

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

29

OPTICAL BRAILLE TRANSLATOR FOR SINHALA

BRAILLE SYSTEM: PAPER COMMUNICATION TOOL

BETWEEN VISION IMPAIRED AND SIGHTED

PERSONS

T. D. S. H. Perera, and W. K. I. L. Wanniarachchi*

Department of Physics, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
*iwanni@sjp.ac.lk

ABSTRACT

In this paper we proposed a system; Optical Braille Translator (OBT), that identify Sinhala Braille

characters in single sided Braille document and translates to Sinhala language. This system also capable

of identifying Grade1 English Braille characters, numbers, capital letters and some words in Grade 2

English Braille system. Image processing techniques were used to developed the proposed system in

MATLAB environment. The translated text displayed in a word application as the final outcome.

Performance evaluation results reflect that the proposed method can recognize Braille characters and

translated to user selected language either Sinhala or English efficiently, over 99% of accuracy.

KEYWORDS

Braille, Braille Recognition, Image Processing, Optical Recognition, Sinhala

1. INTRODUCTION

According to the thirteenth Census of Population and Housing survey which was conducted on

17th July, 2001 in Sri Lanka, the number of visually impaired people has reached 69,096 [1].

Out of that 35,419 were males and 33,677 were females. Among them 10,947 people out of the

69,096 were totally blind. Therefore, it is necessary to provide support those people with

intelligent systems and technologies to improve communication and interaction with each other

and with non-blind people. The major senses used by visual impaired people are hearing and

touch feelings. The most famous communication system for blind people is the Braille system

which depends on the sense of the touch of a fingertip. Braille is a system that allows visually

impaired people to read through touch using a series of raised dots on special papers which can

only be read using fingers. Braille is not a language and these Braille characters are used to

specify character in any language [2].

Braille coding system made up of different type of characters which are also called “cells”. Each

Braille character or a “cell” is made up of six dot positions arranged as two columns of three

dots to form a rectangular shape. A dot may be raised at any of these six positions to form sixty-

four combinations including the combination which no dots are raised. Positions of these dots

are universally numbered 1 to 3 from top to bottom on the left, and 4 to 6 from top to bottom on

the right [3]. The dimension of a Braille dot, distance between dots in a cell and distance

between cells have been set according to the tactile resolution of a fingertip [3]. The horizontal

and vertical distance between dots in a cell and distance between cells in a word and inter line

distance also specified by the Library of Congress. Here, dot height is approximately 0.02

inches (0.5 mm), the horizontal and vertical spacing between dot centers within a Braille cell is

DOI: 10.5121/ijma.2018.10303

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

30

approximately 0.1 inches (2.5 mm), the blank space between dots on adjacent cells is

approximately 0.15 inches (3.75 mm) horizontally and 0.2 inches (5.0 mm) vertically. A

standard Braille page is 11 inches by 11.5 inches and typically has a maximum of 34 to 40

Braille cells per line and 25 lines per page [4]. The Braille has been adapted to write many

different languages including Sinhala, also it is used for musical and mathematical notation.

Sinhala and English Braille letters are read from left to write.

When complexity of Sinhala Braille is compared with the English Braille, Sinhala Braille

system can be categorizing as a grade 01 Braille system. Because Sinhala Braille having one to

one transcription with Sinhala letters. Rarely two Braille characters are used to represent single

Sinhala letter such as “ඏ, ඐ, ඍ and ඎ”. When the Sinhala Braille system is compared with

the Sinhala language, some characters are missing in the Braille system. For an example, when

the word “අම්මා” is written using Sinhala Braille “⠁⠍⠈⠍⠜” which look likes “අම ් මආ”.

Because character “්ා” is not used in Sinhala Braille system. Therefore, pronunciation sound of

the Sinhala word is used to write that word in the Sinhala Braille system.

However, most people in the society cannot understand Braille. Paper communication between

the visually impaired people and non-blind people have become a problem that need to be

addressed. Therefore, translating Braille into Sinhala or any other languages enable

communication with people in society. In this research work, we developed a Braille translator

system which can translate Braille characters into Sinhala language. The prosed system has been

improved to identify grade1 English Braille characters, numbers, capital letters and some words

in grade 2 English Braille system. An image of a single sided Braille paper is taken as the input

to the system. Evaluation of the performance of the system showed that it can recognize Braille

characters and translating to Sinhala/English language over 99% of accuracy. The developed

system uses simple image processing techniques of low computational power and performs well

over the other published work. In the paper we comprehensively discuss the image processing

methods that we used to develop optical Braille translator (OBT).

2. PREVIOUS WORK

In the literature there are many researches have been carried out for Braille character

recognition based on image processing techniques. In the paper “Smart Braille System

Recognizer”, authors claimed that the developed system can recognize characters in single side

Braille document with 94.39% accuracy. Image acquisition stage, image pre-processing,

modified image segmentation, feature extraction, and character recognition based on image

processing techniques were the main staged of their work. At the image acquisition step authors

used flat-bed scanner to obtain images of single side Braille documents [3]. On their work, J. Li

et.al., optical Braille recognition system used normal scanner to aquire the input Braille

documents’ images. Geometrical corrections were applied in preprosessing stages. Haar wavelet

feature extraction and Support Vector Machine classification techniques were perforemed on

croped sub images of Braille dots for identification. Identified Braille cells were converted to

English language with aid of searching algorithm. Authors claims that the developed method is

in acceptable level for Braille extraction [5]. M. Wajid et. al. developed Braille to Urdu

language translation system based on image processing using MATLAB. After the pre-

processing and segmentation steps,a 3×2 matrix was generated according to the dot pattermn

available in a Braille cell. Here, they used a threshold value where the number of white pixels in

selected region of the Braille cell greater than the threshold then that element in the matrix

represent a Braille dot. Generation of this pattern matrix in terms of 0’s and 1’s was used to link

corresponding letters in Urdu language [6]. L. Wong et. al. proposed a Braille recognition

system based on image processing and probabilistic neural network. The statistics of

performance evaluation of the system shows that the accuracy is 99% [7]. K.P.S.G. Sugirtha et.

al. proposed a method of translating braille code into English language. In their work, simple

https://en.wikipedia.org/wiki/%E2%A0%9C

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

31

flat-bet scanner used to acquire image of the braille documents. Then image pre-processing

steps including expel alignment, gray scaling, thresholding and dilation were performed on the

subjected image. Author claimed that in the segmentation step of their work they considered the

Euclidean distance to evolve new technique to recognize the characters [8]. The research work

carried out by the E. Jacinto Gómez et. al. has clamied thet they have used very unique method

to identify braille characters. In their work they used circle hough transform method to identify

dots in image of the braille document [9]. In the paper “Braille Character Recognition Using

Associtive Memory” authors S. H. Khaled et. al. has translated braille document into English

language and voice. Their resech consisting two main stages, preprocessing stage and

recognition stage. In the second stage Modify Multy-Connect Architecture (MMCA) and

Modify Bidirectional Associative Memory (MBAM) algorithms were implemented. MMCA

algorithm has achived araerage accuracy for correct letter is 98.26%, average correct word was

95.11% and average processing time around 11.5 seconds per page. MBAM algorithm achived

aearage accuracy for correct letters is 91.87%, average accuracy for correct word was 51.26%

and average processing time around 3.4 seconds per page [10].There are very few work

previously done for recognizing Sinhala Braille letters. The research work carried out

translating Sinhala text document into Braille by Soma Chatterjee [11]; the proposed system can

convert MS word-based Unicode Sinhala document to Braille. Recently in 2016, N.M.T De

Silva et. al. proposed a system to convert Braille to Sinhala characters. On their work, K-nearest

neighbor classification method was used for identification of Braille characters. The outcome

can implement Unicode mapping for 52 Sinhala characters and 10 numbers. The test results

reflected that the developed system could translate Braille characters to Sinhala language with

91.4% accuracy [12].

3. METHOD

This research work is based on image processing techniques where computer algorithms

implemented on MATLAB environment. Optical Braille Translator (OBT) is a system that

identify the Braille characters in an image of a one side Braille document and translate them into

corresponding natural language. Image can be a scanned image of a Braille document or color

image taken by a camera. Finally, each and every extracted Braille character is translated into

corresponding letter in the Sinhala language. Also, OBT has the ability to identify Grade 01

English Braille characters and some words (e.g. and, for, of, the, with…etc.) in English grade 2

Braille [13]–[15]. Furthermore, the OBT system is capable of finding numbers in both Sinhala

and English Braille document and capital letters in grade 1 English Braille document. Final

output is written to a Microsoft Word document[16]. A simple graphical user interface has been

designed for user interaction. The main steps in the developed OBT system is shown in the

figure 1. Each of the step according to the system flow chart in figure 1 is discussed

comprehensively in the following sections.

Figure 1: Flow chart of the developed OBT system

Image

Acquisition

Pre-

Processing
Segmentation

Character

Extraction

Braille Character

Recognition

Select Image

Select Language

Braille Character

Regeneration

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

32

3.1 Image Acquisition

Image acquisition is the manual step of this system and the accuracy and time taken to translate

the Braille document into a natural language mainly depend on the quality of the acquired

image. In this research, two different types of methods were used to get an image of a Braille

document: A hand written Braille document (a Braille document where Braille dots were

written by pen) was scanned by a normal scanner, and an image of a Braille document was

generated by a computer. Figures 2 (a), and 2(b) show the selected images for the further steps

in this system. Here, the input image is a true color RGB image (24-bit image).

3.2 Pre-Processing

Pre-processing step consists of several sub steps such as gray image processing, binary image

generation, angle correction and image resizing functions which are performed on the input

image. The figure 3 shows the sub steps of the pre-processing step. The acquired image in the

initial step is input to the image pre-processing routing. Then, the color image is converted into

grayscale image. Image dilation, erosion, and image subtraction were performed before

converting gray image into a binary image[17]. In order to obtain the edges of the image, image

dilation and erosion operations were carried out. Here, morphological disk of radius 1 structural

element [0 1 0;1 1 1; 0 1 0] was used for dilation and erosion operation[18]. Finally, edges of

the foreground objects were successfully obtained by subtracting dilated image from the eroded

image. Then the global threshold was considered to obtain the binary image. For the image

enhancement, holes filling and noise reduction techniques were used. Figure 4. (a) shows the

binary image obtained according to the global threshold which consists of noises whereas figure

4. (b) shows the hole filled binary image. In order to reduce the noises from the image,

MATLAB function “bwareaopen” was used. Here, we removed objects that have fewer

than 10 connected pixels and obtained the noise removed binary image (figure 4. (c)). Before

proceed to the segmentation process, correct alignment of the Braille characters was processed.

Figure 5 shows results of the angle correction obtained from the Radon transformation [19]. In

order to decrease the computation time for further the processing, the correct alignment image is

resized to lower resolution which consists of 480 rows while keeping original image aspect

ratio.

Figure 2: (a) Scanned image of a hand-

written braille document (b) Computer

generated braille document

(a) (b)

Figure 3: Sub steps of the image pre-processing

Input image

(24 bit image)
Gray image Binary image

Image

Enhancement
Angle

Correction
Image

Resizing

• Dilation

• Erosion

• Image Subtract

• Gray Threshold

• Holes Filling

• Noise Reduction

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

33

3.3 Braille Character Segmentation

Summation of pixels’ value took along the rows and columns of the noise removed binary

image was taken into account in order to identify Braille character cells. Figure 6. (a) and figure

6. (b) show row sum and the column sum of an input binary image. Row summation (Figure 6.

(a)) was used to identify the average vertical distance between two rows. An example is

highlighted in red circle and average vertical distance between two Braille dots in a cell (shown

in arrows). According to the row summation shown in figure 6 (a), the smaller zero count

vertical gaps reflect the separation of two Braille dots in a given cell while the larger zero count

vertical gaps reflect the separation of adjacent character rows. Similarly, in column sum (figure

6. (b)) larger horizontal zero count gaps represent the separation between Braille character

columns while smaller zero count gaps reflect the Braille dot separation in a given cell.

Accordingly, a computer algorithm was developed to find the approximate vertical and

horizontal position of characters automatically (see figure 7). At the end of the segmentation

step, there are two sets of data points, one represents the segmentation along the vertical

direction while other represents the segmentation points along the horizontal direction.

Figure 5: Angle correction using Radon

transformation. Initial image (left) and angle

corrected resized image (right)

(a) (b)

(c)

Figure 4: Image enhancement (a) binary image,

(b) Hole filled binary image (c) noise reduced

binary image

(a) Sum of pixels’ value along rows (b) Sum of pixels’ value along columns

H
ei

g
h

t
o

f
th

e
im

ag
e

Pixels sum Width of the image

Figure 6: Stair graph of row sum and column sum

Horizontal

distance

between dots

in a cell

Horizontal distance

between cells

Vertical distance between dots in a cell

Vertical distance between cells

P
ix

el
s

su
m

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

34

lx = length of the image by pixels (number of columns)

yi = horizontal projection of the pixels (summation along the rows of pixels)

ly = height of the image by pixels (number of rows)

xi = vertical projection of the pixels (summation along the columns of pixels)

(i,j = vertical and horizontal coordination of the pixels)

3.4 Character Extraction

In the Braille character segmentation step, the upper and lower row separation positions and the

upper and lower column separation positions were obtained. In the character extraction, first

rows were separated from the noise removed binary image according to the row separation

positions. Then the Braille characters were extracted by cropping the row character images as

per the values obtained by the column separation position. The extracted characters were resized

to 21×16 matrix binary images. At the end of this process, the Braille character cells were

successfully extracted from the initial RGB input image.

3.5. Braille Character Regeneration

In order to increase the accuracy of Braille character recognition, we regenerated the Braille cell

image according to the extracted Braille character images. Figure 8. (a) shows the extracted

21×16 matrix binary image of a Braille character. For the regeneration process, the column

width was divided into three columns which have width of 5, 6 and 5 pixels while row height

divided in to 5, 3, 5, 3 and 5 pixels. The figure 8. (b) graphically illustrates the separate region

in the Braille character for the regeneration process. Here, a single Braille dot in a cell is

represented by a 5×5 matrix element. Accordingly, there are six 5×5 matrix regions (region B)

as shown in the figure 8. (c). In practical cases, we have observed that the Braille dots may not

centered in these 5×5 matrix regions as shown in figure 8. (b). Hence, identification of Braille

characters by a computer system may be time consuming without regenerating the Braille cell

properly. The developed algorithm for regeneration of Braille characters is shown in figure 9.

Here, the number of white

Noise removed

binary image

Row /Column

sum

Row positions/Column positions of

non-zero elements in Row/Col sum

Find the gap between adjacent non-

zero elements in Row/Col sum

Calculate the mean gap size of the

adjacent gap size >1 elements

Find the upper and lower Row/Col positions

where the gap size > mean gap size

Figure 7: Main steps of the Braille character segmentation

process

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

35

pixels in 5×8 area (shown in the figure 8. (c) region A) which covers 5×5 matrix (region B), is

taken in to account when deciding the Braille dot formation. If the number of white pixel in

region A of any region B sites, then corresponding region B site converted to white color; else

converted to black color. The final output of Braille character regeneration of a tested image is

shown in figure 8 (d) which reflects the enhanced quality image for character identification.

3.6. Braille Character Recognition

In this step, binary to decimal equivalent number is incorporated for identification of each

Braille character. As shown in figure 10., value of each midpoint of the Braille dot regions in

the regenerated Braille cell were used to generate a 6-bit binary number. The binary equivalent

decimal number can be obtained from D5×25+D4×24+D3×23+D2×22+D1×21+D0×20 arithmetic

operation. The middle point of the Braille dot location one was taken as the least significant bit

and the middle point of the Braille dot location six assigned to the most significant bit. The

developed computer program takes the value of each midpoint located at (3,3), (11,3), (19,3),

(3,14), (11,14) and (19,14) in the regenerated Braille character image to make digital

representation of the Braille character where this digital representation 6-bit binary number

identical to corresponding Braille character. The figure 11. indicates binary equivalent decimal

numbers as a 2D array for a given input image consist of 32 (4×8) Braille characters. Hence,

corresponding binary to decimal equivalent number can relate to characters in natural

languages. The Sinhala and Grade I English letters and some of the Grade II English words with

binary equivalent decimal number for corresponding Braille character are shown in the figure

12. Here, we used this database to decode the Braille characters in the proposed system.

The binary equivalent decimal numbers corresponding to Braille characters are shown in top of

each cell in figure 12. The corresponding Sinhala and English letters (some words in Grade II

English) are shown in black color. Green color letters (strings) represents the corresponding

English keyboard characters in “AA Amali” font type which is discussed in section 3.7.

Extracted Braille

Character

Define region A

(5 ꓫ 8 pixels)

Calculate area of white

pixels in region A

Define region B

(5 ꓫ 5 pixels)

 If Area of

white

pixels >

3.0

True

False

Convert all the

pixels in region

B into white

Convert all the

pixels in

region B into

black

Figure 9: Braille character regeneration

algorithm

Figure 8: Braille character

regeneration process

 16 pixels 5 pixels 6 pixels

3 pixels

Region B

Region A

(a) Extracted

Character

(b) Row/Col

division

(c) 5x5 Region B

sites 5x8 Region A

(d) Regenerated

braille character

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

36

Figure 10: 6-bit binary number

relevant to Braille character

20 21 22 23 24 25

D5 D4 D3 D2 D1 D0

Figure 11: Binary equivalent decimal

number array for a test image consists of 32

Braille characters

0

space

1

අ, a

w

2

,

3

බ, b

n

4

් , ’

x

5

ක, k

l

6

;

7

ල, l

,

8

 ්

a

9

ච, c

p

10

ඉ, i

b

11

ෆ, f

*

12

ඓ, /

ft

13

ම, m

u

 14

ස, s

i

15

ප, p

m

16

17

එ, e

t

18

ඤ, :

[

19

හ, h

y

20

ඊ, in

B

21

ඕ, o

Ts

22

!

23

ර, r

r

24

භ

N

25

ද, d

o

26

ජ, j

c

27

ග, g

.

28

ආ, ar

wd

29

න, n

k

30

ත, t

;

31

ඥ, q

{

32

@

33

ඡ, ch

P

34

ඒ, en

ta

35

ඝ, gh

>

36

_

37

උ, u

W

38

“

39

ව, v

j

40

ඛ

L

41

ෂ, sh

I

42

ඖ,ow

T!

43

ඩ, ed

v

44

ඞ,ing

X

45

ඔ, x

T

46

ධ, the

O

47

ශ,and

Y

48

49

ඵ,wh

M

50

.

51

ඌ,ou

W!

52

ඣ, ”

CO

53

ණ, z

K

54

()

55

ඇ, of

we

56

ළ

<

57

ථ, th

:

58

ඨ, w

G

59

ඈ, er

wE

60

61

ය, y

h

62

ට,with

g

63

ඪ, for

V

Figure 12: OBT Database for Decoding Braille Characters

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

37

The proposed optical Braille translator system is also capable of identifying numbers. In Sinhala

Braille system as well as in English Braille system “⠼” Braille character (binary equivalent

decimal number is 60) is used to represent numbers. In this work, the corresponding character

“#” was assigned to represent “⠼”. If a space followed by #, then it represents the character #. If

a character(s) followed by the #, then it represents a number. The proposed system first converts

Braille characters in to user define language either Sinhala (see section 3.7 for more detail) or

English. Then the developed algorithm searches for “#” character by scanning identified

characters. When character “#” found, then searches for “ ” (space) in the array and all the

characters in between # and “ ” converts to the relevant number. Then the identified numbers

replaced to the correct position in the original character array. This process repeats until the end

of array is reached. In the figure 14, steps for the number identification is visualized. In grade I

English Braille uses “⢀” Braille character (binary equivalent decimal number is 32) to represent

capital letters. This Braille character is identified as “@” sign in our proposed system. Any

character followed by “@” converted to capital letters and the capital letter searching function is

developed similar to the number identification process shown in figure 13. This subroutine is

applied for Braille to English translation only.

3.7. Braille to Sinhala Translation

The OBT developed in this work capable of translating Sinhala Braille document to Sinhala

letters in “AA Amali” font [20] in a Microsoft word document. After obtaining the binary

equivalent decimal number array, corresponds to the input Braille document, identification of

natural language character is proceeded. For the identification process, the matching character to

the decimal number is selected as per the database shown in figure 12. But when converting to

Sinhala language the relevant English keyboard character or string in “AA Amali” font type is

used in MATLAB environment according to the database based on figure 12. As an example, if

the obtained binary equivalent decimal number array is [28, 25, 23, 61], then the system stores

the corresponding text array as [wd, o, r, h] in MATLAB environment. Here, we used English

(b) 0-9 numbers in Braille

characters and corresponding

English letter with binary

equivalent decimal number in

green color

(a) Searching for numbers

Searching for #

a b c d # d f e f g # h i

Searching for “ ”

a b c d # d f e f g # h i

a b c d # d f e f g # h i

d f

Replace identified numbers into character array

a b c d 4 6 e f g # h i

Figure 13: Number identification process in Braille to English translation

4 6

Number identification

subroutine

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

38

keyboard letter/string representation of “AA Amali” font type when translating decimal number

to Sinhala letter in MATLAB environment. Then the text array sent to word application where it

displays the text array as “ආදරය” in selected font type “AA Amali”. Before sending the text

array into word application, number identification subroutine is called to identify the numbers in

the text array. As illustrated in the figure 13. (a), number identification first searches for

character “#”. Any character followed by #, is converted to the relevant number. In this case, the

text array consists of English keyboard letters/strings of “AA Amali” font type. Hence, the

backward relation has considered to identify the numbers. In “AA Amali” font use following

characters; [c, w, n, p, o, t, *, ., y, b] to represent 0-9 numbers respectively. The figure 14. (a)

shows the MATLAB code used for sending text array from MATLAB environment to word

application. Figure 14. (b) shows an example where the text array keeps corresponding English

keyboard letters of “AA Amali” font type in MATLAB environment. After sending it to word

application, the text array display in Sinhala letters (in AA Amali font type) by successfully

completing the Braille to Sinhala translation.

4. RESULTS AND DISCUSSION

In this section, we present results obtained by the developed Optical Braille Translator

system. Many researches claimed that their work on Braille character recognition using

scanned Braille documents were success [4], [5], [21]–[23]. However, in our case it

turned out that the scanned image of an available Braille documents cannot processed

further due to less intensity differentiable of the Braille dots with respect to background.

Figure 14: Sinhala translated “text_array” in MATLAB Environment

(a) MATLAB code for sending

text_array to MS Word

(b) An example of “text_array”

corresponds to the Braille characters

(b) (a) (c)

Figure 15: Scanned images of Braille documents (a) Our work (b) Scan image in Ref [24] and

(c) Scan image in Ref [25]

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

39

The first two images in figure 15(a) acquired by scanning available single sided Braille

documents. As Shown above in our work we were unable to acquire detail images of the Braille

documents by scanning method. Hence, we initiated with scanned Braille documents where

Braille dots were written by pen and computer-generated Braille documents (screenshots of

word documents) for the image acquisition (see figure 2). Then the developed method was

tested with many scanned images found in internet (figure 15 (b) and (c)), where the OBT

system successfully extracted the Braille characters. The developed OBT system worked over

99% accuracy by regenerating 319/322 and 220/220 Braille characters correctly in figure 15(b)

and figure 15(c) respectively.

The performance of the developed OBT system was tested with different input images.

Summary of the performance evaluation is presented in the table 01. Scanned handwritten and

computer-generated Braille documents were tested in different resolution and different number

of Braille characters. Most of the time, in both types the developed system successfully

translated Braille characters to Sinhala or English language with 100% accuracy. The tests were

executed on Intel Core i7-7500U CPU @ 2.70GHz – 2.90GHz, 8GB RAM, Windows based

machine. Each tested image in the table 01 executed 10 times.

Image size

Resolution

Size (kB)

No. of

Braille

characters

Handwritte

n

/Computer

generated

Language

Selection

No. of

characters

correctly

identified

Average time

taken to

identify

characters

(seconds)

Average

time taken

to write

characters

into word

file

(seconds)

Accuracy

(%)

371×450

96dpi

21.5 kB

27
Com.gen.

Sinhala 27 7.16 1.06 100

594×302

96dpi

22.4 kB

50
Com.gen.

Sinhala 50 12.31 1.08 100

1160×1406

300dpi

215 kB

27
Com.gen.

Sinhala 27 17.18 1.07 100

3306×4676

96dpi

525 kB

63
Handwrit.

Sinhala 63 17.71 1.06 100

1856×944

300dpi

232 kB

50
Com.gen.

Sinhala 50 12.84 1.13 100

606×194

96dpi

15.9 kB

26
Com.gen.

English 26 7.35 1.10 100

1894 × 606

300dpi

114 kB

26
Com.gen.

English 26 8.05 1.13 100

2480×3507

300dpi

230 kB

46
Handwrit.

English 46 14.19 1.07 100

Table 1: Performance of the Optical Braille Translator System

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

40

Next, Braille to Sinhala language translation process is discussed. The input Sinhala Braille

image (consists of 66 Braille characters) is shown in figure 16(a). The last four Braille

characters indicate a four-digit number as they follow “⠼” Braille character at the beginning of

the last row. The proposed OBT system successfully extracted all 66 Braille characters and

obtained the binary equivalent decimal number array which is shown in figure 16(b). In this

work our main objective was to translate Sinhala Braille document to Sinhala language and

display the identified Sinhala characters on a word application. Here, we used “AA Amali”

Sinhala font to write text in word application. Hence, when relating obtained decimal values to

Sinhala letters, English keyboard letters of “AA Amali” font was used in MATLAB

environment. The figure 13 (section 3.7) shows database used for this research work where the

English keyboard letters of “AA Amali” font displayed in green color.

47 8 23 10 0 26 61 39 23 8 46 29 15 37 23

0 39 10 47 8 39 39 10 25 8 61 28 7 61 0

24 37 30 10 5 0 39 10 25 8 61 28 0 1 46

61 29 28 4 47 61 0 0 39 23 8 41 61 0 0

60 3 26 1 19 0 0 0 0 0 0 0 0 0 0

(a) Input Sinhala Braille Image

(b) Corresponding decimal numbers

Y a r b c h j r a O k m W r

 j b Y a j j b o a h wd , h

N W ; b l j b o a h wd w O

h k wd x Y h j r a I h

n c w y

ශ ් ර ඉ ජ ය ව ර ් ධ න ප උ ර

 ව ඉ ශ ් ව ව ඉ ද ් ය ආ ල ය

භ උ ත ඉ ක ව ඉ ද ් ය ආ අ ධ

ය න ආ ් ශ ය ව ර ් ෂ ය

 2 0 1 8

(c) Text array corresponding to decimal numbers in MATLAB environment

(d) Final output text array MATLAB environment

Figure 16: Sinhala Braille to Sinhala Language Translation in MATLAB

environment

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

41

Accordingly, the figure 16(c) shows the text array corresponds to decimal values. Then the

number identification subroutine was called to identify numbers in the text array. This

subroutine converted the characters in between “#” and next immediate “ ” (space) to numbers.

In “AA Amali” font use following characters; [c, w, n, p, o, t, *, ., y, b] to represent 0-9 numbers

respectively. Accordingly, the output text array is shown in figure 17(d). Then this text array

sent to word application by selecting “AA Amali” as the font type. The word application

displayed the text array in Sinhala langue correctly as “ශ රඉ ජයවර්ධනපුඋර වඉශ වවඉද්යආලය

භඋතඉක වඉද්යආ අධයනආ ශය වර්ෂය 2018”. Since some characters not present in the Sinhala

Braille system with respect to Sinhala language, pronunciation sound of the Sinhala word is

used to write word in the Sinhala Braille system as in above case.

In order to interact with users, a simple graphical user interface (GUI) was developed for the

proposed OBT system.

Figure 17: OBT GUI

Here, the user can select image of a Braille document in .jpg,.bmp and .png supporting formats.

The selected image will be visualized on the GUI itself. The current version supports Sinhala

application.

5. CONCLUSIONS

The developed Optical Braille Translator system is capable of translating Sinhala Braille to

Sinhala language or Grade I English Braille to English language over 99% accurately. Further,

OBT successfully recognized numbers in both Sinhala Braille and Grade I English Braille.

Some characters/words in Grade II English Braille and capital letters in both Grade I and Grade

II English Braille can be translated as well. In conclusion OBT system was successfully

implemented to facilitate communication between visually impaired and sighted persons.

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

42

ACKNOWLEDGEMENT

The authors would like to thank the University of Sri Jayewardenepura (Grant No

ASP/01/RE/SCI/2017/13) for the funding support and to Mr. Chanaka Gunarathna, Lecturer,

Student Association of Blind, Faculty of Humanities and Social Sciences, University of Sri

Jayewardenepura.

REFERENCES

[1] Department of Census and Statistics-Sri Lanka, “Characteristics of the disabled persons census of

population and housing 2001,” 2001. [Online]. Available:

http://www.statistics.gov.lk/pophousat/des_chra.asp. [Accessed: 02-Mar-2016].

[2] A. M. S. Al-salman, A. El-zaart, Y. Al-suhaibani, K. Al-hokail, and A. Gumaei, “Designing

Braille Copier Based on Image Processing Techniques,” Int. J. Soft Comput. Eng. ISSN, vol. 4,

no. 5, pp. 62–69, 2014.

[3] A. Mousa, H. Hiary, R. Alomari, and L. Alnemer, “Smart Braille System Recognizer,” IJCSI Int.

J. Comput. Sci. Issues, vol. 10, no. 6, pp. 52–60, 2013.

[4] S. D. Al-Shamma and S. Fathi, “Arabic braille recognition and transcription into text and voice,”

2010 5th Cairo Int. Biomed. Eng. Conf. CIBEC 2010, pp. 227–231, 2010.

[5] J. Li, X. Yan, and D. Zhang, “Optical Braille recognition with haar wavelet features and Support-

Vector Machine,” 2010 Int. Conf. Comput. Mechatronics, Control Electron. Eng. C. 2010, vol. 5,

pp. 64–67, 2010.

[6] M. Wajid, M. Waris Abdullah, and O. Farooq, “Imprinted Braille-character pattern recognition

using image processing techniques,” 2011 Int. Conf. Image Inf. Process., no. Iciip, pp. 1–5, 2011.

[7] L. Wong, W. Abdulla, and S. Hussmann, “A software algorithm prototype for optical recognition

of embossed braille,” Proc. - Int. Conf. Pattern Recognit., vol. 2, pp. 586–589, 2004.

[8] K. P. S. G. Sugirtha and Dhanalakshmi.M, Transliteration of Braille Code into Text in English

Language, vol. 2, no. 2. Springer Singapore, 2018.

[9] E. Jacinto Gómez, H. Montiel Ariza, and F. H. Martínez Sarmiento, “There are very few work

previously done for recognizing Sinhala Braille letters.,” Eighth Int. Conf. Graph. Image Process.

(ICGIP 2016), vol. 10225, no. Icgip 2016, p. 102250N, 2017.

[10] S. H. Khaled and H. S. Abbas, “Braille Character Recognition Using Associtive Memory,” Int. J.

Eng. Res. Adv. Technol., no. 1, pp. 31–45, 2017.

[11] S. Chatterjee, “Creation of an IT Enabled Sinhala to Braille Conversion Engine,” Int. J. Comput.

Appl. Eng. Sci., vol. IV, no. Ii, pp. 17–21, 2014.

[12] N. M. T. De Silva and S. R. Liyanage, “Sinhala Braille Translator,” Int. J. Trend Res. Dev., vol. 3,

no. 4, pp. 380–384, 2016.

[13] BANA MEMBERS, ENGLISH BRAILLE AMERICAN EDITION. Louisville: American Printing

House for the Blind., 1994.

[14] Braille Authority of North America, “Unified English Braille,” 2016. [Online]. Available:

http://www.brailleauthority.org/ueb.html. [Accessed: 21-Apr-2016].

[15] C. Simpson, The Rules of Unified English Braille Edited by, 2nd ed. California: International

Council on English Braille, 2013.

[16] MathWorks, “Create COM server - MATLAB actxserver - MathWorks India,” 2016. [Online].

Available:

http://in.mathworks.com/help/matlab/ref/actxserver.html?searchHighlight=actxserver&s_tid=doc

_srchtitle&requestedDomain=in.mathworks.com. [Accessed: 16-May-2016].

[17] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing. Delhi: Pearson

Education (Singapore) Pte. Ltd, 2004.

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.1/2/3, June 2018

43

[18] MathWorks, “Image Processing Toolbox Documentation - MathWorks India,” 2016. [Online].

Available: http://in.mathworks.com/help/images/functionlist.html. [Accessed: 02-Mar-2016].

[19] MathWorks, “Radon transform - MATLAB radon - MathWorks India,” 2016. [Online].

Available: https://in.mathworks.com/help/images/ref/radon.html. [Accessed: 02-Mar-2016].

[20] Sinhalese Font, “Aa Amali Font Download ? Free Sinhala Font,” 2016. [Online]. Available:

http://www.sinhalesefont.com/download.php?id=736725. [Accessed: 21-Apr-2016].

[21] C. N. R. Kumar and S. Srinath, “A novel and efficient algorithm to recognize any universally

accepted braille characters: A case with kannada language,” Proc. - 2014 5th Int. Conf. Signal

Image Process. ICSIP 2014, pp. 292–296, 2014.

[22] G. Morgavi and M. Morando, “A neural network hybrid model for an optical braille recognitor,”

Int. Conf. Signal, Speech …, no. January 2002, 2002.

[23] A. Antonacopoulos and D. Bridson, “A robust Braille recognition system,” Doc. Anal. Syst. VI,

pp. 533–545, 2004.

[24] Wikipedia, “Bharati Braille,” 2016. [Online]. Available: http://www.bpaindia.org/VIB Chapter-

VI.pdf. [Accessed: 02-Mar-2016].

[25] Wiki 2, “Russian Braille chart - Russian Braille — Wikipedia Republished // WIKI 2,” 2016.

[Online]. Available: https://wiki2.org/en/Russian_Braille#/media/File:Russian_Braille_chart.jpg.

[Accessed: 02-Mar-2016].

Authors

Dr. W. K. I. L. Wanniarachchi is working as a Senior Lecturer in the Department of Physics,

Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka. He is a graduate in

Bachelor of Science (Physics). He received his PhD in Physics from the Wayne State

University, MI, USA. His research interests are on Computer Vision and Image Processing,

Embedded Systems and Electronic Structure. Email: iwanni@sjp.ac.lk

T. D. S. H. Perera is working as a teaching assistant in the Department of Physics, Faculty of

Applied Sciences, University of Sri Jayewardenepura, Sri Lanka. He received B.Sc. degree in

Physics from the University of Sri Jayewardenepura, Sri Lanka in 2017. His research interest

includes Image Processing and Optics. Email: sankaharshana@gmail.com

