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ABSTRACT

A class of binary sequences, constrained with respect to the length of zero runs, is considered.
For such sequences, termed (d, k)-sequences, new combinatorial and computational results
are established. Explicit expressions for enumerating (d, k)-sequences of finite length are
obtained. Efficient computational procedures for calculating the capacity of a (d, k)-code are
given. A simple method for constructing a near-optimal (d, k)-code is proposed. Illustrative
numerical examples demonstrate further the theoretical results.
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1. INTRODUCTION

In many digital communication and recording systems the structure of a bit (binary or
0− 1) stream has to be restricted because of several technical reasons [3, 15] in terms of run
lengths; for instance, with respect to the length of runs of 0s. Hereafter, as a 0-run we mean
a sequence of consecutive 0s, the number of which is referred to as its length. One common
encoding/decoding method in such systems is the run-length-limited (RLL) code. This code
usually accompanies a non-return-to-zero-inverted (NRZI) code which encodes/decodes the
physical channel signals of alternating polarity.

Let the channel signals be represented by a sequence {yi}i≥0, yi ∈ {−1, 1} or yi ∈ {−,+}.
By the sequence {yi}i≥0, a 0 − 1 sequence {xi}i≥0, xi ∈ {0, 1}, can be obtained, and vice
versa. More specifically, assuming an initial positive polarity y−1 = 1, then for i ≥ 0 it holds

xi = 1, if yiyi−1 < 0; 0, otherwise (1)

and
yi = yi−1(−1)xi . (2)

Example 1. For instance using (1) and (2), the sequence of channel signals 1 -1 -1 1 1 1 1 -1
-1 1 -1 1 1 -1 · · · (or equivalently the sequence + - - + + + + - - + - + + - · · ·) would be
converted to the 0-1 sequence 0 1 0 1 0 0 0 1 0 1 1 1 0 1 · · ·, and vice versa. ♦
After this recording, the focus in a communication system is the sequence {xi}i≥0 which
satisfies certain constraints with respect to the length of 0-runs. One of the most studied such
constrained sequences is the (d, k)-constrained sequence where d and k are two non-negative
integers. The set of (d, k)-constrained sequences defines a (d, k)-code or a (d, k)-system.
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More specifically, we say (Tang and Bahl [14]) that a 0− 1 sequence {xi}i≥0, xi ∈ {0, 1}, is
a (d, k)-constrained or (d, k)-limited sequence, in short a dk-sequence, if it satisfies simulta-
neously the following two conditions:
C1. d-constraint - two successive 1s are separated by a 0-run of length at least d.
C2. k-constraint - every 0-run has length at most k.

If only condition C1 is satisfied, the sequence is said to be d-constrained (with k = ∞). If
only condition C2 is satisfied the sequence is k-constrained (with d = 0). For d = 0 and
k = ∞ the sequence is an unconstrained 0 − 1 sequence. From now on when we refer to a
(d, k)-constrained sequence we assume that 0 ≤ d < k ≤ ∞. See also [5].

The (d, k)-constrained sequences and (d, k)-systems are extensively used in digital commu-
nication, recording and storage information from Shannon’s [12] era. The treatises [3, 10]
cover the vast majority of the past and recent literature on (d, k)-sequences. The works [2, 4,
6, 7, 13-15] provide additional information and describe methods have been used for deriving
results related to such sequences. These methods include finite state sequential machines,
recursive schemes, generating function method and maxentropic sequences.

The article is organized as follows. In Section 2, we present preliminary results along with
three motivating and interrelating issues (Sections 2.1, 2.2 and 2.3) connected to (d, k)-
sequences which demonstrate the aim of the article. In Section 3, we establish the methods
employed in deriving our main results. More specifically, in Section 3.1 we obtain, via enu-
merative combinatorics, closed expressions for determining the number of (d, k)-constrained
sequences of finite length. In Section 3.2 we establish two fast and accurate numerical pro-
cedures for computing the Shannon capacity of a (d, k)-code. In Section 3.3 we present an
efficient technique, relied on the continued fraction approximation method, for construct-
ing a near-optimal (d, k)-code. Numerical examples, presented in Sections 2 - 3, exemplify
further our results. The article concludes with Section 4 followed by Appendix.

The vast majority of the presented results are new whereas some known results are recaptured
using different methods and provide alternative formulae.

Throughout the article, for integers n, m,
(
n
m

)
denotes the extended binomial coefficient,

bxc (dxe) stands for the greatest (least) integer less (greater) than or equal to x, δi,j denotes
the Kronecker delta function for integer arguments i and j, such that δi,j = 1, if i = j; 0,
otherwise and | A | denotes the cardinality of a set A. Also, we apply the convention

∑β
α = 0,

for α > β, that is an empty sum is to be interpreted as zero.

2. MOTIVATION AND PRELIMINARY RESULTS

In this section, we consider three motivating issues connected with (d, k)-sequences along
with some preliminary results related to them.

The first issue refers to the number of (d, k)-sequences and the corresponding numbers of
two versions of such sequences. These numbers are required for noiseless encoding/decoding
a source binary sequence to a binary (d, k)-sequence and vice versa. We provide, for the
first time, a simple closed form expression for their computation. Such an expression, given
in Section 3.1, has the advantage of being faster and working as well on any commercial
computer, compared to existing recursive formulae in the literature; see e.g. [2, 3, 10, 14].

The second issue is connected to the evaluation of the Shannon capacity of a (d, k)-code.

2
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For this crucial in information theory problem we propose, in Section 3.2, two new fast
and accurate numerical procedures relied on numerical analysis and information theory.
The provided expressions by both methods are directly implementable on any commercial
computer.

The third issue is associated to the determination of the proper size of a noiseless fixed-
rate block-code converting source words to code words. For this important theoretical and
practical problem in discrete and applied mathematics we propose, in Section 3.3, a new
and very efficient rational approximation to the irrational capacity of a (d, k) block-code.
This approximation has a near-optimal efficiency which is better than the existing rational
approximations; see e.g. [3, 10].

Before we explicitly state the aforementioned topics, we give some necessary definitions and
notation. After that we discuss the raised issues. Their solutions proposed in this article are
given in Section 3.

Let Sn(d, k) be the set of (d, k)-sequences of finite length n, n > 0, for some fixed d and k and
Nn(d, k) =| Sn(d, k) |. In finite length sequences the d-constraint is not imposed on the 0-
runs having at least one end bounded by the sequence’s boundary. Hereafter, for finite-length
sequences we will use the (unified) name (d, k)-sequences, denoted as (d, k;n), and we reserve
the names dk-sequences and d-sequences, for 0 ≤ d < k ≤ n and 0 ≤ d ≤ n < k = n + 1,
respectively. That is, for d-sequences we use the convention k = n + 1 for k = ∞. Clearly,
a k-sequence is a particular case of a dk-sequence with 0 = d < k ≤ n. Consequently, we
denote as (0, n;n) an unconstrained 0− 1 sequence of length n.

Example 2. To have a picture of the numbers Nn(d, k) and the sets Sn(d, k) we consider for
instance, n = 4, d = 1 and k = 2. Then, via the forthcoming formula (21), we find that
among all 24 = 16 0− 1 sequences of length 4 there are N4(1, 2) = 5 (1, 2; 4) sequences. The
latter sequences are the elements of S4(1, 2) = {0010, 0100, 0101, 1001, 1010}. ♦
For (d, k)-sequences, let Sn(i, j; d, k) and Sn(1; d, k) be the subsets of Sn(d, k) which contain
those (d, k;n) that start with an i and end with a j, i, j ∈ {0, 1}, and those (d, k;n) having
their left most symbol 1, respectively. Such sequences are called (i, j)-restricted and 1-left-
restricted (d, k)-constrained sequences, respectively. Moreover, let us denote N (i,j)

n (d, k) =|
Sn(i, j; d, k) | and N (1)

n (d, k) =| Sn(1; d, k) |. Clearly, for 0 ≤ d < k ≤ n,

Nn(d, k) =
∑

(i,j)∈{0,1}2
N (i,j)
n (d, k), N (1)

n (d, k) =
1∑
j=0

N (1,j)
n (d, k), N (0,1)

n (d, k) = N (1,0)
n (d, k). (3)

2.1. Issue 1

The exact computation of the numbers Nn(d, k) goes back to Shannon [12]. This is an
interesting counting problem since, besides its own merit, the numbers Nn(d, k), for 0 ≤
d < k ≤ n and 0 ≤ d ≤ n < k = n + 1, are used in the enumeration coding system [14]
for easily noiseless encoding/decoding m unconstrained source bits to n (d, k)-constrained
channel bits. Readily, in such conversions it is true that

2m ≤ Nn(d, k). (4)

In this coding scheme, noiseless encoding/decoding is achieved by changing the weighting
system representing an integer number x, 0 ≤ x ≤ 2m − 1, i.e. an x = (x)10, from the
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system (2m−1, 2m−2, . . . , 20) to the system (Nn−1(d, k), Nn−2(d, k), . . . , N0(d, k)) with m and
n satisfying (4). More specifically, for bi, ci ∈ {0, 1}, we have that

x =
m−1∑
i=0

bi2
i, (5)

is encoded as

y =
n−1∑
i=0

ciNi(d, i+ 1), for d− sequences;
n−1∑
i=0

ciNi(d, k), for dk − sequences, (6)

such that

y − x = 0, for d− sequences;
n−k−1∑
i=0

N
(1)
i (d, k), for dk − sequences. (7)

Consequently, a y written as in (6) is decoded as x written as in (5) so that y − x satisfies
(7).

Notice that, using the number weighting system (Nn−1(d, k), Nn−2(d, k), . . . , N0(d, k)) there
is a 1-1 mapping from the lexicographic ordered set Sn(d, k) of Nn(d, k) (d, k;n) sequences
onto the set of integer numbers {0, 1, . . . , Nn(d, k)− 1}. Usually, the first 2m such sequences
are chosen for representing the numbers 0 ≤ x ≤ 2m−1 and the rest Nn(d, k)−2m sequences
might be used as special patterns for checking and error detection purposes.

Readily, such encoding/decoding requires exact calculation of the numbers Nn(d, k). In addi-
tion, using the enumerating coding system the exact computation of the numbers N (1)

n (d, k)
is required as well.

2.2. Issue 2

When m unconstrained source symbols (bits) are converted to n (d, k)-constrained channel
symbols (bits) and vice versa, the interest is focused on what should be the maximum rate

R = m/n, 0 < m ≤ n, (8)

for certain values of d and k, 0 ≤ d < k ≤ ∞. It is well known [12] that the maximum value
of R that can be achieved is termed Shannon capacity (or asymptotic information rate). The
capacity, denoted by C(d, k), is governed by the specified constraints d, k and is given by

C(d, k) = lim
n→∞

Cn(d, k), (9)

where
Cn(d, k) = [log2Nn(d, k)]/n, n ≥ 1. (10)

Clearly, C(0,∞) = 1. Moreover, it holds [5]

C(d,∞) = C(d− 1, 2d− 1), d ≥ 1. (11)

By (9)-(10), the evaluation of C(d, k) involves the calculation of Nn(d, k). Simple lower and
upper bounds on C(d, k) have been provided in [15].
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2.3. Issue 3

One of the main problems in coding via an Sn(d, k) code is that of the construction of an
efficient and state independent noiseless block code with source words of length m and code
words of length n. For given values of d and k, this problem calls for determining positive
integers m and n, such that the code rate R = m/n, approaches from below the asymptotic
information rate C = C(d, k). In other words, for

η = R/C ≤ 1, (12)

denoting the code’s efficiency, with C > 0, the problem reduces to that of finding non-
negative integers m and n for which η becomes maximum or equivalently the relative effi-
ciency

η
′
= 1− η, (13)

becomes minimum. Such a [m,n; d, k] code is called near optimal (d, k)-code. Clearly, the
sizes m and n of the source and the code words, respectively, with rate R = m/n ≤ C, must
satisfy (4). For details on fixed-rate codes see e.g the surveys of [3, 10].

3. METHODOLOGY AND MAIN RESULTS

In this section, we establish the methods employed in deriving our results connected to the
three motivating issues 2.1, 2.2 and 2.3. The corresponding results on the three relevant
topics are presented in Sections 3.1, 3.2 and 3.3, respectively.

3.1. Enumeration of (d, k)-sequences of finite length

Next, we introduce for the first time a closed form solution regarding the enumeration
of (d, k)-sequences. This is accomplished by determining explicitly the numbers Nn(d, k),
N (1)
n (d, k) and N (i,j)

n (d, k), (i, j) ∈ {0, 1}, for n > 0, via a combinatorial technique.

To that end, for n = 0, we define N
(1)
0 (d, k) = N0(d, k) = 1 and we start with d-sequences and

then continue with dk-sequences. For the latter sequences, we first recall two combinatorial
numbers from [9].

Lemma 1. The coefficient

Hi,r−i(α,m, k1, k2) =

b α
k1+1

c∑
j1=0

(
i

j1

) bα−(k1+1)j1
k2+1

c∑
j2=0

(−1)j1+j2

(
r − i
j2

)

×
(
α +m− (k1 + 1)j1 − (k2 + 1)j2 − 1

α− (k1 + 1)j1 − (k2 + 1)j2

)
, (14)

is the number of allocations of α indistinguishable balls into m distinguishable urns, i spec-
ified of which have capacity k1 and each of r − i specified urns has capacity k2, 0 ≤ r ≤ m,
0 ≤ i ≤ r, k1 ≥ 0, k2 ≥ 0. Notice that, Hi,r−i(α,m, k1, k2) equivalently gives the number of
integer solutions of the equation x1 + x2 + . . . + xm = α such that 0 ≤ xj ≤ k1, 1 ≤ j ≤ i;
0 ≤ xi+j ≤ k2, 1 ≤ j ≤ r − i; xj ≥ 0, r + 1 ≤ j ≤ m. ♦
As a particular case of (14) we get the following corollary.
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Corollary 1. The coefficient

H(α, r, k) =

b α
k+1
c∑

j=0

(−1)j
(
r

j

)(
α + r − (k + 1)j − 1

α− (k + 1)j

)
, (15)

is the number of allocations of α indistinguishable balls into r distinguishable urns where
each urn is occupied by at most k balls. Equivalently, H(α, r, k) gives the numbers of integer
solutions of the linear equation x1 + x2 + . . . + xr = α, with the restrictions 0 ≤ xi ≤ k,
i = 1, 2, . . . , r. ♦
We next give results referring in computing the numbers Nn(d, k), N (1)

n (d, k) and N (i,j)
n (d, k)

by closed form expresions. The proofs of selected equations of Theorem 1 are given in the
Appendix. The proofs of the rest equations can be obtained by similar reasoning and the
definitions of the prementiond numbers.

Theorem 1. The numbers Nn(d, k), N (1)
n (d, k) and N (i,j)

n (d, k) are given by:

Case I: d-sequences, 0 ≤ d ≤ n < k = n+ 1.

Nn(d, k) = 2n, d = 0, (16)

Nn(d, k) = 1 +

bn+d
d+1
c∑

s=1

(
n− (s− 1)d

s

)
, 0 < d ≤ n. (17)

Case II: dk-sequences, 0 ≤ d < k ≤ n.
For d = 0, i.e. k-sequences,

Nn(d, k) =
n∑

s=b n
k+1
c
H(n− s, s+ 1, k), (18)

N (1)
n (d, k) =

n∑
s=1

H(n− s, s, k), (19)

N (i,j)
n (d, k) =

n−2+i+j∑
s=max{1,dn+(i+j−1)k

k+1
e}

H2−i−j,s−1(n− s− 2 + i+ j, s+ 1− i− j, k − 1, k)

+δk,nδi+j,0. (20)

For d > 0, i.e. “standard” dk-sequences,

Nn(d, k) =

bn+d
d+1
c∑

s=1

Hs−1,2(n− s− (s− 1)d, s+ 1, k − d, k) + δk,n, (21)

N (1)
n (d, k) =

bn+d
d+1
c∑

s=1

Hs−1,1(n− s− (s− 1)d, s, k − d, k), (22)
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N (i,j)
n (d, k) =

bn+d
d+1
c∑

s=1

Hs−1,2−i−j(n− s− (s− 1)d− 2 + i+ j, s+ 1− i− j, k − d, k − 1)

+δk,nδi+j,0. (23)

Remark 1. For dk-sequences, 0 ≤ d < k ≤ n, we can compute Nn(d, k) and N (1)
n (d, k) using

the expressions provided for N (i,j)
n (d, k) and relationship (3) but then additional summations

are needed. Nevertheless, (3) can be used for double checking the validity among the several
formulae given for the calculation of the numbers Nn(d, k), N (1)

n (d, k) and N (i,j)
n (d, k). ♦

Example 3. To get a sense of the magnitude of the numbers N (i,j)
n = N (i,j)

n (d, k), N (1)
n =

N (1)
n (d, k), Nn = Nn(d, k), we consider (d, k) = (2, 10) and n = 16, 32. (2, 10) code is

employed by commercial CDs and DVDs. Then by (21)-(23) we have: N
(0,0)
16 = 263, N

(0,1)
16 =

N
(1,0)
16 = 123, N

(1,1)
16 = 57, N

(1)
16 = 180, N16 = 566, and N

(0,0)
32 = 107104, N

(0,1)
32 = N

(1,0)
32 =

49985, N
(1,1)
32 = 23329, N

(1)
32 = 73314, N32 = 230403. Clearly, these numbers satisfy the first

two equations of (3), too. ♦

3.2. Computation of the capacity of a (d, k)-code

As it is already mentioned, the evaluation of the capacity C(d, k) involves by definition, Eqs.
(9) - (10), the calculation of the numbers Nn(d, k). Alternatively, it can approximately be
calculated by Perron-Frobenius theory using a proper root of a characteristic polynomial. In
the latter case, among the different approaches used, we employ a version of that employed
in [4]. More specifically, C(d, k) can approximately be computed as

C(d, k) = log2 λ, λ = 1/ρ0, (24)

where ρ0 is the smallest positive real root, with ρ0 < 1, of the equation

h(ρ0; d, k) = 0, h(z; d, k) = 1− z − zd+1 + zk+2. (25)

In fact, ρ0 ∈ [1/2, 1) so that 0 < C(d, k) ≤ 1 and C(d, k) = 1 iff (d, k) = (0,∞).

We next give two new numerical methods for the computation of C(d, k), for 0 ≤ d <
k ≤ ∞. An example clarifying their basic features is given. Both methods are fast and
accurate provided they are enriched with some additional computational techniques to ensure
convergence in a prespecified level of accuracy; that is, in a predetermined number, say ν, of
significant decimal digits (SDD). The latter statement means that an (unknown) actual real
value, say ξ, is well approximated by the term ξn of a properly defined sequence {ξn}n≥0, of
real numbers, i.e.

ξn ' ξ if | ξn − ξn′ |≤ ε | ξn |, n > n
′
, ε = 0.5× 10−ν , ν ≥ 1. (26)

Usually in computer applications we take n
′
= n/2 or n

′
= n− 1. Moreover, let

en = ξ − ξn, (27)

be the error between ξ and ξn and ên be a computable estimate of en. In order to get rapid
convergence, we include acceleration schemes in the body of our methods. These formulae
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are based on Aitken’s and Richardson’s extrapolation ideas which have been successfully
used in numerous topics of numerical analysis. For details see e.g. [1, 8].

3.2.1. Numerical method 1

The first method is relied on the definition of the numbers Cn = Cn(d, k), 0 ≤ d < k ≤
n, through (10). Cn is then extrapolated to the limit using a proper version of Aitken-
Richardson extrapolation scheme. More specifically, improved estimate Ĉn of Cn along with
an estimate ên of en = C(d, k)− Cn are given by the expressions

Ĉn = (θnCn − Cn/2)/(θn − 1), (28)

ên = (Cn − Cn/2)/(θn − 1), (29)

θn = (Cn/2 − Cn/4)/(Cn − Cn/2), (30)

provided θn > 1, so that eventually, for n
′
= n/2 and fixed ε, (26) implies

Ĉn ' C(d, k). (31)

In practice, to get rapid convergence we start with an n = n0 = 2dlog2 ke and then we repeat-
edly doubling up n. Moreover, the case (d,∞), d ≥ 1, is easily solved using transformation
(11).

3.2.2. Numerical method 2

The second method is based on the solution of (25) via the introduced iterative scheme, a
predictor-corrector fixed point iteration,

zn = (zn−1 + z̃n)/2, z̃n = 1− zd+1
n−1(1− zk−d+1

n−1 ), n ≥ 1, (32)

with
z0 = 2−C0 , C0 = (C` + Cu)/2, C` = 2β/(k + d+ 2),

Cu = min{1, β/(d+ 1)}, β = log2(k − d+ 1). (33)

The scheme is properly combined with Aitken’s extrapolation of zn via the error estimate ên
of en = ρ0 − zn and the improved estimate ẑn of zn, given by

ẑn = zn + ên (34)

ên = (zn − zn−1)φn/(1− φn), (35)

φn = (zn − zn−1)/(zn−1 − zn−2), n ≥ 2, (36)

provided 0 <| φn |< 1, so that eventually, for n
′
= n− 1 and fixed ε, (26) implies

ẑn ' ρ0, − log2 ρ0 ' C(d, k). (37)

The case (d,∞), d ≥ 0, is easily handled by setting k equal to a number larger than d, e.g.
k = 1000(d+ 1).

Example 4. For illustrating methods 1 and 2, we present two indicative cases. In both cases
we have used the tolerance ε = 0.5 × 10−8, i.e. ν = 8 SDD. More specifically, in Part (A)
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of the example we consider a case in which we know an analytic expression of C = C(d, k).
Consequently, we use this knowledge to exemplify how the numerical methods work. This
will be useful to understand the results of our methods in the majority of the cases for which
we have no analytic results. Such a case is presented in Part (B) of the example.

Table 1. Results computed via numerical method 1. ab ≡ a× 10b.

n Cn en = C − Cn θn ên Ĉn C − Ĉn
(d, k) = (1,∞)

1 1.000000000
2 0.792481250
4 0.750000000 −0.557580864−1 0.488494919+1 −0.109348278−1 0.739065172 −0.448232586−1

8 0.722669964 −0.284280506−1 0.155437961+1 −0.492984146−1 0.673371550 0.208703641−1

16 0.708461897 −0.142199835−1 0.192355764+1 −0.153840610−1 0.693077836 0.116407748−2

32 0.701351907 −0.710999312−2 0.199832436+1 −0.712192423−2 0.694229983 0.119311107−4

64 0.697796910 −0.355499656−2 0.199999924+1 −0.355499926−2 0.694241911 0.270084510−8

128 0.696019412 −0.177749828−2 0.200000000+1 −0.177749828−2 0.694241914 0.333066907−15

(d, k) = (2, 10
16 0.571541140
32 0.556681249
64 0.549239227 0.199675434+1 −0.746625552−2 0.541772971

128 0.545518220 0.200000243+1 −0.372099774−2 0.541797222
256 0.543657716 0.200000000+1 −0.186050339−2 0.541797213
512 0.542727465 0.200000000+1 −0.930251695−3 0.541797213

Table 2. Results computed via numerical method 2. ab ≡ a× 10b.

n zn en = ρ0 − zn φn ên ẑn ρ0 − ẑn
(d, k) = (1,∞)

0 0.702261830 −0.842278417−1

1 0.604545076 0.134889128−1

2 0.619535164 −0.150117479−2 -0.153403453 −0.199369196−2 0.617541472 0.492517170−3

3 0.617855672 0.178316412−3 -0.112040120 0.169211877−3 0.618024884 0.910453477−5

4 0.618055020 −0.210314990−4 -0.118695418 −0.211511402−4 0.618033869 0.119641190−6

5 0.618031506 0.248265287−5 -0.117955346 0.248097559−5 0.618033987 0.167728587−8

6 0.618034282 −0.293034340−6 -0.118043263 −0.293057690−6 0.618033989 0.233505437−10

(d, k) = (2, 10
0 0.604400511
1 0.692994650
2 0.686228686 -0.076370330 0.480056776−3 0.686708743
3 0.686990943 -0.112660544 −0.771809284−4 0.686913762
4 0.686906166 -0.111217566 0.848494107−5 0.686914651
5 0.686915610 -0.111394055 −0.946521531−6 0.686914663
6 0.686914558 -0.111374598 0.105401887−6 0.686914663

(A) Let (d, k) = (1,∞). Then, we know the analytic result C(1,∞) = log2 λ, where λ =
(1 +

√
5)/2 is the golden mean. Thus, we have C = C(1,∞)

.
= 0.69424191363062.

(A1) In order to employ method 1 we use (11) and we get C(1,∞) = C(0, 1) and consequently
we search for the capacity C = C(0, 1). The results of the iterations of scheme (28)-(31),
Cn, Ĉn with n0 = 2dlog2 1e = 1 are given in the upper part of Table 1 along with θn, en =
C −Cn, C − Ĉn and ên. As we can see the values of θn are converging to 2 such that θn > 1
and the estimate ên is an accurate indicator of the true error en. For instance, with n = 128,
C128

.
= 0.696019412, e128 = C − C128

.
= −0.177749828 × 10−2, ê128

.
= −0.177749828 × 10−2

and Ĉ128
.
= 0.694241914 with C− Ĉ128

.
= 0.333066907× 10−15. Thus, the extrapolate Ĉ128 is

more accurate than C128 with ê128 being a very accurate estimate of the error e128. Finally,
since | Ĉ128 − Ĉ64 | /Ĉ128

.
= 0.39× 10−8 < 0.5× 10−8, it holds Ĉ128 ' C

.
= 0.694241914, and

Ĉ128 coincides in at least 8 SDD with the exact capacity C(1,∞).
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(A2) The true root is ρ0 = 1/λ
.
= 0.61803398874989. The results of the iterations of scheme

(32)-(37), zn, ẑn with k = 1002, are given in the upper part of Table 2 along with the values
of φn, en = ρ0 − zn, ρ0 − ẑn and the estimate ên of en. The values of φn are converging
to -0.1180 such that 0 <| φn |< 1 and the estimate ên is an accurate indicator of the
true error en. For example, with n = 6, z6

.
= 0.618034282, e6

.
= −0.293034340 × 10−6,

ê6
.
= −0.293057690× 10−6 and ẑ6

.
= 0.618033989 with ρ0− ẑ6

.
= 0.233505437× 10−10. Thus,

the extrapolate ẑ6 is more accurate than z6 with ê6 being an accurate estimate of the error
e6. Moreover, since | ẑ6− ẑ5 | /ẑ6

.
= 0.27×10−8 < 0.5×10−8, we have ẑ6 ' ρ0

.
= 0.618033989,

and C(1,∞) ' − log2 ẑ6 = Ĉ6
.
= 0.694241914 which means that Ĉ6 coincides in at least 8

SDD with the exact capacity C(1,∞).

Therefore, (A1) and (A2) imply that both numerical methods 1 and 2 are rapid and accurate.
That is, both methods give in a few iteration steps, the number of which is controlled by
the desired accuracy, accurate and satisfactory results.

(B) An illustrative case for which we do not known analytically the capacity C(d, k) is, for
instance, with (d, k) = (2, 10); i.e. for the values of d and k we used in Example 3. In the
following we employ similar reasoning and interpretation of the results as in case (A).

(B1) Using scheme (28)-(31) with n0 = 2dlog2 10e = 16 and doubling up n then, i.e. for
n = 32, 64, ..., we compute and depict the results of the iterations Cn, Ĉn along with the values
of θn and the estimate ên of the (unknown) true error en, in the lower part of Table 1. By the
respective entries of the table we observe that the values of θn tend rapidly to 2, so that θn =
2 > 1, for n ≥ 64. Consequently, for n = 512, we have C512

.
= 0.542727465, | C512 − C256 |

/C512
.
= 0.1714×10−2, Ĉ512

.
= 0.541797213, | Ĉ512−Ĉ256 | /Ĉ512

.
= 0.4922×10−12 < 0.5×10−8,

ê512
.
= −0.930252× 10−3, and Ĉ512 −C512

.
= −0.930252× 10−3. The latter numerical values

imply that C(2, 10) ' Ĉ512 in at least 8 SDD, that is C(2, 10)
.
= 0.54179721 rounded in 8

SDD, as well as that ê512 and Ĉ512 − C512 are accurate estimates of e512 = C(2, 10)− C512.

(B2) The results of the iterations of scheme (32)-(37), zn, ẑn are given in the lower part
of Table 2 along with the values of φn, and the estimate ên of en. The values of φn are
converging to -0.1114 such that 0 <| φn |< 1, n ≥ 2. Accordingly, with n = 6, we have
z6

.
= 0.686914558, | z6 − z5 | /z6

.
= 0.153 × 10−5, ẑ6

.
= 0.686914663, | ẑ6 − ẑ5 | /ẑ6

.
=

0.2166× 10−9 < 0.5× 10−8, ê6
.
= −0.105× 10−6 and ẑ6 − z6 = 0.105× 10−6. The last three

numerical values imply that ẑ6 ' ρ0, with ρ0 the (unknown) actual root of (25), in at least
8 SDD, that is ρ0

.
= 0.689614663, as well as that ê6 and ẑ6 − z6 are accurate estimates of

ρ0 − z6. Consequently, C(2, 10) ' − log2 ẑ6
.
= 0.54179721 rounded in 8 SDD.

Therefore, (B1) and (B2) imply that C(2, 10)
.
= 0.54179721 is accurate in at least 8 SDD.

Both numerical methods 1 and 2 are converging to the latter value using almost the same
number of iterations. Accordingly, we claim that similar results can be found, via the
introduced numerical methods 1 and 2, for any unknown capacity C(d, k). ♦

3.3. Construction of a near-optimal (d, k)-code

In this section, we employ, for the first time, the method of continued fraction approximation
(CFA) in order to construct fixed-rate near-optimal (d, k)-codes for given values of d and k.
These codes have a fixed rate R close to a degree of accuracy to the maximum information
rate C. Hereafter we denote, as usually, by R the set of real numbers and by Q = {i/j; i, j ∈
Z, j 6= 0} the set of rational numbers, where Z = {0,±1,±2, . . .} is the set of integer
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numbers. Consequently, we denote by Q̄ the set of irrational numbers.

It is known [5] that the capacity C(d, k), 0 ≤ d < k ≤ ∞, is an irrational number, i.e.
C = C(d, k) ∈ Q̄ for all parameters d = 0, 0 < k < ∞ and all 1 ≤ d < k ≤ ∞, except for
the case d = 0 and k =∞, for which C(0,∞) = 1. Accordingly, the code’s rate R can never
attain 100% of the capacity C, for (d, k) 6= (0,∞), but only a fraction of it. The problem
of determining, at least theoretically and feasible also in practice, integers m and n so that
the ratio R = m/n approximates well from below the capacity C is closely connected to a
diophantine approximation of a real number x by a sequence of rational numbers cr, r ≥ 0.
For details on CFA see e.g. [11].

3.3.1. Convergents of CFA

One of the common methods used to get a diophantine approximation to an x ∈ R is
that via a continued fraction expression of the form α0 + 1

α1+ 1

α2+
1

...

, usually abbreviated as

[α0;α1, α2, . . .], which is finite if x ∈ Q and infinite if x ∈ Q̄, . The terms αi, i ≥ 0, are called
the partial quotients, and if αi ∈ Z, i ≥ 0, and αi ≥ 1, i ≥ 1, the continued fraction is said
to be simple.

Consider an x ∈ R. To calculate a finite if x ∈ Q or an infinite if x ∈ Q̄ continued fraction of
x set x0 = x and for i = 0, 1, 2, . . ., define recursively the sequence α0, α1, α2, . . ., as follows:

Setαi = bxic, and if fi = xi − αi 6= 0 then setxi+1 = 1/fi and repeat; else stop. (38)

In this way, [α0;α1, α2, . . .] and [α0;α1, α2, . . . , αr], with r finite is a continued fraction of x,
for x ∈ Q̄ and x ∈ Q, respectively. Moreover, defining recursively the integers m0,m1, . . . ,
and n0, n1, . . . , by

m0 = α0, n0 = 1;m1 = α0α1 + 1, n1 = α1;

mr = αrmr−1 +mr−2, nr = αrnr−1 + nr−2, for r ≥ 2, (39)

the fraction
cr = mr/nr = [α0;α1, α2, . . . , αr], (40)

with cr ∈ Q, is termed the rth convergent of the continued fraction. By its construction, cr
is finite if x ∈ Q and limr→∞ cr = x if x ∈ Q̄. In addition, if r is an even positive integer, it
holds

c1 > c3 > · · · > cr−1, c0 < c2 < · · · < cr. (41)

The convergence cr = mr/nr, r ≥ 1, is the best rational approximation to an x ∈ Q̄, in the
sense that cr is closer to x than any other rational number with denominator less than nr
(see e.g. Theorem 10.15 in [11]). Moreover, any sufficiently close approximation to an x ∈ Q̄
must be a convergent cr of an infinite simple continued fraction [α0;α1, α2, . . .] of x.

3.3.2. Error criterion of CFA

For x ∈ Q̄, with x = [α0;α1, α2, . . .] and cr = mr/nr, it holds

er =| x− cr |< br = 1/n2
r, r ≥ 0. (42)
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Consequently, because of (42), we can compute a convergent cr within a desired accuracy,
say ε = 0.5×10−ν , ν ≥ 1. To that end, for x 6= 0 a good enough approximation cr to x, being
true in at least ν significant decimal digits, can be obtained by calculating a convergent cr,
r ≥ 0, until an r = r̃ is determined, via (38)-(40), such that the relation

b
′

r̃ = br̃/ | x |≤ ε, (43)

is satisfied. Then the relative error e
′
r̃ is

e
′

r̃ = er̃/ | x |< ε, (44)

since by (42), we have e
′
r̃ < b

′
r̃. Hence,

cr̃ = mr̃/nr̃ = [α0;α1, α2, . . . , αr̃], (45)

is the desired CFA to x, true within ε.

3.3.3. CFA of a (d, k)-code capacity

In the sequel we will apply the CFA technique for determining rational approximation to the
capacity of a given (d, k)-code. This approximation, as a convergent, provides best rational
code rate R for a (d, k)-code with given d and k parameters. To that end, let

C̃r = C̃r(d, k) = mr/nr, r ≥ 0, (46)

be the rth convergent of C = C(d, k), 0 ≤ d < k. As we have already mentioned, C ∈ Q̄
for (d, k) 6= (0,∞). From (41), we get that legitimate rational approximations to C are only
the even numbered convergents C̃r, r = 0, 2, . . ., since C̃r < C or ηr = C̃r/C < 1, for r ≥ 0.
These C̃rs are suitable candidates for code rates of the form R = mr/nr, r ≥ 0.

In order to give an illustrating example clarifying further CFA in obtaining rational code
rates, we next present Example 5. Similar results can also be obtained for any (d, k)-code.

Example 5. Let (d, k) = (2, 10). Then, by part (B) of Example 4, C = C(d, k) = 0.54179721.
Assume that ε = 0.5 × 10−6. Then by (38)-(40), (42)-(45) we compute r̃ = 8 and C̃r̃ =
[0; 1, 1, 5, 2, 12, 1, 5, 3]. Table 3 depicts integers mr and nr for r = 2, 4, 6, 8. Their ratios
C̃r = mr/nr provide best rational approximate code rates Rr = mr/nr to code’s capacity
C. The entries of the table also show the respective ratios Rr = C̃r along with the relative
code’s efficiency η

′
r = C

′
r, where C

′
r = (C − C̃r)/C is the relative error between C and the

convergent C̃r with relative error bound b
′
r.

Table 3. d = 2, k = 10, C = C(d, k) = 0.54179721. The integers mr and nr are such that
R = Rr = mr/nr are the best rational approximate code rates for the code’s capacity C.

r mr nr Rr η
′
r b

′
r

2 1 2 0.500000 0.7715× 10−1 0.4614× 100

4 13 0.541667 0.2409× 10−3 0.3204× 10−2

6 175 323 0.541796 0.2850× 10−5 0.1769× 10−4

8 3286 6065 0.541797 0.2393× 10−7 0.5018× 10−7

24
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By the entries of Table 3 we infer that: (a) There are no block codes with code words of
length less than the depicted nr for which their relative efficiency η

′
r = C

′
r is less than the

showed C
′
r in the table. (b) For any two successive r1 and r2, r1, r2 ∈ {2, 4, 6, 8}, with

r2 > r1 it holds C
′
r1
> C

′
r2

. The latter implies that all legitimate (R < C) code rates

R = m/n, with mr1 ≤ m ≤ mr2 , nr1 ≤ n ≤ nr2 , satisfy the relation C
′
r2
≤ η

′ ≤ C
′
r1

, where

η
′

= 1 − R/C. Accordingly, (a) and (b) suggest bounds for the efficiency which may be
obtained in approximating C(d, k) by rational rates of the form R = m/n. In other words,
(a) and (b) set limits on every possible pair (m,n) that could be used as a potential candidate
for obtaining a feasible block code with rate R.

As an illustration, let r1 = 4 and r2 = 6. Then η
′
r1

= 0.2409× 10−3 and η
′
r2

= 0.2850× 10−5,

respectively. According to (a) and (b), η
′
r1

and η
′
r2

imply that:

First, there are no code words of length less than or equal to 24 (for r = 4) and 323 (for
r = 6), so that the code’s relative efficiency η

′
is less than or equal to 0.2409 × 10−3 and

0.2850× 10−5, respectively.

Second, for integer pairs (m,n), with 13 ≤ m ≤ 175, 24 ≤ n ≤ 323 and (m/n) < C, the
inequality 0.2850 × 10−5 ≤ η

′ ≤ 0.2409 × 10−3, is satisfied. These pairs (m,n) ∈ Γ1 ∪ Γ2,
with Γ1 = {(i, j) : i = 13`, j = 24`, ` = 1, 2, . . . , 13} and Γ2 = {175, 323}. Clearly, for all
(m,n) ∈ Γ1 it holds η

′
= 0.2409× 10−3 since these pairs are multiples of (13, 24).

Third, in case we want we use block codes with smaller code words, but having in mind
that they would be less efficient, we can search for codes with relative efficiency between and
including η

′
2 and η

′
4. These codes have (m,n) ∈ ∪8

i=1∆i, with ∆1 = {(i, j) : i = `, j = 2`, ` =
1, 2, . . . , 12}, ∆2 = {(12, 23)}, ∆3 = {(11, 21)}, ∆4 = {(10, 19)}, ∆5 = {(9, 17)}, ∆6 =
{(8, 15)}, ∆7 = {(7, 13)} and ∆8 = {(13, 24)}, with increasing η = (m/n)/C or decreasing
η
′

= 1 − η. More specifically, these codes have η
′
∆1

= 0.7715 × 10−1, η
′
∆2

= 0.3702 × 10−1,

η
′
∆3

= 0.3320 × 10−1, η
′
∆4

= 0.2857 × 10−1, η
′
∆5

= 0.2286 × 10−1, η
′
∆6

= 0.1562 × 10−1,

η
′
∆7

= 0.6157 × 10−2, and η
′
∆8

= 0.2409 × 10−3, respectively. The same relations, hold also
for the multiples of (m,n), i.e. (`m, `n), ` = 1, 2, . . .. Among the pairs (m,n) ∈ ∪8

i=1∆i, we
observe that the next more efficient pairs after (13, 24) are, in order of decreasing efficiency,
the pairs (7, 13), (8, 15), (9, 17), (10, 19), (11, 21), (12, 23), (1, 2) and of course their multiples.
Their efficiency η = (m/n)/C, including (13, 24), in decreasing order are: 99.98%, 99.38%,
98.44%, 97.71%, 97.14%, 96.68%, 96.30% and 92.29%, respectively. Consequently, all the
mentioned block codes, with R = m/n, have efficiency η = R/C > 90%, suggesting that
they are noticeably good ones.

For instance, we select the near-optimal (2, 10)-codes [7, 13; 2, 10], [13, 24; 2, 10], having R =
0.538462, R = 0.541667 and η = 99.38%, η = 99.98%, respectively. Therefore, both 7−to−13
and 13− to− 24 codes are very efficient with η > 99%. Furthermore, in coding these m-bit,
with m ∈ {7, 13}, source words to their n-bit, with n ∈ {13, 24}, channel representation,
we can consider, for example, the first 2m = 128, 8192 for m = 7, 13, numbered in decimal
representation by the integers 0, 20, . . . , 2m − 1, from the Nn(2, 10) = 183, 11421 for n =
13, 24, (2, 10)-constrained n-bit channel words, and vice versa. Some of the rest Nn(2, 10)−
2m = 55, 3229 for n = 13, 24, (2, 10)-sequences, might be used as special patterns for checking
or error detection as they obey the specified (2, 10) constraints.

More specifically, Table 4 depicts the source (2m−1, 2m−2, . . . , 20) and (d, k) = (2, 10)-code
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(Nn−1(d, k), Nn−2(d, k), . . . , N0(d, k)) weighting systems for a fixed-rate block-code having
source words of length m bits and (d, k)-code words of length n bits, with m = 7, 13 and
n = 13, 24, respectively. Table 5 shows source words (x)10, (x)2, (2, 10)-code words (y)2,
(y)10 and converting factors (y − x)10 for a code with source words of length m = 7, 13 and
(2, 10)-code words of length n = 13, 24 bits, respectively. For converting the presented in
Table 5 source/code words the encoder/decoder employs eqs. (5)-(6). For instance, using a
[7, 13; 2, 10] code the number (x)10 = 55 written as source word (x)2 = 0110111, in the num-
ber system (64, 32, 16, 8, 4, 2, 1), is converted to (2, 10)-code word (y)2 = 0001001001000,
in the number system (126, 87, 60, 41, 28, 19, 13, 9, 6, 4, 3, 2, 1), and vice versa, such that
(y)10 = 58 and (y − x)10 = 3. ♦

Table 4. Weighting systems for block-codes with m source bits and n (2, 10)-code bits.

m n weighting system

7 13 source (64, 32, 16, 8, 4, 2, 1)
code (126, 87, 60, 41, 28, 19, 13, 9, 6, 4, 3, 2, 1)

13 24 source (4096, 2048, 1024, 512, 256, 128,
64, 32, 16, 8, 4, 2, 1)

code (7845, 5389, 3702, 2543, 1747, 1200, 824,
566, 389, 267, 183, 126, 87, 60, 41, 28,
19, 13, 9, 6, 4, 3, 2, 1)

Table 5. Source (x)10, (2, 10)-code words (y)10 and converting factors (y − x)10, along with
(x)2 and (y)2 words of length m and n bits, respectively.

m n (x)10 (x)2 (y)2 (y)10 (y − x)10

7 13 0 0000000 0000000000100 3 3
55 0110111 0001001001000 58
64 1000000 0010000010001 67
127 1111111 1000000001000 130

13 24 0 0000000000000 000000000010000000000100 186 186
4091 0111111111011 001000010000000000100000 4277
4096 1000000000000 001000010000000001000001 4282
8191 1111111111111 100000001001000001001000 8377

4. CONCLUSIONS

For an important class, in communication and data storage applications, of run-length-
limited sequences termed (d, k)-constrained sequences: (a) We have obtained simple combi-
natorial expressions (Eqs. (16)-(23)) enumerating sequences of finite length. (b) We have
provided efficient numerical procedures (Eqs. (28)-(37)) for determining the capacity of
(d, k)-constrained codes. (c) We have proposed a simple method (Eqs. (43)-(46)) for con-
structing near-optimal (d, k)-codes, i.e. (d, k)-codes with rational rates almost equal to their
irrational capacity.

APPENDIX

Proof of Equations (21)-(22). We will determine the numbers Nn(d, k) and N (1)
n (d, k) by

approaching the problem via a model of distribution (allocation) of indistinguishable balls
into distinguishable urns under certain conditions.
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Let s be the number of 1s and n− s the number of 0s in the 0-1 sequence of length n. For
a fixed s ≥ 1, we consider that the s 1s form s + 1 for a sequence in Sn(d, k) and s for a
sequence in Sn(1; d, k) distinguishable urns, which are numbered as 1st, 2nd, 3rd, etc. Of
the urns formed, s− 1 are internal, i.e. each internal urn is formed between two successive
1s. First, d 0s (considered as indistinguishable balls) are placed in each of the s− 1 internal
urns. Next, the remaining n − s − (s − 1)d 0s are distributed in (all) the urns, s − 1 of
which have limited capacity k − d and the remaining urns (two and one, for a sequence in
Sn(d, k) and Sn(1; d, k), respectively) have limited capacity k. According to (14) this number
of distributions equals to Hs−1,2(n − s − (s − 1)d, s + 1, k − d, k) for a sequence in Sn(d, k)
and Hs−1,1(n− s− (s− 1)d, s, k − d, k) for a sequence in Sn(1; d, k).

Summing with respect to s and taking into account that one more sequence is included in
Sn(d, k) when s = 0 (there are no 1s in the sequence) and n = k, we get the results. ♦

Proof of Equation (23). Using similar reasoning as in the proof of Eqs (21)-(22) we consider
again that s ≥ 1 1s in the sequence form s+1− i−j urns, s−1 of which are internal, formed
among the 1s. Then after placing d 0s in each of the s − 1 internal urns and one 0 in each
of the 2− i− j external urns, the remaining n− s− (s− 1)d− 2 + i+ j 0s are distributed
in the internal urns each of limited capacity k − d and in the external urns each of limited
capacity k − 1. Then we continue as in the proof of Eqs (21)-(22). Summing with respect
to s and taking into account that one more sequence is included in Sn(i, j; d, k) when s = 0
(regarding the case i = j = 0) and n = k, we get the result. ♦
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