project Deliverable Specifications

Project deliverable specifications (also referred to plainly as deliverables) are the formal outputs that define what an IT project must produce to achieve its intended outcomes. In an IT project, each project deliverable serves a particular purpose that aids in achieving project objectives in some form or another; and there may be relationships between deliverables such that one deliverable informs or is a prerequisite for another. Each deliverable typically comprises different content required to satisfy the objectives of that particular deliverable. For example project charter deliverables may detail a set of decisions about project scope, functional design specifications may include descriptions of how the system functionality will be set up, and data design deliverables describe decisions about what data will be migrated from the old system to the new system being implemented in the project.

Uncertainty in deliverable specifications arises from incomplete, inconsistent, or ambiguous definitions of "what success looks like" (Wallace, Keil & Rai, 2004; Tiwana & Keil, 2007). Reducing ambiguity in these deliverables is central to de-risking large-scale IT projects (Sambamurthy&Zmud, 2017).

Building on Sambamurthy& Zmud's (2017) proposition that uncertainty in project deliverable specifications contributes to IT project risk, we can operationalize this construct by identifying the *key deliverables* in large-scale technology projects and examining how clarity or ambiguity manifests in each. Table 1 in Appendix A synthesizes findings from the IS project management and systems engineering literature, combined with practical insights from large-scale ERP and digital transformation programs (e.g., Tiwana & Keil, 2007; Nelson, 2007; Barki et al., 2001; Keil et al., 2013). It lists and describes key deliverables in a digital transformation project, along with potential sources of ambiguity and mechanisms that can be applied to reduce such ambiguity.

Operationalization of Deliverable Specification Clarity (DSC)

Deliverable Specification Clarity (DSC) is conceptualized as a multi-dimensional construct comprising perceived clarity, documented ambiguity, and contextual interpretation. To assess this construct in the context of IT projects, three complementary components are proposed: the *Deliverable Clarity Index (DCI)*, the *Ambiguity Ratio (AR-0)*, and *Qualitative Indicators (QI)*. Each serves a distinct yet reinforcing analytical role.

Deliverable Clarity Index (DCI) is a qualitative composite indicator measuring how clear, complete, specific, and consistent key project deliverables are in the eyes of project participants. It reflects the shared understanding of deliverables among project participants. DCI can be measured as a mean of Likert-scale survey responses (1–5) on items assessing core deliverables listed in Appendix A (e.g., project charter, requirements, data, integration, training, change management). Data for DCI can be gathered by surveying project team members, business stakeholders, and system integrators.

The Initial Ambiguity Ratio (AR-0) can be seen as a diagnostic indicator quantifying the extent of unresolved, conflicting, or incomplete elements in deliverable documentation. It captures "objective" ambiguity present in project artefacts. This is a quantitative indicator counting ambiguous, conflicting, or incomplete items ÷ total documented items. AR-0 data can be gathered through project requirements logs, issue trackers, meeting minutes and design documentation. Gaps in AR-0 can manifest if a deliverable has never been developed in the project in the first place and hence does not show up as a denominator in the "incomplete items ÷ total documented items" AR-0 calculation. Similarly, if the deliverable is developed but is missing important content which project participants do not realize, these ambiguities are never documented in the issue tracker, meeting minutes etc. and may not show up in the numerator of "incomplete items ÷ total documented items" AR-0 calculation.

Qualitative Indicators (QI) are thematic and narrative evidence providing contextual understanding of how clarity or ambiguity manifests in practice. It explains the *why* behind DCI and AR values. Measures include thematic coding of qualitative data to identify instances of misunderstanding, rework, or disagreement regarding deliverables. Interviews, project retrospectives, industry expertise and lessons-learned documentation are potential data sources. QI can be used to compensate for potential data gaps in AR-0 described above.

Integration of DSC Components

DCI, AR-0 and QI components are not redundant but rather complementary, leading to an overall Ambiguity Ratio (AR). DCI provides a subjective perception of clarity across stakeholders whilst AR-0 offers an initial objective documentation-based measure of ambiguity. QI supplies contextual insight, explaining patterns and relationships observed in DCI and AR-0. QI also allows for consideration of relevant project deliverables which may not have been developed at all in a particular project, or which may have been developed but are missing important deliverable content and such deficiencies do not show up in DCI or AR-0 assessments.

Together, AR enables both quantitative assessment and qualitative interpretation of how clearly deliverables are defined and communicated within IT projects. Using both perceptual (DCI, QI) and empirical (AR-0) measures aligns with mixed-methods approaches in IS research (Venkatesh et al., 2013; Mertens, 2015). This triangulation ensures construct validity and enables multiperspective understanding—critical in complex, multi-stakeholder IT environments where clarity is socially constructed and often evolves dynamically (Lyytinen & Newman, 2008; Turner & Cochrane, 1993).

5.2. Stakeholder Characteristics

Stakeholders are individuals or groups with a direct interest in or influence over project deliverables, and by extension, the overall realization of intended project outcomes. Their number and diversity shape the level of uncertainty during project execution (McKeen & Smith, 2003; Lyytinen & Hirschheim, 1987). We distinguish core stakeholders (those defining, approving, or

directly impacted by deliverables) from peripheral stakeholders (those indirectly affected but not influential in specification clarity).

Number and Diversity of Stakeholders

The number of stakeholders can be defined as the count of distinct core stakeholders and stakeholder groups directly involved in shaping project deliverables. Risks introduced by the number of stakeholders include coordination overload, increased communication noise, amount of effort required for training and change management. These risks can be measured and potentially mitigated by using stakeholder analysis, communication network density metrics and change impact assessments (Mitchell, Agle & Wood (1997); Barki & Hartwick (2001)).

Diversity of stakeholders is another dimension of SSC (Sambamurthy and Zmud, 2017). This can be seen as the degree of heterogeneity in the core stakeholders' functional role in the business, their desired project outcomes, their desire or time available to participate in project activities, competing priorities, culture, geography, or cognition. Misaligned frames of reference and conflicting decision logics are some of the risks that diverse stakeholders introduce. These risks can be measured and mitigated through stakeholder diversity index assessments (Shannon index), alignment workshops and running shared understanding sessions (Reich &Benbasat (2000); Martinsuo&Hoverfält (2018)).

Stakeholder Power as an Omitted but Critical Dimension

Sambamurthy and Zmud (2017) include power as a third dimension of stakeholder structure complexity, alongside the number and diversity of stakeholders. However, their treatment of the construct is relatively limited and conceptual. In their model, stakeholder power is presented in a manner analogous to other dimensions—where higher stakeholder power is assumed to elevate project risk—but without elaboration on what constitutes power, how it is distributed, or how it interacts with other dimensions of stakeholder complexity. The model does not specify what distinguishes *high* versus *low* stakeholder power, nor does it explain the mechanisms through which power asymmetries influence decision-making, coordination, or ultimately, project risk.

For these reasons, power was excluded from the initial operationalization of stakeholder structure complexity in this study. Its omission reflects both conceptual ambiguity and measurement difficulty, rather than theoretical insignificance. Power remains a critical yet underexplored factor that future research must address (Mitchell et al., 1997; Aaltonen & Kujala, 2010).

The challenge of conceptualizing and measuring power within information systems projects has long been recognized. Parrish (2006) characterizes power in IS contexts as a "wicked problem," noting that "defining the problem is the problem in most cases." Adopting a sociological perspective, Parrish proposed a taxonomy of power-related issues and a methodological approach to studying them, offering valuable foundations for future inquiry. Similarly, Hofstede's (2011) work on organizational culture introduces the dimension of *power distance*—defined as the extent to which less powerful members of organizations accept and expect unequal power distribution. This notion highlights that inequality can be perpetuated not only by those in authority (e.g., project sponsors or executives) but also by those who accept such hierarchies (e.g., system users or implementation teams).

Understanding stakeholder power through these theoretical lenses may enable richer conceptualizations of Stakeholder Structure Complexity (SSC). Future research should explore how variations in power distribution—both formal (authority, control over resources) and

informal (expertise, influence, legitimacy)—shape interactions among stakeholders, influence deliverable clarity, and amplify or mitigate project risk.

Operationalization of Stakeholder Structure Complexity (SSC)

Stakeholder Complexity Index (SCI) can be defined as the weighted composite measure of number of stakeholders × diversity of stakeholders. SCI can be informed by both qualitative and quantitative data sources.

Qualitative data sources informing include stakeholder maps, governance records, and meeting transcripts coded for influence, conflict, and alignment patterns. Quantitative measures can be adapted from scales from Reich &Benbasat (2000) and Barki & Hartwick (2001) for evaluating stakeholder alignment and communication quality.

6. PROPOSED ANALYTICAL MODEL AND HYPOTHESES

Building on Sambamurthy and Zmud's (2017) conceptualization of IT project uncertainty, this study proposes a model in which **deliverable ambiguity** and **stakeholder structure complexity** jointly influence **project risk**. Specifically, project risk (PR) is modeled as a function of the *Ambiguity Ratio (AR)*, the *Stakeholder Complexity Index (SCI)*, and their interaction:

$$PR = \beta 0 + \beta I(AR) + \beta 2(SCI) + \beta 3(AR \times SCI) + \varepsilon$$

6.1. Interpretation of the Model

- 1. β_0 represents the baseline level of project risk when both ambiguity and stakeholder structure complexity are minimal.
- 2. β_1 captures the direct effect of ambiguity in project deliverable specifications on project risk.
- 3. β₂ captures the direct effect of stakeholder structure complexity—defined by the number, diversity, and power of stakeholders—on project risk.
- 4. β₃ represents the *interaction effect*, indicating whether the risk impact of ambiguity becomes stronger (or weaker) as stakeholder structure complexity increases.
- 5. ε captures all other sources of project risk not explained by ambiguity or stakeholder structure complexity (random noise, unmeasured variables, etc.).

6.2. Theoretical Rationale

Ambiguity in project deliverable specifications creates uncertainty in scope, requirements, and expected outcomes, which elevates the likelihood of rework, schedule delays, and misalignment between business and technical teams (Barki, Rivard, & Talbot, 2001; Wallace, Keil, & Rai, 2004). Meanwhile, stakeholder structure complexity—through competing interests, communication breakdowns, and decision bottlenecks—further amplifies these risks (Jiang, Klein, &Balloun, 1998; McLeod et al., 2012).

When both ambiguity and stakeholder structure complexity are high, their joint influence is expected to **compound project uncertainty**, creating an environment where clarity deteriorates faster than mitigation mechanisms can respond.

6.3. Hypotheses

H1: Deliverable ambiguity (AR) is positively associated with project risk (PR). Projects with more ambiguous deliverables will experience higher levels of perceived and realized risk.

H2:Stakeholder complexity (SCI) is positively associated with project risk (PR). Projects involving a greater number, diversity, or power imbalance among stakeholders will face higher levels of project risk.

H3:Stakeholder complexity moderates the relationship between deliverable ambiguity and project risk (AR \times SCI).

The positive effect of ambiguity on project risk will be **stronger** when stakeholder structure complexity is high.

6.4. Case Example

A brief empirical study was conducted to operationalize and test the proposed model. The digital transformation project examined in this study involved modernizing recruitment processes for a large public-sector organization.

Deliverable Clarity Index (DCI) Assessment

DCI was assessed through a survey administered to ten project stakeholders, including the project manager, technical leads, business representatives, and various end users. Respondents rated each deliverable on a 0–5 scale, where 5 indicated a high level of clarity.

The Initial Ambiguity Ratio (AR-0) was derived by counting the number of ambiguities identified within each deliverable and converting these counts to a 0–5 scale, with 5 representing the greatest observed ambiguity. Qualitative Indicators (QI) were extracted from semi-structured interviews and supporting project artefacts, such as status reports and meeting minutes, to provide contextual insight into sources of ambiguity.

The final Ambiguity Ratio (AR) was determined by triangulating the DCI, AR-0, and QI results, producing an aggregated 0–5 score for each deliverable, where 5 represented the highest level of ambiguity.

Deliverable	DCI	AR-0	QI	AR
1. Project Charter &	3	2	Different types of recruitment processes in scope	2
Plan			not fully described. Variations of union / non-	
			union scope are vague.	
2. Business	4	3	Business requirements included as a list but not	2
Requirements			clear how the requirements are realized in a	
			business process.	
3. Functional Design	3	1	Simply stated what module / function of the	2
Specifications			system will be configured to meet the	
			requirement. Does not explain how the	
			configuration will be done in the system, so full	
			configuration effort not clear and quantifiable.	
			Unclear what customizations are needed.	
			Business reports / analytics not clear.	

Deliverable	DCI	AR-0	QI	AR
4. Non-Functional Requirements (NFRs) & Designs	2	1	No analysis of expected increase in volumes of applicants post system implementation, so not possible to assess system performance impact. Backup / disaster recovery not mentioned. System look and feel is not clear.	1
5. Solution Architecture	3	1	Not clear what will be in the cloud vs on premises. Not clear how recruiters will access the system remotely, or how the system will be monitored and troubleshooting done. Unclear if some of this should be covered in the NFR deliverable.	1
6. Data Design	2	1	Key decisions about data migration (how much history) not addressed. Data archival approach unclear.	1
7. Integration Design	3	1	Interfaces listed but actual technology to integrate systems not defined. Not clear about re-use of existing interfaces vs net new to be built. Difficult to understand effort required.	2
8. Testing and Acceptance Criteria	2	2	Broad statements of outcomes to be tested rather than specific test cases linked to business requirements.	2
9. Training Deliverables	3	3	Adequate online and in person training, tailored to user personas.	3
10. Organizational Change Management Deliverables	3	3	Change management efforts informed other deliverables e.g. business requirements.	2
11. Project Dependencies	3	1	Known projects identified and best-efforts approach to synchronize dependencies. However no formal mechanism to track and monitor.	1
12. Transition and Deployment Plans	4	2	Well defined plans and roles and responsibilities. Not clear how a roll back will be performed in the event of a failed cutover.	2
13. The IT System	2	1	Overall system is functional. Several performance and usability issues to still be addressed. Project schedule and budget were impacted, as well as overall scope reduced.	2

Stakeholder Structure Complexity (SSC) Assessment

SSC was evaluated based on the number and diversity of stakeholders involved in the project, supplemented by qualitative indicators extracted from project documentation and meeting records. Quantitative data captured the breadth and heterogeneity of stakeholder groups, while qualitative insights highlighted variations in interests, roles, and interdependencies.

The overall Stakeholder Complexity Index (SCI) for this case was then assessed as 4 on a 0–5 scale, where 5 represents the highest level of complexity. This rating was derived through triangulation of the quantitative and qualitative evidence, reflecting a project environment characterized by numerous and diverse stakeholder groups with overlapping responsibilities.

Number of	Diversity of Stakeholders	Qualitative Indicators	
Stakeholders			
Internal to	Recruiters – union, non union,	Union rules for recruitment may differ	
organization -	executive recruiters, temporary	significantly, so diversity of recruiters /	
500	staffing.	managers / internal applicants may need to be	

Number of Stakeholders	Diversity of Stakeholders	Qualitative Indicators
	Hiring managers (including proxies and admin assistants who perform system tasks on behalf of managers) Internal candidates applying for jobs – office based, field based with limited access to a work computer or online job postings	further segmented based on the union.
External – numbers not known	External candidates applying for jobs – union vs non-union roles	External applicants—particularly those applying for union versus non-union positions—were not directly represented in the project team, and their numbers were unknown at the time of study. Historical volumes of external applications were not considered a reliable benchmark, as the new system was expected to reach a broader candidate pool and significantly increase applicant volumes. The exclusion of external users from project activities was typical for this type of initiative.

6.5. Case Observations and Reflections

Observations on Deliverable Clarity and Ambiguity

Perceptions of the Deliverable Clarity Index (DCI) differed significantly across stakeholder groups, particularly between business and IT participants, and between client-side and vendor or system integrator representatives. Both DCI and the Initial Ambiguity Ratio (AR-0) would benefit from more robust and standardized research instruments. Future studies could decompose each deliverable into explicit evaluation criteria—defining what constitutes "clarity" or "fit-for-purpose"—and develop corresponding survey items (for DCI) and structured assessment frameworks (for AR-0). Similarly, stakeholder diversity would benefit from a clearer definitional taxonomy specifying which forms of diversity (e.g., functional, hierarchical, geographic, contractual) are most relevant to IT project complexity.

Timing and Temporal Considerations

The empirical assessment was conducted after project completion, but clarity and ambiguity are dynamic and may evolve across the project lifecycle. As project participants **gain a more** accurate understanding of deliverable expectations—or as the consequences of unclear deliverables become visible during implementation—DCI, AR-0, and Qualitative Indicators (QI) may shift. While post-project assessments are valuable for organizational learning, the highest impact would be achieved through real-time assessments during execution. Ongoing measurement enables early detection and mitigation of ambiguities, directly reducing the likelihood of downstream impacts on scope definition, schedule adherence, and budget control.

Expanding the Scope of Deliverables

Study participants noted that the vendor contract or statement of work should be treated as a critical project deliverable, since ambiguity in contractual roles, responsibilities, and acceptance criteria often cascades into other deliverables. This observation underscores the interconnected nature of deliverables, where uncertainty in one domain can propagate across multiple areas.

Future research could incorporate deliverable weighting mechanisms to account for the varying degrees of influence that different deliverables exert on overall project risk. For example, ambiguity in high-impact deliverables—those directly affecting project scope, schedule, or budget—could be assigned greater weight when calculating the overall Ambiguity Ratio (AR) at the project level. A more robust, weighted aggregation method would allow the AR to reflect not only the prevalence but also the *consequentiality* of ambiguity.

Reflections on Stakeholder Complexity

With respect to Stakeholder Structure Complexity (SSC), findings suggest that stakeholder diversity requires a more comprehensive and nuanced definition. Different dimensions of diversity often intersect—for instance, candidates for unionized positions are connected to hiring managers, who are in turn supported by recruiters dedicated to union roles. Such interdependencies illustrate how one form of diversity (employment category) can inform or amplify another (functional role). Future operationalizations of the Stakeholder Complexity Index (SCI) should capture these relationships without overcomplicating or double-counting them. Developing a more systematic and transparent approach to measuring stakeholder complexity would enhance both the reliability and analytical power of the model.

7. RESEARCH DESIGN AND METHODOLOGICAL PATHWAYS

A multi-method research strategy is recommended to test the hypotheses.

Phase 1: Construct Development

Conduct a Delphi study with experienced IT project managers and architects to validate construct dimensions and generate measurable indicators for deliverable specification clarity and stakeholder structure complexity.

Phase 2: Survey Study

Administer a cross-sectional survey across multiple organizations. Use validated scales or newly developed measures to test the hypothesized relationships using regression or SEM.

Phase 3: Case Studies

Complement quantitative findings with qualitative case studies of large digital transformation projects to understand mechanisms in context.

Potential dependent variables include cost and schedule performance, requirement change frequency, and stakeholder satisfaction.

8. EXPECTED CONTRIBUTIONS

8.1. Theoretical Contributions

Operationalization of IT Project Uncertainty: This paper provides measurable constructs for deliverable specification clarity and stakeholder structure complexity, transforming a conceptual model into an empirically testable framework.

Integration of Risk and Uncertainty: It explicitly positions uncertainty as a *causal mechanism* driving risk, bridging two historically distinct literatures.

Extension of the Sambamurthy–Zmud Model: The work extends their framework from conceptual to empirical terrain, contributing to the digital transformation and IT governance literatures.

8.2. Practical Contributions

De-Risking through Clarity: Offers project managers diagnostic tools to assess and reduce ambiguity early in the lifecycle.

Stakeholder Mapping for Risk Mitigation: Provides a framework for analyzing stakeholder diversity and power to anticipate coordination challenges.

Governance Implications: Suggests that organizations can mitigate risk by dynamically matching governance intensity to levels of deliverable ambiguity and stakeholder structure complexity.

9. DISCUSSION

This conceptualization reframes IT project uncertainty not as an abstract descriptor but as a *risk-inducing condition* that can be systematically measured and managed. Clarifying deliverables reduces the interpretive latitude available to diverse stakeholders; aligning stakeholders reduces the amplification effect of residual ambiguity.

Projects often fail not simply because requirements are incomplete, but because *uncertainty interacts with stakeholder structure*. A moderately ambiguous requirement can be manageable in a cohesive stakeholder environment but catastrophic in a fragmented one. Thus, managing uncertainty is inherently a *social* as well as a *technical* challenge.

10. FURTHER RESEARCH

The model proposed in this paper extends and operationalizes the conceptual framework introduced by **Sambamurthy and Zmud (2017)** on IT project uncertainty. While the current work focuses on clarifying and measuring the dimensions of **deliverable specification clarity (DSC)** and **stakeholder structure complexity (SSC)**, several avenues for further research remain to advance and empirically validate the model.

First, this study assumes that the **IT project business case**—including its anticipated benefits—is well-defined prior to project mobilization. In practice, however, the business case itself may be uncertain or incomplete, thereby introducing additional layers of ambiguity that propagate throughout the project. Future research could therefore examine how uncertainty in the business case influences downstream deliverables and overall project risk. Second, future work should seek to develop **granular definitions of ambiguity** for each key project deliverable. This may include identifying *explicit questions or criteria* that a deliverable must answer to be considered "clear" rather than "ambiguous." Establishing such diagnostic checklists could strengthen both theoretical precision and practical applicability.

Third, further investigation is needed into the **appropriate level of detail** required for deliverables to achieve clarity. Greater detail does not necessarily equate to greater clarity—

particularly for complex deliverables such as business processes and requirements specifications. Researchers could explore how modeling standards (e.g., BPMN levels L1–L4) and the balance between *current state* and *future state* representations affect clarity and alignment among stakeholders. Fourth, the **quality dimension** of deliverables merits closer attention. Determining what constitutes "adequate quality" for clarity—along with the methods and metrics to assess it—remains an open question. This includes exploring how technical accuracy, completeness, and stakeholder validation jointly contribute to perceived and actual clarity.

Fifth, IT project deliverables are **dynamic and temporal** in nature: they evolve as business conditions, technologies, and stakeholder expectations change. Future studies should examine how shifts in context over the project lifecycle alter the clarity—ambiguity balance, and whether adaptive governance mechanisms can mitigate associated risks. Sixth, comparative studies across **different project management methodologies**—such as waterfall versus agile or hybrid models—could reveal how varying degrees of iteration, documentation, and stakeholder engagement influence the relationship between ambiguity, complexity, and project risk.

Finally, while the present study excluded **stakeholder power** from the proposed model due to its conceptual and measurement complexity, Sambamurthy and Zmud (2017) emphasize power as an important dimension of stakeholder influence. Future research should explore how power asymmetries—both formal and informal—shape perceptions of clarity, decision authority, and the ability to manage uncertainty in large-scale IT projects. Mitchell et al. (1997); Keil et al. (2013); Tiwana (2010) provide useful insights that need to be further explored.

11. CONCLUSION

Uncertainty in project deliverables is a central driver of IT project risk. Building on Sambamurthy and Zmud's (2017) conceptual model, this paper defines and operationalizes two foundational dimensions of uncertainty — deliverable specification clarity and stakeholder structure complexity — and theorizes their joint influence on risk outcomes.

By positioning uncertainty as a de-risking target, rather than a descriptive variable, the model provides both a theoretical bridge and a managerial toolkit for improving IT project success. Future empirical work can validate these constructs, test the proposed hypotheses, and refine predictive models of digital transformation risk.

REFERENCES

- [1] Aladwani, A. M. (2001). Change management strategies for successful ERP implementation. *Business Process Management Journal*, 7(3), 266–275.
- [2] Aaltonen, K., & Kujala, J. (2010). A project lifecycle perspective on stakeholder influence strategies in global projects. *Scandinavian Journal of Management*, 26(4), 381–397.
- [3] Armenakis, A. A., Harris, S. G., & Mossholder, K. W. (1999). Creating readiness for organizational change. *Human Relations*, 46(6), 681–703.
- [4] Barki, H., Rivard, S., & Talbot, J. (2001). An integrative contingency model of software project risk management. *Journal of Management Information Systems*, 17(4), 37–69.
- [5] Bass, L., Clements, P., &Kazman, R. (2022). *Software Architecture in Practice* (5th ed.). Addison-Wesley.
- [6] Boehm, B., & Turner, R. (2004). *Balancing agility and discipline: A guide for the perplexed.* Addison-Wesley.
- [7] Browning, T. R. (2014). Managing complex project process models with a process architecture framework. *Systems Engineering*, 17(3), 241–261.
- [8] Chapman, C., & Ward, S. (2003). Project risk management: Processes, techniques, and insights (2nd ed.). Wiley.

- [9] Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2000). *Non-functional requirements in software engineering*. Springer.
- [10] Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. (2018). Fundamentals of Business Process Management (2nd ed.). Springer.
- [11] Freeman, R. E. (1984). Strategic management: A stakeholder approach. Pitman.
- [12] Galbraith, J. R. (1973). Designing complex organizations. Addison-Wesley.
- [13] Galster, M., Avgeriou, P., Weyns, D., & Becker, S. (2013). Variability in software architecture: Current practice and challenges. *Computer*, 46(7), 90–94.
- [14] Gregor, S., Hart, D., & Martin, N. (2006). Enterprise architectures: Enablers of business strategy and IS/IT alignment in public sector organizations. *Information Technology & People*, 20(2), 96–120.
- [15] Hofstede, G. (2011). Dimensionalizing Cultures: The Hofstede Model in Context. OnlineReadings in Psychology and Culture, 2(1). https://doi.org/10.9707/2307-0919.1014
- [16] ISO/IEC. (2011). Systems and software engineering—Systems and software quality requirements and evaluation (SQuaRE)—System and software quality models (ISO/IEC 25010:2011). ISO.
- [17] Jiang, J. J., Klein, G., &Balloun, J. L. (1998). Systems analysts' perceptions of job skills. *Information & Management*, 34(1), 45–53.
- [18] Khatri, V., & Brown, C. V. (2010). Designing data governance. *Communications of the ACM*, 53(1), 148–152.
- [19] Keil, M., Rai, A., & Liu, S. (2013). How user risk and requirements risk moderate the effects of formal and informal control on the process performance of IT projects. *European Journal of Information Systems*, 22(6), 650–672.
- [20] Kotter, J. P. (1996). Leading change. Harvard Business School Press.
- [21] Lyytinen, K., &Hirschheim, R. (1987). Information systems failures: A survey and classification of the empirical literature. *Oxford Surveys in Information Technology*, 4(1), 257–309.
- [22] Lyytinen, K., & Newman, M. (2008). Explaining information systems change: A punctuated sociotechnical change model. *European Journal of Information Systems*, 17(6), 589–613.
- [23] Lyytinen, K., Mathiassen, L., & Ropponen, J. (1998). Attention shaping and software risk—A categorical analysis of four classical risk management approaches. *Information Systems Research*, 9(3), 233–255.
- [24] Mairiza, D., Zowghi, D., &Nurmuliani, N. (2010). An investigation into the notion of non-functional requirements. *Proceedings of the 2010 ACM Symposium on Applied Computing*, 311–317.
- [25] Martinsuo, M., &Hoverfält, P. (2018). Change program management: Toward a capability for managing value-oriented, integrated multi-project change in its context. *International Journal of Project Management*, 36(1), 134–149.
- [26] McKeen, J. D., & Smith, H. A. (2003). Making IT happen: Critical issues in IT management. Wiley.
- [27] McLeod, L., Doolin, B., &MacDonell, S. G. (2012). A perspective-based understanding of project success. *Project Management Journal*, 43(5), 68–86.
- [28] Mitchell, R. K., Agle, B. R., & Wood, D. J. (1997). Toward a theory of stakeholder identification and salience. *Academy of Management Review*, 22(4), 853–886.
- [29] Nelson, R. R. (2007). IT project management: Infamous failures, classic mistakes, and best practices. MIS Quarterly Executive, 6(2), 67–78.
- [30] Otto, B. (2011). A morphology of the organisation of data governance. ECIS 2011 Proceedings.
- [31] Parrish, J. L. (2006). Power Issues in G2G E-Government Applications. Southern Association for Information Systems (SAIS) 2006 Proceedings. Paper 30.
- [32] PMI. (2021). A guide to the project management body of knowledge (PMBOK® Guide) (7th ed.). Project Management Institute.
- [33] Prosci. (2018). Best practices in change management (11th ed.). Prosci Research.
- [34] Reich, B. H., &Benbasat, I. (2000). Factors that influence the social dimension of alignment between business and IT objectives. *MIS Quarterly*, 24(1), 81–113.
- [35] Sambamurthy, V., &Zmud, R. W. (2017). Guiding the digital transformation of organizations. Cognella Academic.
- [36] Schmidt, R., Lyytinen, K., Keil, M., &Cule, P. (2001). Identifying software project risks: An international Delphi study. *Journal of Management Information Systems*, 17(4), 5–36.
- [37] Strong, D. M., Lee, Y. W., & Wang, R. Y. (1997). Data quality in context. *Communications of the ACM*, 40(5), 103–110.

- [38] Tiwana, A. (2010). Software platforms: Ecosystems of innovation. Morgan Kaufmann.
- [39] Tiwana, A., & Keil, M. (2007). Does peripheral knowledge complement control? *Strategic Management Journal*, 28(6), 623–634.
- [40] Turner, J. R., & Cochrane, R. A. (1993). Goals-and-methods matrix: Coping with projects with ill-defined goals and/or methods. *International Journal of Project Management*, 11(2), 93–102.
- [41] van der Aalst, W. M. P. (2016). Process mining: Data science in action (2nd ed.). Springer.
- [42] Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative divide: Guidelines for conducting mixed methods research in information systems. *MIS Quarterly*, 37(1), 21–54.
- [43] Vidal, L. A., & Marle, F. (2008). Understanding project complexity: Implications on project management. *Kybernetes*, 37(8), 1094–1110.
- [44] Wallace, L., Keil, M., & Rai, A. (2004). Understanding software project risk: A cluster analysis. *Information & Management*, 42(1), 115–125.

AUTHOR

Irshad Abdulla is an enterprise technology leader with over two decades of experience shaping digital transformation strategies and large-scale architecture practices across energy, utilities, consulting, and public sector organizations. He has held senior roles including Chief Technology Architect at a public utility and Director of Digital Transformation at a public health authority. He has also worked in management consulting where he advised clients on maximizing value from enterprise platforms, cloud adoption, and business-technology alignment.

Irshad's research interests lie in better understanding how technology can be applied as a driver of strategic innovation as well as a practical enabler of organizational outcomes. He is a frequent contributor to thought leadership on digital strategy, governance, and enterprise transformation. Irshad holds a PhD in Management Information Systems and Public Administration and teaches at Simon Fraser University, Beedie School of Business.

APPENDIX A: AMBIGUITY IN KEY TECHNOLOGY PROJECT DELIVERABLES

A digital transformation project generates multiple interdependent deliverables that collectively define its scope, architecture, and implementation trajectory. From an information processing perspective (Galbraith, 1973), each deliverable embodies a set of information requirements that must be clearly specified to reduce uncertainty and enable coordinated action among stakeholders. While ambiguity can emerge in any deliverable, not all deliverables exert an equal or direct influence on overall project risk.

Table 1 identifies the core deliverables that most significantly shape project outcomes. For each, it outlines the deliverable's purpose, explains why clarity is essential, and illustrates the typical forms of ambiguity that may arise along with mechanisms to mitigate them. In doing so, the table provides an initial structure for operationalizing *deliverable ambiguity*—linking theoretical constructs of uncertainty to tangible project artefacts. This framework offers a foundation for identifying which deliverables warrant prioritization when managing and empirically examining project uncertainty and serves as a basis for hypothesis development and validation in future research.

Table 1. Key Project Deliverables, Sources of Ambiguity, and Clarity Mechanisms

Deliverable	Description / Scope	What Needs to Be Clear	What May Be Ambiguous	Mechanisms to Reduce Ambiguity / Increase Clarity	Representative References
1. Project Charter & Plan	delivery model, roles, responsibilities,	boundaries, role clarity (incl. vendors/ system integrators), governance model decision making processes, project record management practices, milestones	statements, unclear accountabilities, incomplete resourcing assumptions. Business case	detailed work breakdown structures (WBS), integrated project plans, formal governance charters	PMI (2021);Barki et al. (2001); Nelson (2007)
2. Business Requirements	business problems,	outcomes, value drivers, success metrics framed within the context of business processes.	creep, conflicting stakeholder interests, statements about business	business case validation,	Tiwana & Keil (2007); Schmidt et al. (2001)

International Journal of Information Sciences and Techniques (IJIST) Vol.15, No.6, November 2025

Deliverable	Description / Scope	What Needs to Be Clear	What May Be Ambiguous	Mechanisms to Reduce Ambiguity / Increase Clarity	Representative References
			with system functionality.		
3. Functional Design Specifications	process flows, and user	exception	-	stories, iterative walkthroughs	Browning (2014); Boehm & Turner (2004)
4. Non-Functional Requirements (NFRs) & Designs	performance,	Performance SLAs, response times, usability standards, device coverage	Implicit expectations, lack of	ISO/IEC 25010 frameworks, usability testing, operational readiness reviews	Chung et al. (2000);Mairiza et al. (2010); ISO/IEC 25010:2011
5. Solution Architecture	Conceptual and logical structure of system components and relationships	description of the solution	Undefined system boundaries, conflicting architectural patterns, unclear decision making processes	Architecture review boards, reference models, architectural documentation standards	Gregor et al. (2006); Zachman (1987)
6. Data Design	data ownership, master data definitions, metadata, and data lifecycle management	ownership, lineage, retention, and quality rules. Decisions about data to be migrated to the new system, decisions about	inconsistent definitions, unowned data	Data governance boards, data dictionaries, master data management policies	Khatri & Brown (2010); Otto (2011); Strong et al. (1997)

International Journal of Information Sciences and Techniques (IJIST) Vol.15, No.6, November 2025

Deliverable	Description / Scope	What Needs to Be Clear	What May Be Ambiguous	Mechanisms to Reduce Ambiguity / Increase Clarity	Representative References
7. Integration Design	data exchanges between systems, APIs,	Integration protocols, data mapping, synchronization frequency	behavior, missing error-handling design, undefined volumes of data to be interfaced	(ICDs),	Barki et al. (2001); Wallace et al. (2004)
8. Testing and Acceptance Criteria	Test cases, defect classification, acceptance conditions	Acceptance thresholds, UAT ownership, regression scope	Disputed quality standards, differing "fit for purpose" views	Acceptance criteria templates, third-party QA, validation sign-offs	Wallace &Keil (2004);Lyytinen et al. (1998)
9. Training Deliverables	Materials, exercises, and simulations to enable end-user readiness	Training scope, role coverage, delivery method	coverage, unclear performance expectations	Role-based training, learning analytics, feedback mechanisms	Aladwani (2001); Prosci (2018)
10. Organizational Change Management Deliverables	assessments, stakeholder engagement,	Change impacts, adoption readiness, engagement responsibilities	resistance, misaligned communication	Stakeholder engagement plans, readiness assessments, change heatmaps	Kotter (1996); Armenakis et al. (1999)
11. Project Dependencies	Identification and sequencing of related or prerequisite initiatives	critical path alignment, ownership	interdependencie s, timing mismatches	integrated master schedules, risk- adjusted plans	
12. Transition and Deployment Plans	live, support handover	Go-live criteria, rollback strategies, operational support model	readiness indicators, ownership gaps	Simulation runs, stage-gate reviews, post- implementation reviews	Nelson (2007); PMI (2021)
13. The IT System	of completion in different project stages	Where the system will be hosted (cloud, on-premises, hybrid), how updates to the build will be applied, how functional and non-functional requirements are achieved	components may make up the whole system	technical	Galster et al. (2013); Bass et al. (2022)