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ABSTRACT 
 

Autism is an advanced neurological disease that affect communication and social behaviors, including 

attention -one of the fundamental skills to learn about the world around us. Autistic people have difficulty 
moving their attention from one point to another fluently. Due to the high prevalence of autism and its 

increasing progression, and the need to address common disorders in patients, this study aimed to 

implement and simulate a computational model for attention deficit disorder in autistic patients using 

MATLAB. This computational model has three components: context-sensitive reinforcement learning, 

contextual processing, and automation that can teach a shift-shift task automatically. At first, the model 

functions like normal people, but its performance gets closer to autistic people after changing a single 

parameter. This study demonstrates that even a simple computational model can be used for normal and 

abnormal developmental cases using a neural network reinforcement learning approach and provide 

valuable insights into autism. 
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1. INTRODUCTION 
 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder whose etiology is 

unknown despite its prevalence [1; 2]. This disease is highly inheritable [3; 4], and although there 
has been active research to discover the genetic factors and other biological symptoms of the 

disease [5; 6; 7; 8], its diagnosis still depends solely on behavioral assessments [9]. Autism 

mainly affects men, so the rate of male-to-female infection is currently estimated at 4 to 1 [10]. 
 

ASD has a heterogeneous set of various social, cognitive, motor, and perceptual symptoms, 

including impaired social skills, isolation, speech and language disorders, imitation of a particular 
set of patterns, and attention to stereotypes. This heterogeneity makes it difficult to establish a 

comprehensive model for the disorder [11; 12]. 

 

Studies examining the genetic and molecular basis of autism indicate more than 100 genes 
involved, many of which are also involved in synaptic development and function [13]. Hence, a 

renowned hypothesis is that autism results from a neurophysiologic excitation-to-inhibition (E/I) 
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imbalance [14]. However, the relationship between this imbalance and the behavioral 
characteristics of autism remains unclear. Given the shared nature of autism and the poor 

correlation of symptoms [15], one possibility is that a large-scale imbalance has affected 

neurological calculations and caused widespread behavioral symptoms known as autism.  

 
On the other hand, attention and related disorders that autistic people suffer from are raised today 

as an essential symptom of ASD. Normal people can focus on several objects simultaneously, 

while people with ASD pay only a lot of attention to one object and not to other objects. 
Attention disorders of an autistic person can cause him or her to have difficulty changing 

attention from one object to another [10; 16]. 

 
Neural networks are composed of simple elements that act in parallel with each other and whose 

internal connections determine the function of the neural network primarily [17]. Therefore, 

neural network modeling can provide a good mapping of the actual functioning of the human 

brain - in particular, attention deficit - in autistic patients and be effective in understanding the 
problems they face and helping them recover. Using neural network simulations, we show that 

the behavior of normal and autistic people can be simulated in a single model. A computational 

perspective can help link our understanding of the genetic and molecular basis of autism to its 
behavioral characteristics and provide valuable insights into the disorder and possible treatments. 

Therefore, in the background section, an attempt has been made to discuss more the 

characteristics of ASD patients and examine this issue from different aspects. There is also 
information about neural networks and their modeling and how to teach and learn them. The 

reference model is introduced in the following, and its function and components are described 

and then simulated using MATLAB. This model simulates the attention function of autistic and 

normal people and makes it possible to compare them. Finally, we conclude and present the 
results of the simulations. In addition, using the experimental results we have from previous 

experiments, we compare the model's performance with actual samples. 

 

2. BACKGROUND 

 

2.1. Autism  
 
Autism is a genetic disorder, and one of the five Pervasive Developmental Disorders (PDDs) 

emerges with disorders in social communication during the first three years of life. Autism, 

known for the advanced disorders it causes in the patient's social behaviors, leads to special 

interests and behaviors and has different degrees determined according to the degree of social 
communication disorders [18]. Autism is a prevalent disorder in the United States (reported for 

one in 54 children) and has become one of the most common neurological disorders in childhood 

[19].  
 

Although the disease mainly demonstrates symptoms, i.e., communication disorders, people with 

autism have abilities such as accurate imitation of the behavior of others. Although they do not 
have the skills to do conceptual and innovative work with creativity, they are skilled at doing 

repetitive and clichéd tasks - such as math skills - that even ordinary people cannot do. Autistic 

people have a particular interest in the rules. They welcome the pursuit of ruled action. Their 

lives are intertwined with the uniformity of the situation, and any change in it causes intense 
emotional reactions in patients [20; 16]. In general, we can summarize the main symptoms of 

autism as follows: 

 
1. Social disorders in people with autism are severe and persistent (chronic) and result from 

disorders in various parts of the nervous system. These sections are about perceiving and 
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processing faces or expressing emotions and paying attention to the words, behaviors, and 
gestures. Although people with autism often suffer from a lack of social intelligence, they 

may have high general intelligence. They cannot take on some of the mental responsibilities 

that normal people do well. As autistic infant ages, social disorders become more 

pronounced, and the ability to make eye contact decreases [11]. An autistic person has 
problems expressing his feelings and difficulties meeting and interacting with new people in 

society. They distance themselves from other members of society and lose the ability to 

express empathy and sympathy [21; 16]. 
 

2. Speech and language disorders: About half of all autistic patients have speech problems, 

which can be one of the first signs that parents notice autism in their children. On the other 
hand, people who acquire this skill speak very firmly and hard and use clichéd and repetitive 

words and sentences with different tones. Researchers classify people with autism as mild to 

severe, depending on the degree of impairment in their speech skills. Lack of this linguistic 

skill causes many problems in the lives of such people. For example, they gradually distance 
themselves from others and become isolated [16]. 

 

3. Limited Interests and Behaviors: In addition to the apparent disorders seen in the social 
and speech behaviors of people with autism, they sometimes show an unusual fascination 

with a particular object, person, or activity. They insist on the uniformity of conditions in 

their environment and engage in certain repetitive and specific regulatory behaviors. For 
example, an autistic child may experience emotional or physical distress as a new device 

enters the home or may tend to perform certain activities frequently throughout the day [22; 

16; 11]. 

 
4. Attention Deficits: Attention is one of the essential abilities needed to learn about the world 

around us, and a defect in this area can partly explain the characteristics of cognitive 

development in people with autism. Attention is not a single function but has several parts, 
such as distracting from the current focus, shifting to the new focus and engaging in it, 

selecting related stimuli, and maintaining attention over time in the presence of distracting 

stimuli [23; 18]. People with autism have difficulty moving attention from one point to 

another, thus uniting different areas of interest into a whole [24]. The accuracy of people 
with autism compared to normal people on a particular issue is normal or even better, with 

more extended periods [16], but the problem is that when they focus on a problem, they 

cannot change their attention and adjust it to another subject. In general, neuroimaging 
studies have suggested three attention abnormalities among people with autism, as follows: 

 

1) Releasing attention from a subject (body or person) is a reactionary function that occurs 
in the event of a series of unexpected stimuli. In this operation, the parietal cortex is a 

very active nervous part. People with autism who are deficient in the parietal cortex 

perform these procedures very slowly. The degree of deficiency of the parietal cortex is 

positively related to the extent of delay and slowness in changing attention [25]. 
 

2) In general, normal people in the event of a stimulus can predict the location of the 

stimulus and pay attention to it. If people with cerebellar tumors and people with autism 
cannot do so, their predictions are usually incorrect. They are very slow and careless in 

locating the stimulus [26].  

 
3) The third abnormality in the attention of people with autism is Attention Shift Disorder. 

When a person's attention is focused on one stimulus, and suddenly another stimulus is 

triggered, a normal person immediately shifts his attention to the second stimulus, while 
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a person with autism cannot do so. For example, when a mother talks to her autistic child 
and asks her child to look at a picture, her child cannot do so. 

 

Other symptoms of autism include mimicry of specific behavioral patterns, inadequate emotional 

responses to many stimuli, and lack of adaptive time in motor behaviors [27].  
 

2.2.  Modeling of Neural Networks 
 

Neural networks are composed of simple components called neurons that work in parallel and are 

inspired by biological neural networks. The function of the neural network is primarily 

determined by the connections that exist between the components. These neurons send 
information in the form of action potentials through guided links to other neurons. Based on 

knowledge about the function of biological neural networks, they can be modeled and imitated - 

especially for learning ability [28]. Modeling neural networks requires a model that can acquire 
essential features of the nervous system and exhibit similar behavior. The goal of modeling is 

basically to create a simpler model of the system that maintains the general behavior of the 

system and helps to understand the system more efficiently. Proponents of neural network 
approaches argue that neural simulations operate at the intermediate level - between molecular 

and behavioral levels - and provide an opportunity to understand the causes of causing behaviors 

and the dynamics of the connecting network with molecular and genetic characteristics [16]. 

 

2.2.1. Learning in Simple Neurons 

 

The primary role of a biological neuron is to sum up its inputs so that the sum of the inputs does 
not exceed a specific limit called the threshold and then to produce an output. Connecting 

neurons to each other may create networks that can do something, but they must be trained 

somehow to do something useful. What makes these models usable is their ability to learn [17]. 
We must increase the weighting coefficients when the neuron is active and otherwise reduce the 

coefficients to learn the network. In learning, only active inputs are affected because inactive 

inputs have no effect on the weighted sum, and changing them has no effect on that particular 

case and may disturb what has been learned so far. The mentioned points can be combined in the 
form of a single-layer perceptron algorithm as follows [29]: 

 

(1) 
𝑦(𝑡) = 𝑓ℎ[∑ 𝑊𝑖(𝑡)𝑥𝑖(𝑡)]

𝑛

𝑖=0

 

 

 

Where 𝑦(𝑡): Actual Output; 𝑥0 ∶ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒  ;  0 ≤ 𝑖 ≤ 𝑛 ;  𝜃 ∶
𝑂𝑢𝑡𝑝𝑢𝑡 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒;  Wi(t): The input weight i at time t; and other weighting coefficients 

are obtained as follows: 

 
(2) 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝜂𝑥𝑖(𝑡) 

 

If the actual output was zero and the optimal output was 1. 

 
(3) 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) − 𝜂𝑥𝑖(𝑡) 

 

If the actual output is 1 and the desired output is zero. 

 

Where 𝜂 is the positive recovery factor (0≤𝜂≤1) and controls the adjustment rate (correction) of 
weight coefficients. 
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Widrow and Huff propose a similar algorithm (1960) called the Delta Rule. This rule calculates 
the difference between the weighted sum and the desired output value and calls it an error. Then 

the weighting coefficients are adjusted according to this error: 

 

(4) 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝜂∆𝑥𝑖(𝑡) 

𝑑(𝑡) = {
+1  
−1  

 

 
The delta error value can be written as follows, and is the difference between the desired system 

output and the actual output: 

 
(5) ∆= 𝑑(𝑡) − 𝑦(𝑡) 

 

This formula controls adding or subtracting weighting coefficients because if the desired output is 

1 and the actual output is 0, then the weighting coefficients increase. 
 

2.2.2. The Multi-Layer Perceptron Learning Rule 

 

The multi-layer perceptron learning rule is slightly more complex than the previous rule, called 
the general delta rule or the Back-Propagation Rule. The best way to understand this is to 

examine the network behavior when teaching the patterns offered. Random outputs are generated 

when a pattern is supplied to an untrained network. The error function shows that the difference 
between the actual and desired output must first be defined. This type of learning is called 

supervised because the desired output is specified. We can call the network training successful if 

its output gradually approaches the desired output; in other words, the error function must 

permanently be reduced. In order to achieve this goal, the weight coefficients of the 
communication lines of the units are modified using the general delta rule. The delta rule 

calculates the value of the error function and propagates it backward from one layer to the 

previous, so it is called Back-Propagation. The weighting coefficients of each unit are modified 
separately, thus reducing the error rate and training the network [17]. 

 

2.2.3. Reinforcement Learning 
 

Reinforcement learning is an approach to artificial intelligence that, unlike classical approaches 

that downplay interactive learning, focuses on learning from an informed teacher or reasoning 

from a complete environmental model. In reinforcement learning, unlike most forms of machine 
learning, the learner is not told what to do [30]. One of the challenges that only occurs in 

reinforcement learning is the compromise between exploration and exploitation. To get high 

rewards, a reinforcement learning agent must choose actions that have been tried in the past and 
have effectively created rewards. However, to determine what these actions are, we should 

choose actions we have not tried before. The agent must use what he has already learned to 

reward and seek to improve the choice of actions in the future. The complicated puzzle exploits 
and explorations can be chosen exclusively without fail [31]. 

 

New reinforcement learning research uses two conventional frameworks for Marco Decision 

Processes (MDPs). In this framework, the agent and the environment interact in a chain of 
discrete time steps, t = 0,1,2,3,… in each step, the agent observes the environment in a state, s t, 

and selects an action. In response, the environment creates a random state transition to a new 

state, st+1, and randomly issues a numerical reward, rt+1(See Figure 1). In the long run, the agent 
seeks to maximize the reward received [32]. 
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Figure 1. Reinforcement Learning Method [31] 

 

The simplest reinforcement learning algorithms are applied directly to the agent experience and 

cause immediate interaction with the environment and behavior change. For example, tabular 
one-step Q-learning, one of the simplest reinforcement learning algorithms, uses the experiences 

of each state transition to modify an element of a table. With the symbol Q, this table has an 

input, Q(s, a), for each pair of state, s, and action, a. As soon as st; st+1passes the at action and 
receives the rt+1 reward, the following algorithm performs the following correction: 

 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑚𝑎𝑥𝑎 𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)]       (6)                                                               

 
Where α is a positive parameter with degree measurement, under the right conditions (ensuring 

adequate search and decreasing α over time), this process converges so that the greedy policy is 

optimal for Q; that is, in each case, s, an action, a, is selected for which Q(s, a) has the most 
significant value. Therefore, this algorithm provides a way to find an optimal procedure directly 

and without any model of environmental dynamics. More sophisticated methods implement Q as 

a table and a trainable parameterized function such as an artificial neural network, so 

generalization between states is possible that can significantly reduce learning time and memory 
requirements [31]. 

 

2.3. Attention Deficit Disorder 
 

Allport (1990) provided evidence against theories of attention, which assumed that sensory 

information should be selected at an early stage of processing. Instead, he suggested that the task 
of selective attention identifies factors for purposeful actions. To hold a particular object, one has 

to choose the coordinates of that object rather than other objects on the scene [33]. Many 

empirical studies support this view [34; 35], indicating that an essential role of attention is to 

open the sensory channels of a particular action. Before reaching an object, it must first focus on 
the action-guiding information from the environment, so attentional fixations should be 

consistent with motor actions [36]. 

 
Focus attention is a way to seek information from the environment. In a series of experiments, 

Ballard et al. (1997) have shown that the subjects studied look briefly at the outside world, even 

when they remember the external state according to the truth. They reported that even for the 

simple act of copying a four-color block pattern, people stared at the model eighteen times, even 
though the pattern was easy to remember. Hence, humans prefer to use direct reasoning when 

information is obtained from the environment, even when the process is slower than the memory-

based method [37]. 
 

The close relationship between attention and action raises the possibility that control of both is 

similarly helpful. Attention control has many similarities to movement control, which is evident 
not only in overt attention movements in the form of eye movement but also in other actions that 

do not require motor activity; In these cases, the action involves an inconspicuous shift of 
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attention that only affects the way sensory information is processed. Evidence supporting the 
similarity of attention and action is condition-based and is provided by parts of the brain involved 

in both attention and motor control [36]. 

 

While attention is often directed to a stimulus, another critical aspect is that it diverts attention 
from irrelevant stimuli. In patients with parietal injury, one of the most noticeable effects of the 

disease is their ability to change the focus of attention from a stimulus. The prefrontal cortex 

causes another type of inhibition. Patients with injury to the forehead, especially in the orbital 
area, are easily distracted by external stimuli [38]. 

 

Fuster (1997) described this as an inability to deter attention from false stimuli. Injured animals 
in the orbital areas are unable to prevent a directional reaction and are usually hyperactive. Many 

experts have interpreted animal forehead hyperactivity as an expression of a tendency to 

overreact to external stimuli [39]. The aboveevidence offers a view of attention as encompassing 

at least two levels: The first level directs attention to environmental stimuli, and the second level 
is responsible for inhibitory control of the lower subsystem. Different types of learning are 

possible at both levels [36]. 

 

 
 

Figure 2. Four principles for attention [36] 

 
Figure 2 describes the elements of an attention-controlled action. Attention is first focused on 

object B, which frees the center of attention (attention as inhibition). Shifting attention and 

looking g from object B to A is an action s (attention as action). Object B is selected for action a 
(selection for action) by orienting the focus and staring at it. The focus of attention is used as an 

implicit argument for action. Without explicitly representing all its features, the focus of attention 

is referred to Object B (direct reasoning reference) and opens sensory channels is used as implicit 

reasoning for a motor action, which guides the hand to Object A [36]. 
 

Akshoomoff and Courchesne (1992) and Courchesne et al. (1994) tested eight children with 

autism diagnosed with cerebellar abnormalities. The purpose of this test was to examine the 
theory that the cerebellum helps to control the center of mental attention smoothly. Visual stimuli 

were green deflectors, and target light rays were red. Auditory stimuli, loud and slow, had 

frequencies of 2 kHz and 1 kHz, respectively. The red light forced the person to press a key and 
acted as a stimulus to shift the focus to the auditory dimension. Similarly, the loudness of the 

target forced the subject to press a key and then shifted attention from the auditory to the visual 

dimension, regardless of the previous target dimension [40; 41]. 

 
The duration of visual and auditory stimuli was 50 milliseconds and the stimulation intervals 

varied between 450 and 1450 milliseconds. The target was used in the visual dimension as a sign 

to shift attention to the auditory dimension and vice versa. A person's performance was 
considered successful when he or she responded within 200 to 1400 milliseconds after displaying 

the target. With the same process as before, focused attention was also tested; Participants had to 

press a key by following a red light, regardless of auditory stimuli. 
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Children with autism performed and typical children of the same age on their attention span but 
had difficulty moving accurately and quickly. When stimulation occurred 2.5 seconds or less 

after correct diagnosis of the previous target, children with autism could detect only 58.9% of 

targets, compared with normal children who correctly identified 78% of targets. However, over 

time, the performance of children with autism improved. This experiment's significant 
differences in normal children and children with autism make it an ideal test to develop a 

computational model for autism. The tasks are simple enough to implement in a computer 

simulation fully, and at the same time, the model describes many of the difficulties that people 
with autism face [40]. 

 

3. A COMPUTATIONAL MODEL OF AUTISM 

 

3.1. The Purpose of the Model 
 

A computational architecture seeks to formulate the computational processes required for 

cognitive development explicitly. Such architectures' goal is also to understand cognitive 
development better or create control systems for robots [42]. To the extent that such schemes 

claim to describe or replicate human development, they should apply to developmental disorders 

such as autism. Therefore, a model is considered that can be used equally for normal and 

abnormal developmental cases, and it is believed that separate modeling of these cases is 
incorrect, and an acceptable model for autism should be based on a model of Have normal 

cognitive development [43]. 

 
Also, it should be possible to conduct face-to-face studies with the implemented model and 

compare its performance with that of normal people and people with developmental disorders. 

The simulated model in the present study shows how a unified design of multiple systems for 
reinforcement learning, contextual processing, and automation can learn test-based attention tasks 

for normal and autistic individuals and evaluate system parameters. It can be changed so that the 

model acts like a child with autism in attention. Although the simulated model is based on 

biological principles and replication of different brain areas, areas of the brain are not discussed 
in detail. The point is to understand the overall interaction between the components [43]. 

 

3.2. Previous Models  
 

Many attempts have been made to develop computational models for autism. As far as we know, 

the first model in this field was created by Cohen (1994). Cohen believed that an insufficient 

number of hidden units in a back-propagation network could cause autism defects, as too many of 
these hidden units, compared to the activity's complexity, lead to habitual learning and poor 

generalization ability [43]. Gustafsson (1997) described autism as imperfect self-organization of 

feature mapping [44; 45]. He proposed his model based on Kohonen's (1995) self-organization 
maps, in which excessive inhibition leads to incomplete formation of cortical feature maps. A 

similar model was developed independently by de Carvalho et al. (1999) because autism arises 

from discrete and underdeveloped cortical maps. This model assumes that the initial amount of 
nerve-growth factor above the stimulus level (as in the Gustafen model) affects the formation of 

the map [46]. 

 

Another model based on cortical feature maps was proposed by Paplinski and Gustafsson (2002), 
who presented a simulation in which incomplete feature mappings were more due to familiarity-

based preference than the likelihood of slightly noticeable shifts between stimuli. However, they 

concluded that preference was based on familiarity (choosing more of a small set of almost 
known stimuli) creates more assigned character mappings. It is perfectly correct, but the cause or 



International Journal of Information Technology Convergence and Services (IJITCS) 

Vol.11, No.1/2/3/4/5/6, December 2021 

9 

effect of its abnormality is not clear. Also, it seems hasty to rule out attention deficits based on a 
single, straightforward model of attention in autism [45]. 

 

The disadvantage of such models is that they do not cause any behavior and, as a result, it is not 

possible to compare them with practical information. O'Loughlin and Thagard (2000) described 
another computational model that explains the lack of central coherence in autism. Their 

connectionist model is based on a network of constraint satisfaction [47], and it was believed that 

the lack of central cohesion is due to a very high level of inhibition compared to the stimulation 
level. This model is attractive in that it uses both normal and autistic cognition. This model also 

can apply to tests that are often performed on children with autism; Like the Sally-Ann task, in 

which the subject is shown a short game with two dolls named Sally and Ann who, by placing a 
bead in the basket and box, consider binary modes for action and belief [48]. However, Kamawar 

et al. (2002) believed this model predicts that autistic children will have problems with 

structurally incorrect image function, structurally similar to Sally-Ann's task; This identifies the 

main drawbacks of this model is the lack of a basis for learning or perception. However, there is 
no explanation as to how these nodes are formed [49]. 

 

This model also can apply to tests that are often performed on children with autism; like the false-
belief (Sally-Ann) task, in which the subject is shown a short game with two dolls named Sally 

and Ann who, by placing a marble in the basket and box, consider binary modes for action and 

belief [48]. However, according to Kamawar et al. (2002), this model predicts that autistic 
children will have problems with the false photo task structurally similar to Sally-Ann's task. 

Hence, this identifies the main drawbacks of this model - the lack of a basis for learning or 

perception: nodes with contexts such as "Sally thinks the marble is in the basket (but it is not)" 

are expressed, but no explanation is given about how these nodes are formed [49]. 
 

3.3. The Reference Model 
 

This section describes a developmental model (Balkenius and Moren, 2004) to simulate the 

attention task [50]. This model is not considered a complete model of cognitive development; 

however, it contains crucial components that will be added to the complete structure. The model 
has three main parts (Figure 3). A Q-learning system learns the connections between stimuli and 

responses based on the received reinforcement (encouragement or punishment) [32]. The 

ContextQ algorithm used results from adding contextual inputs to the Q-learning algorithm [51]. 
A contextual system influences reinforcement learning to collect sensory inputs over time to 

create a code for the current context [36]. The contextual system acts as a working memory for 

the last potential target to which the system responds. Hence, the contextual Q-learning part can 

switch between different behavioral strategies depending on the current context. Unlike other 
reinforcement learning methods that can only learn a single policy, this allows for the gradual 

development of many different behaviors over time, a central feature of a developmental 

architecture.  
 

 
 

Figure 3. Overview of the Model [43] 
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Finally, an automation system learns the connections between stimuli and contextual shifts, 
allowing the contextual system to change much faster when a target occurs. The role of the 

automation system is to create conditional contextual shifts due to the occurrence of a target 

stimulus, which accelerates the shifting between different tasks [43]. The three parts of the model 

are described in detail below. 
 

3.3.1. Context Processing 

 
Context: The concept of context encompasses many areas (See Figure 4). For example, a context 

could be a location specified by several specific symbols. The context can also be a chain of 

events or actions. In most cases, the context is temporal and spatial because the stimuli are 
usually deployed and must be considered. The context can include a single event in the finite 

sample, such as presenting a stimulus at distant times. In this case, the context necessarily acts as 

a stimulus rejection. A more exciting context occurs when the learning test itself is context. 

Context stimulation can even be produced internally, such as thought and feeling [50]. 
 

 
 

Figure 4. Two types of contexts. Left: A spatial context given by three stimuli at three locations. Right: A 

temporal context consisting of three events A, B, and C. 

Source: Balkenius, & Morén (2000) 

 

The Role of Context in Learning: Many types of learning are dependent on context. The 
relationship between context and memory is fascinating. While memory is often context-

dependent, a temporally expanded context is very similar to memory. Donahoe and Palmer 

(1994) have suggested that working memory can be equated with adapting the sample to context. 
In adapting the sample, the subject should memorize an object and later match it to several 

stimuli present. Stimulation is memorized in the combined context and can later be used to 

control response accordingly. Another interesting relationship between context and attention is 
that attention can sometimes be seen as contextual separability, i.e., only one stimulus is 

considered, which is controlled by context [50]. 

 

Contextual Processing Part of Model 

 

When a location x is considered inside the system or environment, the current input state of the 

attentional system - the focus of attention – is given by s(x) = ‹s0, s1,…, sn› which is a sensory 
code to stimulate attention in x, and L (x) is also a code for its location x. Given a set of 

attentional fixations X ⸦ V, a binding code d(X) is computed as the sum of the outer product of 

two vectors s(x) and L (x) for each location x є X [50]: 

 
(7) 

𝑑(𝑥) = ∑(s(x) ⊗  𝐿(𝑥))

∞

𝑥∈𝑋

 

 

The binding d is a type of tensor coding of conjunctions as proposed by Smolensky (1999). Each 

binding code represents a context or a partial context. The output of the binding stage is 
integrated over time in a binding vector b = ‹b0, b1,…,bn›. The following relation gives this 

vector: 
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(8) 

𝑏𝑖(𝑡 + 1) =
𝑏𝑖(𝑡) +  𝛿𝑑𝑖 + 𝐸𝑖

∑ (𝑏𝑗(𝑡) + 𝛿𝑑𝑗 + 𝐸𝑗)
𝑝
𝑗=0

 

 
In other words, bi values add up their inputs over time, and the result is normalized to allow 

simple comparisons between the binding elements. The term Ei is an additional input that will be 

explained below. 

 
In previous models of contextual processing [50], individual binding codes are determined by an 

additional processing step - which gathers these codes as a contextual code. The current 

implementation does not include this step. Instead, the context output c was set to the output of 
the binding nodes, ci = bi. Also, the location code is used in this model in part, using a single 

location that depends on the location of the response trigger, i.e., L(𝑥) = a0, where a0 is the system 

response as described below. 
 

3.3.2. Contextual Reinforcement Learning (ContextQ) 

 

ContextQ is used to learn the relationships between stimuli and responses in a context-dependent 
manner [51]. This algorithm can learn many distinct behaviors in different contexts and 

effectively generalize from one context to the next. Each state is expressed by a state vector s(x) 

= ‹s0, s1 ,…,sn› and {a0 ,a1,…,an} is a discrete set of activities. The Q-function can be estimated as 
standard and as follows: 

 

(9) 
𝑄(𝑠, 𝑎𝑗) = ∑ 𝑠𝑖𝑤𝑖𝑗

𝑛

𝑖=0

 

 

Where the update rule is: 

 
(10) wij(t+1) = wij(t) + α si ∆Qt 

 

j is the index of the last action and, 

 
(11) ∆Qt = [rt+1 + σ maxa Q(st+1 , at+1) – Q(st ,at)] 

 

Each weight is updated based on the error value of the Q-function multiplied with the value of the 

state component si. That is, only components of the state that are related to the selected action 
will be updated. The linear approximator will generalize learning to similar states [31], which is 

the basic Q-learning algorithm described by [32]; contextual inputs will now be added to this 

algorithm 

 
The context is described by the vector c=‹c0 ,c1,…,cp›, which is received from the context system. 

Adding the contact to a linear approximator is done using the additional weights uijk, which link 

each association wij to the context ck [43]: 
 

(12) 
𝑄(𝑐, 𝑠, 𝑎𝑗) = ∑ 𝑠𝑖𝑤𝑖𝑗𝐼𝑖𝑗

𝑛

𝑖=0
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(13) 

𝐼𝑖𝑗 = ∏(1 − 𝑐𝑘𝑢𝑖𝑗𝑘)

𝑝

𝑘=0

 

 

 
 

Figure 5. The approximation of Q(c, s, aj) as an artificial neural network with shunting inhibition from the 
context nodes ck to the association between a state node si and an action node aj [43] 

 

In neural network terms, Iij can be seen as a propelling inhibition from the context of the 

association from the state to the action (See Figure 5). It is now examined how the learning rule 
should be changed to reflect the new context-sensitive estimator. The learning rule for the 

contextual weights is: 

 
(14) uijk(t+1) = uijk(t) – β si ck ∆Qt 

 

Depending on the sign of ∆Qt, two different sets of learning constants are used. When ∆Qt>0, α= 

α+ and β= β+. Otherwise, α = α- and β= β -. Typically, α+>α -and β+<β-. In other words, inhibition 
of the current context mainly increases the association between the current state and the selected 

action when the actual reinforcement is less than expected. 

 
In the simulation performed, only a single action is used, and the value of Q is considered the 

probability of a response occurring. The single-action will also be used as an input to the context 

system. 

 

3.3.3. Automation 

 

Automation is the learning of stimulus-response associations by observing the activities of 
another system. This learning is done so that these actions are created automatically without the 

system that initially created them. This process is similar to some forms of classical conditioning, 

such as that manifested in conditional eye-blinking responses [52]. Automation will be modeled 

in a fundamental way using two types of inputs and one output. Inputs s=‹so , s1,…,sq› are related 
to output y through associative weights vij, 

 

(15) 

𝑦𝑗 = ∑ 𝑠𝑖𝑣𝑖𝑗

𝑞

𝑖=0

 

 

The Delta rule (Widrow and Hoff, 1960 (is used to learn the target output T:  
 

(16) vij(t+1) = vij(t) +ε[Tj(t) – yj(t-τ)] si(t- τ) 
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The time difference τ is used to create the output of the automation system before the system it 
taps into, and ε is the learning rate. Conditionally speaking, τ is the optimal time interval between 

two stimuli for conditioning. 

 

The target in the automation system is to change the output of the context system [53], and the 
output of the automation module is sent to the context system through the additional input  

 

Ej(t)= ф yj(t).  
(17) Tj(t) = cj(t) – cj(t-1) 

 

4. FINDINGS 
 

In this study, the task of attention shift previously described has been simulated [40; 41]. In these 

simulations, the following constants are used: 

 

α+=0.2, α-=0.1, β+=0.1, β-=0.2, б=0, δ=0.035, ε=0.01, τ=2.   

 

The parameter ф is set to 50 for the normal group and 0 for the autism group. The duration of 
each simulation step is 50 milliseconds. Of these parameters, only two are essential for a 

response. The δ constant, which controls the speed of positional displacement, has been selected 

with the highest possible accuracy to recreate the response profile of autistic individuals. The 
constant φ, which describes the effect of the automation system on the situation, is also set to an 

appropriate value to produce a response similar to a normal group. When the model answers 

correctly, it receives a value of 1 (equivalent to encouragement), and for each incorrect answer, a 
value of 1- (equivalent to punishment) is assigned to the model. Reinforcement 

(Encouragement/punishment) is applied through a test. 

 

It is necessary to mention a few points about performing simulations: 
 

 In diagrams, the vertical and horizontal axes represent the Q function and the time steps, 

respectively. 

 Due to the lack of main inputs of the model, random inputs have been used. 

 In the simulations, six modes are considered. 

 1000 time steps have been used in performing the simulations. 

 The vertical axis is multiplied by 5 so that the diagrams do not overlap. 

 In these diagrams, the performance of the four neurons is shown in terms of their winning rate 

during the gradual training of the network, which shows the improvement in performance after 
training. 

 

Figures 7 and 8 simulate the task of attention shift in two groups of autistic patients and normal 
people. Figures 9 and 10 also show the experimental data obtained from [40]. 
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Figure 7. Simulation of attention shift task for the 

autistic group        
Figure 8. Simulation of attention shift task for the 

normal group

 

 
 

Figure 9. Experimental data from [40] for 

attention shift task among the normal 

groupattention 

Figure 10. Experimental data from [40] for shift task 

among the autistic group 

 

By performing the simulations, the following vital differences are obtained between the 

performance of the model for the normal group and the autism group: 
 

1. In the case of the autistic group, the model achieves a stable state of functioning after a more 
extended period than the normal group. 

2. In the autistic group, the upward trend in performance improvement is steeper than that of the 

normal group. 
 

The simulations show that this computational model can recreate the significant behaviors of 
normal and autistic individuals in the attention shift task. For a comparison of experimental 

results and simulations, see Table 1. 
 

Table 1- Experimental and Simulation Results in Normal vs. Autistic Group 
 

 Normal Group Autistic Group 

Experimental 
Results 

It starts with about 80% of the test 
performance and eventually 

achieves performance at about 90%. 

It starts with a performance of about 60% and 
continues with an increasing trend and 

achieves a final performance of 80%. 

Simulation 

Results 

It starts with a performance of 

about 20% and ends with a final 

value of 100%. 

It starts with a performance of about 15% and 

achieves a final performance of about 100%, 

with a process almost identical to the 

simulation results. 
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There are three significant differences between experimental and simulation results: 
 

1. The performance of the model in the simulation at the beginning of the second interval is 

worse than the autistic and normal groups 

2. The final performance of the simulation is better than the experimental results. 
3. The trend of increasing the success of autistic people in the experiment is less than the model. 

Since we do not have access to initial data from the work of [40; 41], it is not possible to 

statistically compare the model with experimental data. Therefore, it is not clear whether these 
slight differences in means are noticeable. 

 

5. DISCUSSION & CONCLUSION 
 

One problem with autism research is that it is both genetically heterogeneous and typologically 
diverse. The present study investigated how computational models of neural networks can bridge 

the gap between analysis levels and genetic/molecular and behavioral findings. In particular, the 

simulated model shows how a computational system can learn to participate in a complex 
cognitive test based solely on the reinforcement (encouragement/punishment) received. This type 

of learning situation is usually categorized outside of the reinforcement learning models. 

 
Importantly, computational frameworks similar to the present study can provide a systematic 

mechanism for generating falsifiable assumptions about the neural basis of autism. The three 

model subsystems can be related to the functional maps of brain structures [54]. The 

reinforcement learning system is similar to primary complexes. This system teaches 
reinforcement-sensitive stimulus-response associations. The contextual sensitivity of the model 

makes it one step ahead of other basal ganglia models, which usually do not have this additional 

input. 
 

The automation system has a cerebellar-like function in that it learns stimulus-response 

association based on the repetition of a response after the occurrence of a specific stimulus 
independent of reinforcement. The context system is similar to the hippocampus and prefrontal 

cortex. As a result of these similarities with brain structures, the model links the two components 

of "autism as a problem in situational sensitivity and distraction" and "the suggested role of 

cerebellar dysfunction in autism." This conclusion is consistent with Skoyles's (2001) theory that 
autism is caused by a disconnection between the cerebellar cortex and the cerebellum. 

 

The current model includes only the minimal implementations required for each subsystem to 
achieve the desired results. Interaction between subsystems is also minimal. In conclusion, this 

model for autism can be compared directly with experimental data from autistic individuals, and 

this model can reproduce the main differences between normal and autistic individuals in 

experimental practice. In addition, it can be demonstrated that the model can learn experimental 
operations without being specifically designed for them. Finally, it is concluded that the model's 

components are mapped to different brain structures, and it is suggested that disconnection of 

brain structures causes autism, which also disconnects subsystems leading to autistic behaviors.  
 

The computational framework described in the present study provides a standard form for 

examining how neural computations affect autism symptoms. Applying this approach can 
provide insights into other mental disorders such as schizophrenia and possibly other old age 

aspects. The results of our simulations also suggest that behavioral experiments in combination 

with computational modeling can help identify different physiological pathways in individuals 

and facilitate the development of individual treatment programs. We suggest that computational 
perspectives can play an essential role in future mental health research and effectively provide 

insights to effectively understand and treat complex disorders such as autism. 
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