
International Journal on Information Theory (IJIT), Vol.14, No.1/2, April 2025

DOI: 10.5121/ijit.2025.14201 1

THE WEAPON - THE USE OF KOLMOGOROV

COMPLEXITY TO COMBAT PLAGIARISM
 IN THE CLASSROOM

George Sturm

Radio Logos, Pogradec, Albania

ABSTRACT

This paper discusses a unique usage of Kolmogorov Complexity that combats the bane of all teachers –

plagiarism. The theoretical foundation of this tool is presented and illustrated using real-life data from the

area of software programming.

KEYWORDS

Kolmogorov Complexity, plagiarism, cheating, cluster analysis.

1. INTRODUCTION

A simple definition of plagiarism is the use of another person's work as your own. It manifests

itself in multiple fields - literary work, scientific research, university-level academics and

software programming, just to name a few. It is a serious problem that is often equated with theft,

fraud and stealing. The ancient saying “there is nothing new under the sun” is a good description

for how long plagiarism has plagued society.

Plagiarism detection tools have been around since the existence of the problem. For sure,

compared to today’s options, early detection methods were archaic, time-consuming and limited

in their scope of detection. Nevertheless, they served a purpose – to protect academic honesty. It

goes without saying that many academic reputations have been ruined once plagiarism was

revealed.

Today, it is standard procedure that prior to journal publication a scientific paper must first be

checked for plagiarism. Many options are available to do this, some of which are free tools but

with limited options while others are more comprehensive based upon various pricing plans. It is

not stretching the truth to say that the field of plagiarism detection has grown into a large and

competitive business.

This paper focuses on a narrow field of plagiarism, not that of publishing a scientific paper, but

the detection of cheating in the classroom, that is, students copying from one another.

The motivation for this paper came about in my introductory class on Information Theory when I

noticed that students would submit very similar looking source code for projects that were

assigned, not as a team project, but to be completed individually. The same problem was noticed

in the technical reports that were required from each student, that is, great similarities in the

language content.

https://airccse.org/journal/ijit/vol15.html
https://doi.org/10.5121/ijit.2025.15201

International Journal on Information Theory (IJIT), Vol.14, No.1/2, April 2025

2

The question arose as how to solve this problem. As any teacher will testify, it is a time-

consuming task to not only grade a project, but also to check it for plagiarism. A simpler and

faster way needed to be developed, a method that would also teach the students about honesty

and academic integrity. Seeing that Kolmogorov Complexity was one of many topics to be taught

in the course, it was a natural way of teaching its concept and to solve the problem of plagiarism.

2. METHODS

Fisher’s Information and Shannon Entropy are two common measures from Information Theory

that are used to describe the “complexity/diversity” of a random variable. While these measures

are challenging enough to explain to the students of an introductory course on Information

Theory, Kolmogorov Complexity is far more difficult.

The reason for this is that Kolmogorov Complexity of an object (e.g. a character string) is not

well-defined in that it lacks a precise mathematical formula. Its definition falls, rather, into more

of a philosophical realm and is defined to be the length of the shortest computer program that

outputs the object. A slightly different wording is that Kolmogorov Complexity is the minimal

amount of computer resources needed to produce the object.

While the above definitions might be grammatically understandable, to a typical student in an

introductory Information Theory course, they are very abstract and remote especially when it is

added that Kolmogorov Complexity is incomputable in theory.

To bring Kolmogorov Complexity into an understandable and practical realm, the following

teaching methodology was employed. First, the students would be assigned a software project

with clear instructions. That is, each student was required to write their own software code, to

produce a runnable program, and to not copy from any other student. A warning was also given

that if a student was caught plagiarizing, then he would receive zero points for the project. Of

course, as in any typical Computer Science class, plagiarism is a great temptation.

Second, the student projects would be, of course, graded to see if they worked appropriately or

not. However, the real goal of this project was to invoke a plagiarism detection technique that

was based on Kolmogorov Complexity. To the surprise of the students, all plagiarism became as

obvious as the noon-day sun. When asked how this detection was so easily done, the answer led

to a natural discussion on Kolmogorov Complexity. I must add that this technique was so

effective that it quickly became known, in their own words, as “Professor Sturm’s weapon” and

the incidents of plagiarism in future semesters dropped drastically in my classes.

Specifically, in the initial semester where this methodology was employed, the class consisted of

twenty students (D=20). By using the R language [1], they were assigned a project to read in the

plain text shown in Table 1 [2], invoke Huffman coding, then the RSA encryption algorithm

using randomly selected prime numbers to produce the Private and Public keys. The project

ended by the student invoking the reverse steps to re-produce the actual plain text. It is

noteworthy that most of the twenty programs performed perfectly and that most students were to

receive a perfect grade, that is, until the “weapon” was introduced.

International Journal on Information Theory (IJIT), Vol.14, No.1/2, April 2025

3

Table 1. The plain text.

Introduction to Information Theory

Dr. George Sturm, Ph.D.

Without authorization from George Sturm no reproduction of this book in any form

(photocopy, digital reproduction, etc.) is permitted.

Forward

Unknown to the students, a simple plagiarism detection technique was developed using

Kolmogorov Complexity. Although, in theory it is incomputable, there are empirical methods to

approximate it. Zenil [3] describes several alternatives, but a discussion of these techniques was

beyond the scope of an introductory class on Information Theory. Seeking a more understandable

approximation, we decided to follow the advice of Bloem [4, page 346] where he says “To

construct practical applications (ie. runnable computer programs), the most common approach is

to take one of these platonic, incomputable functions, derived from Kolmogorov complexity (K),

and to approximate it by swapping K out for a computable compressor like GZIP.” That is, we

used the R-language base function memCompress(filename, type="gzip") as an approximation of

Kolmogorov Complexity.

The algorithm (shown in the R language) for the plagiarism detection technique goes as follows.

First (see Table 2), the software programs of all twenty students are read in. See [5] for the data.

To protect the privacy of the students, their names are simply S01, S02, . . . , S20. The variable

‘files1’ is the full address of the file whereas ‘junk1’ is simply the shortened file name (e.g.

S01.R). The variable ‘doc’ is the scanned software code and ‘name’ is the name of the student

(e.g. S01).

Table 2. Algorithm -Part 1.

rm(list = ls())

files1=list.files(path = "C:\\Plagiarism",

 pattern = ".R", all.files = FALSE,

 full.names = TRUE, recursive = TRUE,

 ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)

junk1=list.files(path = "C:\\Plagiarism",

 pattern = ".R", all.files = FALSE,

 full.names = FALSE, recursive = TRUE,

 ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)

D = length(files1)

doc=rep(NA,D)

names=rep(NA,D)

cnt=0

for (i in 1:D){

 docc = scan(files1[i],what="character",sep="")

 cnt=cnt+1

 names[cnt]=substr(junk1[i],1,nchar(junk1[i])-2)

 doc[cnt]=paste(docc,collapse="")

}

Next, using gzip, we approximate the Kolmogorov Complexity for each of the student programs.

This variable is called ‘KS_approx.’ The code is shown in Table 3 and the values in Table 4. It

must be noted that the variable ‘txt.gz’ is a vector of hexadecimal values. Thus, KS_approx is the

length of this vector.

International Journal on Information Theory (IJIT), Vol.14, No.1/2, April 2025

4

Table 3. Algorithm -Part 2

KC_approx=rep(NA,D)

for (i in 1:D){

 txt.gz <- memCompress(doc[i], type="gzip")

 KC_approx[i]=length(txt.gz)

}

KC_approx

Table 4. Approximate Kolmogorov Complexity values for individual students

Student KC_approx Student KC_approx

S01 1682 S11 1257

S02 1564 S12 2020

S03 1279 S13 1325

S04 1407 S14 1395

S05 1846 S15 1969

S06 1313 S16 2555

S07 1500 S17 1846

S08 1605 S18 1645

S09 1430 S19 1096

S10 1800 S20 1430

The next step was to combine the students’ source code in a pairwise fashion and to calculate the

Kolmogorov Complexity for each pair. The idea is that if one student, say student S01, copied the

source code from another, say S02, then the pairwise complexity value would be essentially that

of student S02. Whereas if each wrote their own code, then the pairwise complexity score would

be roughly the sum of the two complexity scores. The code for this is shown in Table 5 where a

DxD matrix is generated.

Table 5. Algorithm -Part 3

KC_pairwise=matrix(rep(0,D*D),nrow=D, ncol=D)

string=matrix(rep(" ",D*D),nrow=D, ncol=D)

for (i in 1:D){

for (j in 1:D){

 string[i,j]=paste(doc[i],doc[j],collapse="", sep="")

 txt.gz <- memCompress(string[i,j], type="gzip")

 KC_pairwise[i,j]=length(txt.gz)

}

}

KC_pairwise

The final calculation was to create the “adjusted” Kolmogorov Complexity score (KC) for each

pairwise document. This was simply the pairwise complexity score KC_pairwise(i,j) minus the

score the complexity score of document i, that is, KC_approx(i) where i,j =1,2,. . .,D. The code is

shown in Table 6 and the KC matrix in Table 7.

International Journal on Information Theory (IJIT), Vol.14, No.1/2, April 2025

5

Table 6. Algorithm -Part 4

KC=matrix(rep(0,D*D),nrow=D, ncol=D)

for (i in 1:D){

for (j in 1:D){

 KC[i,j]=KC_pairwise[i,j]-KC_approx[i]

}

}

KC

Table 7. The pairwise adjusted Kolmogorov Complexity scores (KC)

(i,j) 1 2 3 4 5 6 7 8 . . 17 18 19 20

1 61 1304 857 1064 1333 735 1255 1356 1333 1375 874 1140

2 1452 65 1039 932 1386 1070 1279 1370 1386 1245 860 984

3 1273 1306 47 1085 1539 653 1303 1383 1539 1420 880 1142

4 1369 1096 975 48 1316 983 1250 1357 1316 1189 880 950

5 1187 1108 967 873 63 976 1251 1337 63 1048 852 719

6 1145 1313 649 1081 1535 44 1299 1394 1535 1430 882 1165

7 1464 1336 1074 1136 1590 1098 58 1363 1590 1394 900 1197

8 1447 1320 1056 1138 1579 1098 1247 70 . . 1579 1387 876 1195

.

17 1187 1108 967 873 63 976 1251 1337 . . 63 1048 852 719

18 1434 1153 1049 930 1229 1086 1245 1352 1229 55 891 868

19 1467 1314 1060 1183 1611 1072 1296 1380 1611 1451 42 1211

20 1422 1136 1003 932 1148 1040 1265 1365 1148 1104 885 50

The first notable thing about this DxD matrix is that the diagonal values, although small, are not

zero. This might be surprising to the reader since the algorithm for a diagonal element is the

Kolmogorov Complexity value for the document appended to itself minus the complexity value

of the single document. Thus, a reasonable expectation is that this value should be zero.

However, probably due to the information created due to the appending of the files, the value

comes out slightly larger than zero.

The second notable item is that the matrix is not symmetrical. This is due to the fact that the

equation for KC(i,j) is not symmetrical. That is, the equation KC(i,j) = KC_pairwise(i,j) –

KC_approx(i) is dependent on the order of the joining of the two documents. However, the two

sides of the diagonal matrix do reflect the two possible pairwise orderings of the documents.

The question now becomes – How do we use this KC matrix to determine if plagiarism was

taking place? The answer is Cluster Analysis.

Cluster Analysis is a classical statistical technique that helps the researcher “reduce” or

“simplify” the data into similar clusters. In our situation, Cluster Analysis will group the students

into similar clusters based upon the KC matrix. We used the pvclust method [6] from the R

software package version 4.2.1. [1]. Internally, the package uses the AU (Approximately

Unbiased) probability value to construct these clusters. The idea is that if the AU value is greater

than or equal to 95, then we can group students into a single cluster. The R code is shown in

Table 8. Applying this technique to our data, a Cluster Dendrogram (see Fig 1) is produced

which is a graphical method to assess which student source codes are similar.

International Journal on Information Theory (IJIT), Vol.14, No.1/2, April 2025

6

Table 8. Algorithm -Part 5

library(pvclust)

A = matrix(t(KC), nrow=D, ncol = D)

dimnames(A) = list(names, names)

A.pv <- pvclust(A, nboot=1000)

plot(A.pv, cex=0.8, cex.pv=0.7, col.pv=c(1,0,8))

ask.bak <- par()$ask

par(ask=TRUE)

highlight clusters with high au p-values

pvrect(A.pv, alpha=0.95)

Fig 1. Dendrogram for plagiarized source code

The Dendrogram shows that the students can be grouped into three (3) clusters (see Table 9).

Table 9. Clusters of students

Cluster 1 Student 16

Cluster 2 Students 05,09,10,12,13,17,18,20

Cluster 3 Students 01,02,03,04,06,07,08,11,14,15,19

International Journal on Information Theory (IJIT), Vol.14, No.1/2, April 2025

7

The Cluster Analysis clearly reveals that student 16 had the most unique source code, whereas

the other students were at risk of collaboration in writing their code. These clusters proved to be

of great practical help in that they provided direction as to which students needed to be carefully

investigated.

For example, a careful hands-on examination in Cluster 2 started with students 05 and 17 which

showed that their code was virtually identical. The same was true of students 09 and 20. The code

of student 10 had great similarities with that of students 09 and 20. This investigation continued

with the other students in Cluster 2.

Likewise, for Cluster 3. A physical examination of the source codes for students 03 and 06

revealed significant similarities. As one went up the cluster Dendrogram, the similarities, of

course, decreased.

In the end, some students received zero points due to significant plagiarism while others were

penalized less according to the detected scale of plagiarism.

3. RESULTS

The results were multi-faceted. First, the students all acknowledged that this methodology

combined with the problem of plagiarism was very effective in helping them understand the

concept of Kolmogorov Complexity.

Second, it took the application of this methodology on several succeeding projects before the

reality set in that plagiarism does not pay. At first, it was a bit humorous to the students that their

plagiarism was so easily exposed. However, after receiving zero points on several projects in a

row, the students began to understand that “Professor Sturm has a weapon that we need to

respect.” Thereafter, the incidents of plagiarism took a dramatic drop.

Third, this effect continued into future semesters. Although, the word had spread throughout the

student population that such a weapon existed, it turned out that the students really didn’t believe

it, that is, until after the first project was assigned and many received a zero. Thereafter, the

problem of plagiarism was effectively eliminated for the remainder of the semester.

Finally, the students were often assigned technical reports to write. Like with source code, there

was the temptation of plagiarism in their Word documents. Once again, the application of the

above methodology effectively eliminated the problem.

4. CONCLUSION

This simple usage of Kolmogorov Complexity proved to be very effective in combating

plagiarism, not only in software programming, but also in composition writing. It also served an

effective way to teach the abstract concept of Kolmogorov Complexity.

In addition, this methodology is very easy to implement in any programming language and is free

to the user. That is, the user does not have to pay any expensive user fees.

Although our methodology is conceptually simple, this does not mean that there is no need for

improvement. Areas for future research include how to integrate into this methodology ‘jumps’ in

paragraph quality in the field of composition writing. That is, plagiarism might be the inclusion

of an unreferenced paragraph from a professional academician. If so, then the quality of the

International Journal on Information Theory (IJIT), Vol.14, No.1/2, April 2025

8

student’s work might suddenly take a ‘jump’ in lexical richness, grammar correctness, style, and

word length. Perhaps Kolmogorov Complexity or another diversity measure could be used to

detect such ‘jumps.’

REFERENCES

[1] R Core Team (2014). R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

[2] Sturm, G.W. (2017). Introduction to Information Theory. Pyongyang University of Science and

Technology, DPRK.

[3] Zenil H. A Review of Methods for Estimating Algorithmic Complexity: Options, Challenges, and

New Directions. Entropy (Basel). 2020 May 30;22(6):612. doi: 10.3390/e22060612. PMID:

33286384; PMCID: PMC7517143.

[4] Bloem P., Mota F., de Rooij S., Antunes L., Adriaans P. A safe approximation for Kolmogorov

complexity; Proceedings of the International Conference on Algorithmic Learning Theory; Bled,

Slovenia. 8–10 October 2014; pp. 336–350..

[5] Sturm, G.W. (2025). Link to plagiarism files.

https://1drv.ms/f/c/8b328b74ef334b0b/EqudekSmckJFqKxdL32y7l8BLc9h6POmOFpjHfsV_fVM8

A?e=dCFwnQ

[6] Ryota, S., Terada, Y., Shimodaira, H. (2019) pvclust: Hierarchical Clustering with P-Values via

Multiscale Bootstrap. https://CRAN.R-project.org/package=pvclust.

AUTHOR

George Sturm was born in the USA but lives in Albania. He received his Ph.D.

from The Ohio State University in 1979. His research interests include statistics,

mathematics, electric engineering, and radio broadcasting.

	Abstract
	Keywords
	Kolmogorov Complexity, plagiarism, cheating, cluster analysis.

	3. Results
	4. Conclusion

