
The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.6, December 2018

DOI: 10.5121/ijma.2018.10606 59

THE IMPACT OF USING VISUAL PROGRAMMING

ENVIRONMENT TOWARDS COLLEGE STUDENTS

ACHIEVEMENT AND UNDERSTANDING IN

PROGRAMMING

Azniah Ismail, Siti Sakinah Mohd Yusof and
Nor Hasbiah Ubaidullah

Computing Department, Faculty of Arts, Computing and Creative Industry,

UniversitiPendidikan Sultan Idris, Perak, Malaysia

ABSTRACT

This study aimed to identify the impact of using a visual programming environment on college students’
achievement and understanding when learning computer programming. In this quasi-experimental study,
91 students were divided systematically into an experimental group (53 students) and a control group (38
students). The experimental group were exposed with a visual programming environment while the control
group were using an ordinary text-based programming environment. Data was collected using pre-test and
post-test, then analysed using paired t-test, independent sample t-test and thematic content analysis. A
significant increase in the students’ achievement was recorded during the paired t-test for both groups.
However, there is no significant difference in the students’ achievement between the groups. Surprisingly,
the thematic analysis showed that students’ understanding in the experimental group were improved
relatively better than in the control group. Thus, we conclude that visual programming environment have
better impact to the students’ understanding.

KEYWORDS

Visual Programming Environment, Learning Computer Programming, Achievement, Understanding,
College Students

1. INTRODUCTION

Programming is an essential skill that must be mastered by anyone interested in studying
computer science [1]. According to Lye and Koh [2], programming is more than just coding
because it exposes students to problem-solving using computer science concepts like abstraction
and decomposition. Problem solving is a part of cognitive skills that is required among students.
In Miliszewska and Tan [3], complex cognitive skills such as planning, problem solving and
analytical thinking are said to play strong roles when learning computer programming. The skills
will be very useful when it comes to analyzing the scenario of a problem given and eventually
will help students to come up with good solutions. During the process of learning, students are
required to understand problems given, to design some possible solutions, to build the codes and
implement them.

According to Sarkawi and Bakary [4], previous literature on learning programming was quite
scarce but there were some research emphasized on the importance of mental model in
programming. Hence, another complex cognitive skill required when learning programming is the
algorithmic thinking skill. Algorithmic thinking is a key ability in informatics that can be
developed independently from learning programming [5]. By having good algorithmic thinking,

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.6, December 2018

60

students can be expected to be able to visualize the problems and their possible solutions with
some algorithmic concepts such as correctness, termination, determinism and parallelism.
Algorithmic thinking is a synonym to the computational thinking or programming thinking [6].

1.1. PROBLEMS ASSOCIATED WITH LEARNING COMPUTER PROGRAMMING

Learning computer programming has commonly been associated with conceptual
misunderstanding problems that appear to be frequently discussed among many researchers as in
Sarkawi and Bakary [4], Kohlit [7], Tie and Umar [8], Ismail et al. [9], and Abdullah and Abbas
[10], especially in the computer science education. Ismail et al. [1] emphasized that the problems
may have resided in knowing syntax or understanding of concepts but most definitely in the
program planning. For example, students may know and understand a syntax but have problems
to apply it in their program solutions.

Table 1. Problems in computer programming found in literature

Problem solving phase Implementation phase
Analysis Solution (general) Solution (detail)

Lack of problem-solving skills
Lack of analytical thinking skills

Lack of logical and reasoning
skills

Lack of programming planning
Lack of programming

conceptual understanding
Lack of algorithmic skills

Inefficient tools used in
representing problem solution

Do not understand and unable to
explain semantics actions in a

program
Ineffective design and testing

problem solution

Do not understand and master
the programming syntax and

functions
Unable to apply correct rules of

syntax when programming
Unable to use semantic

knowledge of programming to
write program

Ineffective code and testing
program to solve novel problem

(Source: Ismail et al. [1])

Ismail et al. [1] divided the problems they found from the literature into problem solving phase
and implementation phase as in Table 1. They conducted further investigation and managed to
identify four main problems as in Table 2. They then suggested tackling the critical part of the
programming process which starts at the analysis of the problem solving as it will affect the next
phase of the programming sequence.

Table 2. Four main problems with learning computer programming in [1]

Problem Type
1. Lack of skills in analysing problems.
2. Ineffective use of problem representation techniques for problem solving.
3. Ineffective use of teaching strategies for problem solving and coding.
4. Do not understand and master the programming syntax and constructs.

Without or with slow improvements of the required skills, students will highly likely find
difficulties to solve programming problems they have in hand. Hence, programming becomes
extremely hard and very challenging to many students [7]. Ismail et al. [1] seem to agree and
mentioned further that with programming as the basic skill required of computer programmers, it
may have given negative consequences in the learners’ attitude towards the field. Thus, teachers
or lecturers have to face real challenges in teaching programming and promoting the required
skills [1], [2]. Teaching through conventional method, i.e. traditional lectures in a lecture hall or
a computer lab may be less effective [2], [6], [10].

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.6, December 2018

61

1.2. VISUAL-BASED SOLUTION APPROACHES

Figure 1. A two-level sequential pattern mining in Futschek and Moschitz [15]

We are interested to look for solutions or alternatives that may help teachers or lecturers to
promote the required skills. One of the popular approaches is by introducing tools that develop
games such as in Yau [11], Fronza et al. [12], Chau [13], and Ismail et al. [14]. However, we
would like to perceive the game tools in different view, not as a game but more as a visual way of
looking at the programs. Futschek and Moschitz [15] shared an interesting insight of physical,
tangible object as transition to a virtual programming environment, whilst Shih [16] shared the
use of Blockly Game to help students visualize the sequential pattern in programming (see the
sequential pattern mining method they used in Figure 1). Further discussion on visual
programming framework can be found in Idrees et al. [17].

Figure 2.Programming blocks in Scratch visual programming

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.6, December 2018

62

Figure 3.Scratch visual programming environment

In this article, we discuss the impact of visual-based programming environment on students’
achievement and their understanding, especially when related to sequential, selection, and
iteration in programming. We have chosen Scratch (see Figure 2 and Figure 3) to provide the
visual programming environment at one of colleges in Perak.

2. RESEARCH METHODOLOGY

The methodology that was used in this study is briefly described in this section.

2.1. RESEARCH SCOPE

The study was conducted at a college that offers a Computer Science course to the college
students. One of the topic in this course is programming. The study focused on achievement and
understanding in learning programming when given the visual programming environment (see
Figure 4). The population was the two-year program students which consists of 114 students. The
sample was then reduced to 91 students using their pre-test scores as the primary base for the
selection.

Figure 4.Research scope

2.2. RESEARCH DESIGN

The study follows a quantitative quasi-experimental research design (see Figure 5). Basically,
there were two different groups formed in this study, i.e., one control group and one treatment
group.

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.6, December 2018

63

The following are parts of the study:

i) In general, all students took a pre-test during the initial stage. Based on the pre-test score,
only students with pre-test score equal or less than 65 points will be considered as sample of
the study.

ii) Those selected will be divided into two groups based on their original classes.

iii) The control group used a text-based programming environment whilst the experimental group
was exposed to the use of visual programming environment, i.e. the Scratch

iv) Both groups took a post-test once the teaching and learning process for both groups were
completed.

v) The pre-test and post-test scores for both groups were then compared and tested against the
hypothesis using a t-test. Further qualitative tests using thematic content analysis were also
conducted. All tests required are listed as in Table 3.

Figure 5.Research design

The t-test was chosen because it can be used to measure an increment (or decrement) in the
students’ achievement using the pre-test and the post-test scores. Thematic content analysis were
used to observe improvements in the qualitative data i.e. the students’ answers in both pre-test
and post-test for both treatment and control groups.

Table 3. Data analysis design.

No Independent var. Dependent var. Test name Data required
1 Visual

programming
environment

(a) Achievement Paired T-test Mean score of pre-test and
post-test (quantitative)

(b) Understanding Thematic
content analysis

Student answers in the pre-
test and post-test
(qualitative)

2 Text programming
environment

(a) Achievement Paired T-test Mean score of pre-test and
post-test (quantitative)

(b) Understanding Thematic Student answers in the pre-

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.6, December 2018

64

content analysis test and post-test
(qualitative)

3

(Comparison)

(a) Achievement Compare 1(a)
with 2(a)

Independent sample t-test
on the mean scores of post-
tests

(b) Understanding Compare 1(b)
with 2(b)

Thematic content analysis
results

2.3. RESEARCH INSTRUMENT

Main instruments used to collect data in this study were a set of a pre-test and a post-test. The
description are as follows:

i) Pre-test: a pre-test session was conducted for all 114 students who were taking the Computer

Science course at the college. The pre-test questions contained 6 questions and the structure
was as in Table 4. All questions must be answered within 2 hours.

ii) Post-test: a post-test session for both student groups (the control and the treatment groups)

were conducted after the teaching and learning sessions ended. The structure of the post-test
questions was similar to the pre-test questions. All questions must be answered within 2
hours.

Table 4. The structures of test questions (in similar manner for pre-test and post-test).

No Control structure Number of questions Question No. Solution type
1. Sequential 2 1a Pseudocode

 1b Pseudocode
2. Selection 2 2a Pseudocode

 2b Flowchart
3. Iteration 2 3a Flowchart

 3b C++ Coding

2.4. RESEARCH PROCEDURE

2.4.1. PILOT STUDY

In one semester prior, 50 senior students were selected at the same college (see Table 5) to
undergo a pilot study to ensure the reliability of the pre-test and the post-test questions. High
reliability means high consistency of scores that students receive on the pre-test and the post-test.
The structure of the two tests was similar, both covering similar material and equal in what they
measure, thus it was preferred that students’ scores to be similar. The more comparable the scores
are, the more reliable the test scores are. Therefore, we expected a high consistency of both tests.

Table 5. Descriptive data about the participation during the pilot study.

Group Freq. (N) Percentage (%)

Group 1 50 100

The content validity of both pre-test and post-test was checked by two subject experts at
Universiti Pendidikan Sultan Idris. The tests were then administered with the help from the
Computer Science lecturers at the college. Each test contained six items and must be answered
within two hours. The students were given two hours to answer the pre-test questions followed
with a short break.The post-test was then administered for another two hours.

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.6, December 2018

65

We used Cronbach’s alpha to test the reliability. The analysis results showed that the pre-test had
a reliability coefficient of 0.765 while the post-test had a reliability coefficient of 0.725. Thus,
both tests had high consistency of the cronbach’s alpha values (see Table 6). Thus, the
instruments were adequate for our study.

Table 6. Cronbach’s alpha values for both pre-test and post-test.

Test Name Number of questions Cronbach’s
alpha value

Pre-test 6 0.765
Post-test 6 0.725

2.4.2. SAMPLING PROCEDURE

All 114 students that were taking Computer Science course that semester, were considered to take
the pre-test. From the 114 students, the number reduced to 91 students because we decided that
only students with pre-test score equals or less than 65 points were taken in for further
examination in the study.

The 91 students were separated into two groups based on their existing classes. Therefore, one
group formed 53 students and the other group formed 38 students. We decided that the first was
considered as the treatment group and the latter was the control group (as shown in Table 7).

Table 7. Number of students in the control and the treatment groups.

No Group Freq. (N)
1. Treatment 53
2. Control 38
 TOTAL 91

3. FINDINGS AND DISCUSSION

In this section, we present the results and discuss the findings based on the hypothesis that
formulated for this study.

Effects of using visual programming environment on the students’ achievement

HO1: There is no significance improvement on students’ achievement when they were exposed to
the use of visual programming compared to students using the text-based programming

A paired t-test was first used to compare the students’ achievement in the pre-test and the post-
test in the same group. The test was conducted to the treatment group’s test scores. Based on the
results presented in Table 8, the improvements recorded among students in the treatment group
were significant (at p-value < 0.001) with mean score of 50.14 in the pre-test and mean score of
88.99 in the post-test.

Table 8. Mean scores of pre-test and post-test for the treatment group.

We also conducted another paired t-test to compare the students’ achievement in the pre-test and
post-test among students in the control group. The findings showed in Table 9that they had also

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.6, December 2018

66

recorded some significant improvement (at p-value < 0.001) with mean score of 39.97 in the pre-
test and mean score of 84.28 in the post-test.

Table 9. Mean scores of pre-test and post-test for the control group.

Given that both groups have recorded significant improvements in their achievement, the first
hypothesis null might be rejected. There was only a slight difference between mean scores of
post-test of both groups. We conducted a two-tailed independent sample t-test and had set to
reject the null hypothesis if p-value < 0.05. We obtained results as in Table 10. Thus, we failed to
reject the null hypothesis. This means although both groups have recorded significant
improvement but the comparison of achievement between the two groups was statistically non-
significant.

We concluded that learning programming can actually take place whether using a visual
programming environment like scratch or just by using ordinary text-based programming
environment only.

Table 10. T-test results on mean scores of post-test for both control and treatment groups.

EFFECTS OF USING VISUAL PROGRAMMING ENVIRONMENT ON THE STUDENTS’

UNDERSTANDING

HO2: There is no significance improvement on students’ understanding when they were exposed
to the use of visual programming compared to students using the text-based programming
Table 11 shows a summary of thematic content analysis values on the students’ answers in the
pre-test and the post-test from the treatment group. In the pre-test, many students made large
mistakes with logic errors and syntax errors. However, the understanding has certainly improved
after they were exposed to the use of visual programming during their lessons.

We also conducted content analysis on the students’ answers from the control group. Table 12
shows the analysis results for the control group. In general, we observed that the students’
understanding in the control group also had largely improved despite the facts that they learned
only using the ordinary text-based programming language. Given that both groups have recorded
significant improvements in their understanding, the second hypothesis null was also rejected.

Table 11. A summary for the qualitative content analysis results for treatment group.

Sub
Topic

Question
No.

Solution
Type

Pre-test Post-test

Sequential 1a Pseudocode 1 student succeed, 2
failed to print name,
1failed to print name and
the required text.

7 students scored full marks, 1
print text but forgot to print
variable.

1b Pseudocode 6 students did not use
sequential.

All scored full marks.

Selection 2a Pseudocode 6 students failed to
answer, 3 did not use

4 students scored full marks.

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.6, December 2018

67

selection.
2b Flowchart 5 students gave logic

errors, 3 incomplete
answers, 1 failed to
answer

1 scored full marks, 6 still
have logic errors.

Iteration 3a Flowchart All failed. 3 gave
incomplete answers, 3
had logic errors

6 scored full marks, 2 kept
doing logic errors

3b C++ coding 1 student succeed, 1
failed, 5 had syntax error
and 1 logic error.

2 scored full marks. 5 students
had minor errors.

However, when we look closely into the details of answers between both groups, we had
observed some slight differences on the improvements between the two groups. For example, the
answers given by the treatment group had largely improved for one of the sequential question
(question number 1a) and one of the selection question (question number 2a). None of the student
in the treatment groups has problem to build the solutions requested compared to the control
group. This might be a working evidence of visual programming environment’s effects that can
aid in promoting algorithmic thinking among students in the treatment group especially when the
problem-solving was related to sequential and selection.

No significant difference was observed when compared between the treatment and the control
groups for question number 1b. Question number 1b might be relatively easy for both groups. On
the other hand, the control group had shown slightly better improvements compared to the
treatment groups when it comes to the iteration questions. Further investigations should be carried
out to see if visual programming environment does help in learning certain programming
structures only, as the cases in our study, the sequential and the selection questions.

Table 12. A summary for the qualitative content analysis results for control group.

Sub
Topic

Question
No.

Solution
Type

Pre-test Post-test

Sequential 1a Pseudocode 9 students failed to
include name at all

7 failed to print name, 1 kept
doing the same mistakes

1b Pseudocode 2 students did not
know average
calculation.

All scored full marks.

Selection 2a Pseudocode 6 students failed to
answer

Only 6 students scored full
marks, 2 students still did not
understand the questions.

2b Flowchart All failed to answer 3 scored full marks. Others
still have logic errors.

Iteration 3a Flowchart All failed. Only 4 scored full marks.
3b C++ coding All had syntax errors,

1 had logic error.
3 scored full marks. 4
students had minor errors.

4. CONCLUSION

In this study, we discuss the effects of using visual programming environment among college
students in learning programming. In this study, quantitative data of pre-test and post-test scores
were tested against the formulated hypothesis using t-test. Although significant improvements in
term of students’ achievement were observed, similar improvements were also recorded with
students that only used ordinary text-based programming language. Qualitative analysis using
thematic content analysis had shown similar findings.

However, when we looked deeper into the qualitative data, there were slight differences in the

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.6, December 2018

68

understanding between students that used visual programming environment and students that used
text-based programming environment. There were some evidences that students in the treatment
group have relatively better understanding about the problems and solutions compared to the
students in the control group. The improvements were quite obvious for questions related to
selection and sequential. These findings are interesting. Clearly, further investigation is required.

ACKNOWLEDGEMENTS

The authors would like to thank all colleagues and friends from UniversitiPendidikan Sultan Idris
who provided insight and expertise that greatly assisted the research.

REFERENCES

[1] Ismail, M. N., Ngah, N. A., & Umar, I. N. (2010a). Instructional strategy in the teaching of computer

programming: a need assessment analyses. TOJET: The Turkish Online Journal of Educational
Technology, 9(2).].

[2] Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking

through programming: what is next for K-12?. Computers in Human Behavior, 41, pp. 51-61.

[3] Miliszewska, I. & Tan, G. (2007). Befriending computer programming: a proposed approach to

teaching introductory programming. Informing Science and Information Technology, 4, pp. 278-289.

[4] Sarkawi, S., & Bakary, S.A. (2011). Kesilapfahaman konsep semantik dan sintaktik pengaturcaraaan

dalam kalangan pelajar Kolej Matrikulasi Perak. Presented in the Multimedia and creative content
symposium 2011.

[5] Futschek, G. (2006). Algorithmic thinking: the key for understanding computer science. In the

proceedings of The International Conference in Informatics in Secondary Schools - Evolution and
Perspectives, ISSEP 2006, Vilnius, Lithuania, November 7-11, 2006

[6] Silva, L. R., da Silva, A. P., Toda, A., &Isotani, S. (2018, July). Impact of teaching approaches to

computational thinking on high school students: a systematic mapping. In 2018 IEEE 18th
International Conference on Advanced Learning Technologies (ICALT), pp. 285-289. IEEE.

[7] Kohlit, M. (2014). Hubungan antara persepsi dan tahap kefahaman pelajar kolej matrikulasi perak

terhadap topik pengaturcaraan C++. In the proceedings of Seminar BMKPM 2014.

[8] Tie, H. H., & Umar, I. N. (2011). Does a combination of metaphor and pairing activity help

programming performance of students with different self regulated learning level? The Turkish
Online Journal of Educational Technology, 10 (4).

[9] Ismail, M. N., Ngah, N. A., & Umar, I. N. (2010b). The effects of mind mapping with cooperative

learning on programming performance, problem solving skill and metacognitive knowledge among
computer science students. Journal of Educational Computing Research, 42(1), pp. 35-61.

[10] Abdullah, A. J., & Abbas, M. (2004). Kesan pembelajaran koperatif terhadap prestasi dalam mata
pelajaran matematik berbantukan koswer multimedia Kementerian Pendidikan Malaysia di kalangan
pelajar-pelajar tingkatan dua. In the proceedings of Konvensyen Teknologi Pendidikan ke-17, pp. 32
– 40.

[11] Yau, M. (2013). Engaging Hispanic/Latin (a) youth in computer science: an outreach project

experience report. Journal of Computing Sciences in Colleges, 28(4), pp. 113–121.

[12] Fronza, I., El Ioini, N., and Corral, L. (2015). Students want to create apps: leveraging computational

thinking to teach mobile software development. In Proceedings of the 16th Annual Conference on
Information Technology Education, pp. 21–26. ACM.

The International Journal of Multimedia & Its Applications (IJMA) Vol.10, No.6, December 2018

69

[13] Chao, P. Y. (2016). Exploring students’ computational practice, design and performance of problem-
solving through a visual programming environment. Computers and Education, 95,pp. 202–215.

[14] Ismail, A., Yatim, M. H. M., Sahabudin, N. A., & Zain, N. Z. M (2016). Keupayaan murid

sekolahrendahmempelajaridanmenerokaibahasapengaturcaraan visual. Journal of ICT in Education
(JICTIE), 3(1), pp. 89-97.

[15] Futschek, G., &Moschitz, J. (2011, October). Learning algorithmic thinking with tangible objects

eases transition to computer programming. In International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, pp. 155-164. Springer, Berlin, Heidelberg.

[16] Shih, W. C. (2017, June). Mining learners' behavioral sequential patterns in a blockly visual

programming educational game. In Industrial Engineering, Management Science and Application
(ICIMSA), 2017 International Conference, pp. 1-2. IEEE.

[17] Idrees, M., Aslam, F., Shahzad, K., & Sarwar, S. M. (2018). Towards a universal framework for

visual programming languages. Pak. J. Engg. Appl. Sci., pp. 55-65.

AUTHORS

Dr. Azniah Ismail is a senior lecturer at the Department of Computing,
UniversitiPendidikan Sultan Idris, TanjongMalim, Perak, Malaysia. She has more than
15 years of teaching experience. She had obtained her first degree (BSc.Hons.IT) from
Universiti Utara Malaysia, and her master’s degree (M.IT) from UniversitiKebangsaan
Malaysia. She has a PhD in Computer Science from the University of York UK, an
IEEE member of Malaysia Section, and has research interest in IT and software
engineering education.

SitiSakinahbinti Mohd Yusof is a lecturer in KolejMatrikulasi Perak, Gopeng,
Malaysia. She has more than 11 years of teaching experience in Computer Science and
English. She has a Master (Education) in Information Technology from
UniversitiPendidikan Sultan Idris and has an interest in IT and Computer Science. She
is pursuing her PhD in IT education, particularly focusing on school children.

Dr. Nor Hasbiah Ubaidullah is working as an Associate Professor at
UniversitiPendidikan Sultan Idris. She received degree in Computer Science from
UniversitiKebangsaan Malaysia and master of Science in Information System from
University of Salford UK. She obtained her PhD degree in Information Technology
from UniversitiKebangsaan Malaysia. Her research areas include Courseware
Engineering, Information System, Data Management and Dyslexia.

