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ABSTRACT 
 

Various algorithms are known for solving linear system of equations. Iteration methods  for solving the 

large sparse  linear systems are recommended. But in the case of general n×  m matrices the classic 

iterative algorithms are not applicable except for a few cases. The algorithm presented here is based on the 

minimization of residual of solution and has some genetic characteristics which require using Genetic 

Algorithms. Therefore, this algorithm is best applicable for construction of parallel algorithms. In this 

paper, we describe a sequential version of proposed algorithm and present its theoretical analysis. 

Moreover we show some numerical results of the sequential algorithm and supply an improved algorithm 

and compare the two algorithms. 
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1. INTRODUCTION 
 
Let A be a general n × m matrix. The main problem is to solve the linear system of equations: 

 

                         Ax = b                                                                                                  (1) 

 
where x∈R

m
 and b∈R

n
 are the solution and the given right hand side vectors.  We can determine 

from matrix A and the vector b, the existence and uniqueness of the solution of (1). Theoretically 

the Gaussian or Gauss-Jordan elimination algorithm is an appropriate tool to solve the system (1) 

and to decide the question of solvability.   when we use floating point arithmetic for large 

systems, these direct algorithms are inapplicable. For these cases the iterative algorithms are 

suitable. Effective iterative algorithms are known for symmetric positive definite linear systems. 

In general, iterative algorithms can be written in the form of:  

 

 

x(n)=B x(n−1)+d,      n=1, 2,...                                                                                        (2) 

 

where  B and d are such a matrix and vector that make stationary solution of (2) equivalent with 

(1), see ([1]). These iterative algorithms can be applied for general non symmetric linear systems 

as well, if we solve the following normal system: 

 

      A
T
 Ax = A

T
 b = v                                                                                                          (3) 
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instead of the original one. A disadvantage of this approach is that the resulting linear system (3) 

for matrices with full rank will be Hermitian ones, however, its condition number will be the 

square of the original condition number. Therefore, the convergence will be very slow. For 

general linear systems when A is non-Hermitian,  instead of using  some variant of the Conjugate 

Gradient (CG) algorithms, one of the most successful schemes is the generalized minimal residual 

algorithm (GMRES), see ([9, 10]) and the biconjugate gradient algorithm (BCG) see ([2]).  

 

A more effective approach was suggested by Freund and Nachtigal ([5]) for the case of general 

nonsingular non-Hermitian systems which is called the quasi minimal residual algorithm (QMR). 

An iterative minimal residual algorithm which is slightly different from the above ones uses 

Genetic Algorithms (GA), see ([4, 6,7, 8]).  

 

In the following, we describe an improved method using genetic algorithms, in which, the initial 

population is larger, uses a broader search field and its crossover operator on initial population 

enhances the algorithm convergence speed. Generally, genetic algorithm with larger search space, 

does not guarantee the convergence speed see ([3]). 

 

 In this paper, it is shown that our improved method is in practice much faster than previous 

types. This advantage can be very important for development of these algorithms for parallel 

processing. The result obtained in [8] is briefly reviewed here to clarify the improved algorithm. 

 

2. AN ITERATIVE MINIMAL RESIDUAL ALGORITHM 

 
The most of  iterative algorithms for solving linear systems are based on some minimization 

algorithm. We can obtain the normal system (3) in the following way by the least square 

minimization. We have to solve the following problem: 

 
2

2

2

2
min),(min),(minmin rrrbAxbAxbAx

mnn
RrRxRx ∈∈∈

==−−=−                      (4) 

 
where r=Ax−b is the residual of the vector x. 

 

It is easy to show that the equation (4) can be written as in (3).  More precisely, the necessary 

condition for the existence and uniqueness of the solution of (4) is obtained for the fulfillment of 

(3).  The Hermitian property of the normal matrix A
T
A is a sufficient condition for the 

uniqueness. For general non-Hermitian matrices this condition is not fulfilled in general. One 

possible algorithm to solve the problem (4) can be obtained from the following theorem. 

 

Theorem 1. Let 
nm

RRA →∈  and 
n

Rb ∈ be arbitrary matrix and vector. Moreover, let 
m

Rx ∈α
and 

m
Rx ∈β

 be arbitrary different vectors for which ( ) 0≠− βα
xxA .  

Let us introduce the following notations: 

 

,bAxr ss −=     βα ,=S  

 

and   

 
βαβα

xccxX )1(, −+= , 
βαβα

rccrr )(, −+= 1  

where Rc ∈ . We have
βαβα ,, rbAx =− . Then, the solution of the minimization problem of 

(4)  is the vector  
βα ,

x   with c, where 
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2

2

),(

βα

βαβ

rr

rrr
c

−

−
=  

 

Moreover, 

 

{ }
22,2

, ,min βα

βα

βα
rrr 〈 . 

 

The Algorithm 1 

From Theorem 1 we obtain an algorithm (see [8]), which generates an approximate solution 

sequence 
k

x  , k=1, 2, 3,... with  residual vectors 
kr  , k=1, 2, 3,..... 

1) Let  x1 be an arbitrary vector and ε the tolerance. 

2) Calculate r
1
=Ax

1
−b. 

3) Generate an arbitrary vector, x
2
 such that r

1
−r

2
≠ 0. 

4) Calculate the c1,2. 

5) Calculate the new  

x
1,2

:=c 
1,2 

x
1
+(1−c

1,2
) x

2 
 and  r

1,2
:=c 

1,2 
r

1
+(1−c

1,2
) r

2
 vectors. 

6) x1:= x1,2  and  r1:=r
1,2. 

7  ) If r
1
 < ε then go to 8, else go to 3. 

8 )The approximate solution is x
1
. 

9)End of algorithm. 

 

The simplest algorithm which can be obtained from Theorem 1 is the algorithm 1. Therefore, this 

algorithm does not converge faster than the classical ones.  

 

 3. THE IMPROVED ALGORITHM USING GA 

 
Genetic algorithms (GAs) were proposed first time by John Holland and were developed by 

Holland and his colleagues at the University of Michigan in the 1960s and the 1970s. On 

continuous and discrete combinatorial problems, GAs work very well. But they tend to be 

computationally expensive. GAs are examples of algorithms that are used in this field and have 

improved tremendously in the past two decades. A genetic algorithm (or GA) is a search 

technique used in computing to find true or approximate solutions to optimization and search 

problems. (GA)s are in the class of global search heuristics. (GA)s are a particular class of 

evolutionary algorithms that use techniques inspired by evolutionary biology such as inheritance, 

selection,  crossover and mutation.  

 

Selection: Choice of individual genomes from a population for using the crossover operator is the 

stage of a genetic algorithm which is called Selection. There are many ways  how to select the 

best chromosomes, for example roulette wheel selection, Boltzman selection, tournament 

selection, rank selection, steady state selection and some others. 

 

Crossover: After we have decided what encoding we will use, we can make a step to crossover. 

Crossover selects genes from parent chromosomes and creates a new offspring. The simplest way 

how to do this is to choose randomly some crossover point and everything before this point copy 

from a first parent and then everything after a crossover point copy from the second parent. There 

are many methods  how to do crossover. For example Single point crossover, Two point 

crossover, Uniform crossover and Arithmetic crossover. 
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Mutation: After a crossover is performed, mutation takes place. This is to prevent falling all 

solutions in population into a local optimum of solved problem. Mutation changes randomly the 

new offspring. As well as the crossover, the mutation depends on the encoding  . For example 

mutation could be exchanging two genes, when we are encoding permutations. For binary 

encoding we can switch a few randomly chosen bits from 1 to 0 or from 0 to 1.  

 

The most important parts of the genetic algorithm are the crossover and mutation.  The 

performance is influenced mainly by these two operators. Crossover and mutation are two basic 

operators of GA and performance of GA is very dependent on them.  Implementation and type of 

operators depends on a given problem and  encoding. 

 

The evolution usually starts from a population of randomly generated individuals and happens in 

generations. The fitness of every individual in the population, evaluate in each generation and 

select multiple individuals from the current population and modify to form a new population. In 

the next iteration of the algorithm use the new population. The algorithm terminates when either a 

maximum number of generations has been produced, or a satisfactory fitness level has been 

reached for the population.  

  

The Basic Genetic Algorithm  

1) Generate random population of n chromosomes.   

2) Evaluate the fitness function of each chromosome x in the population.  

3) Create a new population by repeating following steps until the new population is 

complete.  

a) Selection: Select two parent chromosomes from a population according to their fitness.   

b) Crossover: With a crossover probability crossover the parents to form a new 

offspring (children). If no crossover was performed, offspring is an exact copy of 

parents.   

c) Mutation: With a mutation probability mutate new offspring at each locus.  

d) Place new offspring in a new population.  

4) Use new generated population for a further run of algorithm.  

5) If the end condition is satisfied, stop, and return the best solution in current 

population.  

6) Go to step 2  

   

The three most important aspects of using genetic algorithms are:  

 

1) Definition of the objective function. 

2) Definition and implementation of the genetic representation.  

3) Definition and implementation of the genetic operators. Once these three have been 

defined, the generic algorithm should work fairly well. 

 
In algorithm 1, we choose x1 and x2 arbitrarily, then use crossover operator to reach an optimal x1,2 

and replace it for x1. Then, we randomly select x2 again. Finally this process is continued until a 

fairly accurate approximation to the answer is achieved for linear equations Ax=b. But in the 

improved algorithm, instead of x1 and x2 and instead of the original population from two-parent, 

m-parent is chosen. (Note in the allocate names, x
1, x

2,..., x
m, m is the number of columns of 

matrix A).  

 

The crossover operator performed on the initial population generates vectors, x1,2,..., xm-1,m  . This 

process is repeatedly performed on the newly generated vectors until a single vector x
1,2,3,…,m

 as 
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an approximate initial solution is obtained. This is now replaced by x1 also we randomly select  

x
2
,..., x

m
 again for second population and the algorithm is repeated again and again until a close 

solution is obtained. The following table shows how the new vectors are generated. For detail 

refer to the algorithm 2. 

 
    x

1
 

   x
1,2 x

2 
  x

1,2,3 x
2,3 x

3 
  x

2,3,4 … ... 
x

1,2,3,...,m … … x
m-1,m x

m 
 

Now the algorithm 1 is improved in order to increase the convergence speed.  

 

The Algorithm 2 

1) Let x
1
 be an arbitrary vector and ε the error tolerance and i=1. 

2) Calculate r
1
=Ax

1
−b. 

3) Generate an arbitrary vector , x
2
,…, x

m
  such that  r

i
−r

j
 ≠ 0 , )( ji ≠ و   mji ,...,1, = . 

4) Calculate the  

2

2

1

11 ),(

kk

kkk

k

rr

rrr
C

−

−
=

+

++

, for 1,...,2, −= mik  . 

5) Calculate the new  

x
k,k+1

= Ck x
k
+(1-Ck) x

k+1 and  rk,k+1
= Ck r

k
+(1-Ck) r

k+1  vectors,  for 1,..., −= mik . 

6)
11 ++ = kkk

xx
,

, for k= i,…,n-1, and 1+= ii . 

7) If i=n-1, then      
mm

xx
,11 −=  and  

mmrr ,11 −=  else go to 4. 

8) If   ε<2

1
r  then go to 9, else go to 3. 

9) The approximate solution is x1. 

10) End of algorithm. 

 

4. NUMERICAL EXPERIMENTS  

 
In this section, we compare algorithm 1 and algorithm 2. Also, we use the different examples and 

review speed of the algorithm and we show some examples in the summary table and an example 

to bring more detail.  

 

In the examples, the condition number of the matrices A are chosen rather small (The coefficient 

matrices are well-conditioned). 

 

The following table (table1) compares the number of iterations by the two algorithms.  

Figure 1 shows that for matrix A1 with the condition number 80.903 and spectral radius 15.7009, 

the algorithm 1 converges after 136720 iterations while the number of iterations in the improved 

algorithm (algorithm 2) is 16129. This is a notable reduction. 
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Table1. The number of iterations. 

 

No. of  iter. 

algorithm 2 

No. of iter. 

algorithm1 
Tol. Dim. Matrix 

16129  136720 10
-3

 2015×  A1 

1812  10691  10
-3

 1520 ×  A2 

8285  52273 10-3 2520 ×  A3 

279 665 10
-3

 2025×  A4
 

22920 119041 10-3 
3025×  A5 

349 805 10-3 2530 ×  A6 

436 1228 10
-3

 3035×  A7 

500 1390 10-3 3540×  A8 

 
 

 
Figure 1. Speed of convergence of the Algorithm 1 and Algorithm 2 on the A1 matrix. 
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5. CONCLUSION 

 
In this paper, for solving systems of linear equations an improved algorithm  is presented. In 

contradiction to other iterative methods (Jacobi, Gauss-Seidel, conjugate gradient and even 

Gauss-elimination methods), this method has not any limitations.  

 

Genetic algorithm enhances an appropriate response to eliminate restrictions and is a simple 

method for obtaining the solution. As the examples show, the number of iterations in algorithm 2 

is incredibly reduced.  The merit of the algorithm is its simplicity to use specially for non-square 

systems and to extend to large systems of equations by incorporating parallel computing. 

 

 REFERENCES 

 
[1] Hageman L. A. & Joung D. M., (1981) Applied Iterative Methods, Computer Science and Applied 

Mathematics, Academic Press. 

[2] Hestenes M.R. & Stiefel,E. (1954) Methods of conjugate gradients for solving linear systems; J. Res. 

Natl. Bur. Stand. 49, 409- 436,  . 

[3] Hoppe T., (2006) Optimization of Genetic Algorithms, Drexel University,Research Paper. 

[4] Koza J. R., Bennett H. B., Andre D., & Keane M. A., (1999) Genetic programming III: Drawinian 

Invention and Problem Solving, Morgan Kaufmann Publishers. 

[5] Lanczos C., (1952) Solution of systems of linear equations by minimized iterations, J Res. Nat. Bur. 

Standards, 49, 33-53. 

[6] Michalewicz &  Zbeigniew, (1996) Genetic algorithms + Data Structures = Evolution Program, 

Springer – Verlog, Thirst edition. 

[7] Mitchell & Melanie, (1996)  An Introduction to Genetic Algorithms, Cambridge, MA:The MIT Press. 

[8] Molnárka G. & Miletic, (2004) A Genetic Algorithm for Solving General System of Equations, 

Department of Mathematics, Széchenyi István University, Győr, Hungary. 

[9] Molnárka G. & Török B. (1996)  Residual Elimination Algorithm for Solving Linear Equations and 

Application to Sparse Systems, Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 

Issue 1, Numerical Analysis, Scientific Computing, Computer Science, 485-486. 

[10] Saad  Y. & Schultz M. H. (1986) GMRES: A generalized minimal residual algorithm for solving 

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7,  856-869. 

 

 


