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ABSTRACT 

This article describes the design and development of a system for remote indoor 3D monitoring using an 

undetermined number of Microsoft® Kinect sensors. In the proposed client-server system, the Kinect 

cameras can be connected to different computers, addressing this way the hardware limitation of one 

sensor per USB controller. The reason behind this limitation is the high bandwidth needed by the sensor, 

which becomes also an issue for the distributed system TCP/IP communications. Since traffic volume is too 

high, 3D data has to be compressed before it can be sent over the network. The solution consists in self-

coding the Kinect data into RGB images and then using a standard multimedia codec to compress color 

maps. Information from different sources is collected into a central client computer, where point clouds are 

transformed to reconstruct the scene in 3D. An algorithm is proposed to merge the skeletons detected 

locally by each Kinect conveniently, so that monitoring of people is robust to self and inter-user occlusions. 

Final skeletons are labeled and trajectories of every joint can be saved for event reconstruction or further 

analysis. 
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1. INTRODUCTION 

A system for remote people monitoring can be employed in a large amount of useful applications, 

such as those related to security and surveillance [1], human behavior analysis [2]  and elderly 

people or patient health care [3] [4]. Due to their significance, human body tracking and 

monitoring are study fields in computer vision that have always attracted the interest of 

researchers [5][6]. As a result, many technologies and methods have been proposed. Computer 

vision techniques are becoming increasingly sophisticated, aided by new acquisition devices and 

low-cost hardware data processing capabilities. 

 

The complexity of the proposed methods can significantly depend on the way the scene is 

acquired. An important requirement is to achieve a fine human silhouette segmentation. State-of-

the-art technologies are really good at this task. Apart from the techniques that use markers 

attached to the human body, tracking operations are carried out mainly in two ways, from 2D 

information or 3D information [7] [8]. On the one hand, 2D body tracking is presented as the 

classic solution; a region of interest is detected within a 2D image and processed. Because of the 

use of silhouettes, this method suffers occlusions. On the other hand, advanced body tracking and 

pose estimation is currently being carried out by means of 3D cameras, such as binocular, Time-
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of-Flight (ToF) or consumer depth-cameras like Microsoft(R) Kinect [9]. The introduction of 

low-cost depth sensors has pushed up the development of new systems based on robust 

segmentation and tracking of human skeletons. The number of applications built on top of depth-

sensor devices is rapidly increasing. However, most of these new systems are aimed to track only 

one or two people thus have only direct application on videogames or human-computer 

interfaces.  

 

There are some limitations to address in order to build a remote space monitoring system using 

consumer depth-cameras, and only a few separate efforts have been done to address these 

limitations. Even so, those developments do not pursue building a remote monitoring system, but 

covering part of the limitations in which we are also interested for our system. On the one hand, 

Kinect devices can capture only a quite small area, covering accurately distances only up to 3.5 

meters [9]. There are proposals which allow to make a 3D reconstruction of spaces and objects 

using Kinect [10], but in them every capturing device has to be connected to the same computer. 

Apart from that, these solutions cannot merge skeletons information from different Kinects. The 

first limitation is significant, since only two or three devices can be connected to a single 

computer, due to the high USB bandwidth consumption of these cameras. There is another 

proposal that allows to send data over a network [11]. However, this application uses Microsoft 

SDK [9], so it only works under Windows operating system. 

 

The 3D monitoring system presented in this paper addresses these limitations and allows using an 

undetermined number of Microsoft® Kinect cameras, connected to an undetermined number of 

computers running any operating system (Windows, Linux, Mac), to monitor people in a large 

space remotely. The system codes the 3D information (point clouds representing the scene, 

human skeletons and silhouettes) acquired by each camera, so that bandwidth requirements for 

real-time monitoring are met. The information coming from different devices is synchronized. 

Point clouds are combined to reconstruct the scene in 3D and human skeletons and silhouettes 

information coming from different cameras are merged conveniently to build a system robust to 

self-user or inter-user occlusions. The proposed system uses low-cost hardware and open source 

software libraries, which makes its deployment affordable for many applications under different 

circumstances. 

2. TOOLS AND METHODS 

2.1 Consumer depth-cameras 

For 3D scene acquisition, a number of devices can be used. For computer vision techniques, we 

can distinguish between passive and active cameras. The first include stereo devices, simulating 

the left and right eye in human vision: the images coming from each camera in the device are 

combined to generate a disparity map and reconstruct depth information [7]. In this category, 

some other proposals in which several passive cameras are disposed around the person or object 

to be reconstructed can be included. The second option consists in using an active device such as 

a ToF (Time of Flight) camera or newer consumer depth-cameras like Microsoft® Kinect or 

ASUS® Xtion. Despite their high depth precision, ToF cameras are expensive and provide very 

low resolutions. On the other side, consumer depth-cameras provide resolutions starting at 

640x480 px and 30 fps at very affordable prices. 

We will pay special attention to Kinect cameras, since they are the chosen devices for the 

proposed system. Microsoft® Kinect emits a structured infrared pattern of points over its field of 

view, which is then captured by a sensor and employed to estimate the depth of every projected 

point of the scene. Although Kinect was initially devised only for computer games, the interest of 

the computer vision community rapidly made it possible to use the device for general purpose 

from a computer, even before the Microsoft® official Kinect SDK was available[9]. There is a 
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wide variety of tools to work with Kinect. A commonly used framework for creating applications 

is OpenNI [12], which has been developed to be compatible with any commodity depth-camera 

and, in combination with NiTE middleware, is able to automate tasks for user identifying, feature 

detection, and basic gesture recognition [13]. 

2.2 Data compression 

Consumer depth-cameras generate a large volume of data. This is an important issue, since one of 

the objectives of the system is the transmission of this information over a network. Therefore, 

data compression is necessary before sending data to a central computer. There are different ways 

to compress data. If the data to compress is not multimedia, we can use a zip encoder, which 

provides lossless compression, but generates large output data and is computationally expensive. 

For multimedia compression, there are picture encoders such as jpeg, which do not use temporal 

redundancy. To compress video, there are many encoders like H.264 or VP8. These encoders are 

able to compress data taking advantage of the temporal redundancy, thus compressed information 

is suitable to be sent over the network. However, there are not extended codecs to compress depth 

maps yet. One type of compression codecs used for 3D images, are those used to transmit the 3D 

television signal, but they are based on the compression of two images (right and left) [14], thus 

they are not useful for our system, in which 3D information is directly acquired using  an active 

infrared device. 

2.3 CORBA  

A distributed application based on the client-server paradigm does not need to be developed using 

low level sockets. For the proposed system, a much more convenient approach is to use a 

middleware such as TAO CORBA, a standard defined by OMG (Object Management Group). 

This middleware allows using a naming service [15], that avoids the central client to know about 

the addresses of each one of the servers. The aim of CORBA is hiding the low level complexity 

algorithms for data transmission over the network from the programmer. It is object-oriented and 

supports C++, Python, Java, XML, Visual Basic, Ada, C, COBOL, CORBA-Scripting-Language, 

Lisp, PL/1, Smalltalk and C#. Besides, this middleware is chosen because it is independent of the 

programming language, so servers could be programmed in Java and a client in C++, for 

example. It represents a clear advantage over RMI, which can only be programmed in Java. 

CORBA is also cross platform, so clients and servers can be running on different operating 

systems. In the proposed system, the servers may be running on Windows computers and the 

client in a Linux computer or in the opposite way. 

2.4 PCL: Point Cloud Library 

PCL ‘Point Cloud Library’ [16], is a C++ free open source computer vision library to work with 

3D information that can be used in many areas such as robotics. PCL is being developed by a 

group of researchers and engineers from around the world. There are also many companies such 

as Toyota or Nvidia working to develop this powerful library [17]. The library contains 

algorithms for filtering, feature estimating, point cloud registration, and segmentation. 

Point clouds can be obtained and stored in 3D raw data files, read from 3D models or 3D cameras 

such as Kinect. The combination of both technologies, PCL and Kinect, is very convenient for 

our purpose of monitoring a space with 3D information. The library is comprised of the following 

modules: filters, features, keypoints, registration, kdtree, octree, segmentation, simple consensus, 

surface, range image, IO, visualization, common, and search. 
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3. PROPOSED SYSTEM 

The main feature of the proposed system is its capability of merging 3D information coming from 

multiple Kinect devices, including depth information and detected skeletons. This takes place 

under the client-server model, in which servers are computers with attached devices and the client 

is one or more central computers responsible for information fusion, tracking, and visualization. 

3.1 General description 

Figure 1 depicts the scheme of the proposed system. A server is a computer where one or more 

Kinect cameras are connected. The different servers, deployed in a remote space are responsible 

for capturing the information coming from different regions of the scene. This information is 

conveniently processed and then sent to the clients. The large amount of information acquired by 

Kinect devices has to be compressed using different strategies before it can be sent over the 

network. The central client is in charged of reconstructing the remote space in 3D using PCL 

library and includes a robust algorithm for merging of multiple detected skeletons. The computer 

interface can be used to monitor the scene in 3D in real time, label people within it and record 

specific users movements for further analysis [18] The system is fully scalable to any number of 

servers and clients, thus to any number of acquiring devices and locations. 

 

Figure 1. General scheme of the proposed system. 
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3.2 Environment configuration 

As explained before, Kinect cameras are devices that emit infrared patterns of light in order to 

acquire depth information within a limited range. Kinect devices have a view range that covers 

depth precisely only between 0.5 m and 3.5 m [9]. For this reason, one of the motivations of our 

system is to expand the covered view by adding several Kinects to the scenario. However, an 

important issue arises when placing various Kinect cameras in the same place: the infrared pattern 

emitted by different Kinects can interfere with each other, causing ‘holes’ in the acquired point 

clouds. Therefore, we must be careful in the placement of the devices and avoid placing a camera 

right in front of another one. Figure 2 shows the lack of 3D information around the bookshelves 

when a second camera is positioned to capture the same region of the environment. There is some 

interference among the infrared emitted patterns that prevents scene reconstruction. 

 

 

Figure 2. Scene without and with infrared interference. 

With the aim of minimizing this interference, we studied which is the best and more flexible 

camera layout, flexible enough to cover most of the environments. A correct placement of 

cameras has to take into account not only how to reduce camera interferences, but also favor 

robust skeleton tracking when a person in the scene walks from the area covered by one camera to 

the area covered by another one.  

A naïve solution consists in placing the cameras in a layout that avoids any possible collision of 

the cameras’ infrared patterns, in a scheme depicted in Figure 3(a). The Kinect camera provides 

an angle of view of 57.5 degrees, thus we can calculate the distance between two cameras. 

Following the trigonometric relation in equation (1), for a given depth distance d covered by one 

Kinect, the next Kinect camera should be at a distance 2h, being ℎ ≅ 0.55� 

tan
57.5º
 = ℎ
��   (1) 

Under these circumstances, we can merge the point clouds without any information holes. 

However, the problem behind placing the cameras just like that is that the system loses some 

scene information, since the space between cameras is not covered by any infrared pattern. The 

next logical improvement to this layout is placing complementary Kinects in the opposite side, as 

shown in Figure 3(b). It is important that those Kinects placed across from those placed in first 

place are laterally shifted, so that we can capture all the regions and users in the scene. There will 

always be one camera in front of a person and we cover all the possible dark points among the 

cameras.  
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(a) Kinects only in one side of a room (b) Kinects in opposite sides of a room 

 

Figure 3. Naïve Kinect cameras layout 

 
Although this layout is free from interference, it is not the most appropriate for skeleton tracking. 

The problem arises when a person passes through the areas covered by two cameras, since there is 

a non-negligible delay when new skeletons have to be detected and processed. The first camera 

will lose the user information and the second camera needs a certain time to find the limbs and 

joints of the new user that has appeared.  

For this reason, the camera layout for the final proposed system does not try to remove camera 

interference completely, but minimize it. Despite the fact that we want cameras do not interfere, 

we want the areas covered by different cameras to be overlapped enough so that a new skeleton 

can be detected fast enough. A good trade-off for region overlapping is the one that covers a 

distance of 0.5 m among the cameras, as in the scheme shown in Figure 4. With regard to the 

distance from the cameras to the floor, we recommend holding them at 1.85 m and slightly tilted 

down for faster skeleton detection. In general, Kinect cameras are recommended to be placed at 

the height of the hips. However, by placing them at the proposed height, increases the number of 

items that can be covered in the scene. 

It is worth mentioning that this is not the only possible cameras layout for the system to work, but 

only the most recommended one. Actually, the system is flexible enough to work with any 

cameras layout configuration. The system can be adapted to any room configuration, no matter 

how strange the distribution of the walls or cameras is. As detailed in Section 3.6, the calibration 

of the environment for cloud fusion is only needed once, and then it is valid for every execution 

of the system. As detailed in Section 3.7, the algorithm for skeleton merging is robust even 

though several Kinects are generating different skeletons for the same person in the scene.  
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Figure 4. Final Kinect cameras layout with an overlap of 0.5 m 

 

3.3 Data acquisition 

To add more Kinect devices to the scene, the naïve solution is to try to connect multiple cameras 

to the same computer. However, due to the large volume of data generated by each camera, a 

USB controller is needed to handle the bandwidth emitted by each one. As a consequence, that is 

not a valid solution, since most computers only support a limited number of USB controllers, 

usually two or three. The solution adopted for our system was to develop a distributed application 

with multiple cameras connected to multiple computers.  

The data provided by each Kinect in which we are interested in are: a three-channel RGB image 

of the scene, captured at a resolution of 640x480 px; a depth map, which is a texture of the same 

resolution in which each pixel takes a value that indicates the distance between the infrared 

pattern and the sensor; a texture of user labels with same resolution, in which each pixel takes the 

value of the user id in front of the camera or a zero value; and the skeletons of the users in the 

scene, which are formed by joints representing the parts of the body (head, elbow, shoulders …) 

and include both the xyz position and rotation from an initial pose position.  

3.4 Data coding 

Before the information captured by the remote devices can be sent, it has to be encoded. Kinect 

data to be processed includes RGB images, depth maps, user labels, and skeleton joints. Skeleton 

joints information is sent without any compression, since the volume of data needed to store and 

transmit the position of all the joints is negligible compared to the volume of image or depth 

information. 

To encode the RGB image we use a video compressor. It would be meaningless to use an image 

codec such as JPEG, since it only uses spatial information at the time of compression and thus the 

needed bit rate is much higher. For video compression, the proposed system uses the cross-

platform library FFMPEG, which provides many audio and video codecs. The RGB image 

compression is done using the VP8 codec developed by Google TM [19] that needs a YUV 420 
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image format. Although VP8 codec introduces quality losses during compression and 

decompression, its balance between final quality and performance makes it adequate for our 

purposes. Additionally, the loss in quality remains quite low and the human eyes, acting as filters, 

are not able to appreciate it. 

As it has been commented before, there is no compression codec to encode depth or a 

combination of RGB and depth information. In the proposed system, the compression of the 

depth map has to be done in a tricky way, based on the scheme proposed by Pece et al. [20]. 

Basically, one depth channel has to be converted into a three-channel image, and then a specific 

codec H264 is used to compress the result. The H264 codec is more computationally expensive 

than VP8 and it also needs more bandwidth. However, the final results obtained for the particular 

case of depth-information are much better than using VP8. 

Finally, for labels codification, the chosen codec was VP8. Using this codec, quality losses which 

could result in user misidentifications in the remote computer, can be expected. In order to 

prevent these situations, the following strategy is proposed. Since encoders usually join together 

colors being too close, we propose spacing them before codification. The values 0 to 15 of user 

labels are translated into values from 0 to 255, preventing the encoder from mixing them up. 

Figure 5 shows the employed conversion equivalences. With these new values, labels are stored 

into a luminance channel and then compressed. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

| | | | | | | | | | | | | | | | 

0 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 
 

Figure 5. Correspondence of user labels to colors to avoid misidentifications after data compression.  

Due to the computation requirements of the proposed system, in order to code and send the 3D 

information, it has been designed to process video sequences in parallel using threads. The RGB 

image, depth map, user labels and skeletons are acquired at the same time. Each type of data is 

then coded separately in parallel using the ‘Boost’ threads library. 

3.5 Data transmission 

System servers are registered in a CORBA naming service after starting, so that the system’s 

central computer can find them, without needing to know their IP addresses. When the central 

computer establishes a communication and asks for data, the server collects the information from 

every local attached Kinect, encodes it and sends it continuously to the remote client. The client is 

constantly receiving data sent from each server, but it may not use all the information that arrives 

to the client. The system is designed to decode only the information that is to be used. To this 

end, mutual exclusion techniques are employed. 

Compressed information is stored into CORBA data arrays. Then, the server sends data by 

invoking remote methods in each client. These methods receive input arguments containing the 

compressed RGB image, depth map, user labels, and uncompressed skeletons. The information is 

sent only to the clients who have previously registered on the server. 

Each camera sends a volume of data D of about 70.000 bytes. The theoretical bandwidth needed 

to receive this data at a frame rate F from every camera, depending on the number of cameras N, 

can be computed according to equation (2). 

��
���
 = 8��F (2) 
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Table 1 shows the bandwidth needed by the system for data transmission at a frame rate F=30 fps, 

depending on the number of cameras.

No. Cameras 

1 

2 

3 

4 

5 

Table 1. Bandwidth consumption for 30fps data transmission, depending on number 

3.6 Point cloud fusion 

Once the Kinect cameras have been installed in the 

calibration has to be performed. The goal of 

find the proper transformation matrices to align and fuse the r

devices is chosen to be the center of the coordinate system and then 

the other cameras. Given each pair of point clouds, the objective is to calculate

and translation matrices by solving the 

component points, R is a 3x3 rotation matrix and 

vector. 

Within the system interface, the calibration step 

of at least 3 common points in 

compressed for better results. For this purpose, it is useful to place an object into the intersection 

area of different infrared patterns. Fi

and a box on top of it. Taking the marked 

calibration, which serves to rotate the point clouds and apply the algorithm ICP (Iterative Closest 

Point), which refines the calibration. 

time the system is deployed and 

different cameras, including user skeletons

Figure 6. Initial calibration to determine rotation and translation matrices. These matrices are used to 

3D information coming from different Kinect cameras. 
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Table 1 shows the bandwidth needed by the system for data transmission at a frame rate F=30 fps, 

cameras. 

Bandwidth 

16.8 Mbps 

33.6 Mbps 

50.4 Mbps 

67.2 Mbps 

84 Mbps 

 

consumption for 30fps data transmission, depending on number of Kinects.

Once the Kinect cameras have been installed in the location to be monitored, a first system 

calibration has to be performed. The goal of the calibration is that the central client 

find the proper transformation matrices to align and fuse the received point clouds. One of 

devices is chosen to be the center of the coordinate system and then rotations are calculated from 

Given each pair of point clouds, the objective is to calculate the

olving the system of equations B = RA + t, where A and 

is a 3x3 rotation matrix and t is a three-component column

Within the system interface, the calibration step will prompt the user to check the correspondence 

points in different clouds of points. This calibration clouds are not yet 

For this purpose, it is useful to place an object into the intersection 

infrared patterns. Figure 6 shows this process using points belonging to a chair 

the marked common points, the system can approximate

calibration, which serves to rotate the point clouds and apply the algorithm ICP (Iterative Closest 

which refines the calibration. These rotation matrices have only to be computed the first 

time the system is deployed and they are later used to rotate all information coming from the 

different cameras, including user skeletons, in different executions. 

determine rotation and translation matrices. These matrices are used to 

3D information coming from different Kinect cameras.  

ts Applications (IJMA) Vol.6, No.1, February 2014 
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Table 1 shows the bandwidth needed by the system for data transmission at a frame rate F=30 fps, 

of Kinects. 

to be monitored, a first system 

client computer can 

eceived point clouds. One of 

rotations are calculated from 

the 4x4 rotation 

and B are three-

component column translation 

the correspondence 

of points. This calibration clouds are not yet 

For this purpose, it is useful to place an object into the intersection 

shows this process using points belonging to a chair 

can approximate an initial 

calibration, which serves to rotate the point clouds and apply the algorithm ICP (Iterative Closest 

These rotation matrices have only to be computed the first 

ming from the 

 
determine rotation and translation matrices. These matrices are used to fuse 
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3.7 Skeleton merging 

We distinguish between Kinect input skeletons and system’s final output skeletons. Each output 

skeleton is computed dynamically from a linked list of input skeletons, which are merged and 

averaged together in the client machine.  

Figure 7 depicts the process of output skeletons computation. To merge the input skeletons, the 

first step is to apply rotation matrices to the detected joints. Once all the skeletons from all the 

cameras are in the same reference system, the algorithm for skeleton merging can be applied. The 

first step is to check for changes in the previous linked lists of skeletons, which contain the 

correspondence among similar input skeletons. These lists include the camera identifiers, the 

input skeletons identifiers and the output skeletons identifiers. Every time a camera provides 

information of a new skeleton, the system tries to add it into a linked list. The estimated position 

of the person in a camera is complemented taking into account the information of speed (meters 

per frame) and walk direction. This information is updated every frame by collecting the 

information of its center of mass in a circular buffer, where old values are overwritten in every 

frame. Additionally, evaluating skeletons matching during 15 consecutive frames strengthens the 

robustness of the system. The conditions that have to be satisfied so that two input skeletons, 

detected by two different Kinects, can be merged are: 

1. The centers of masses of both input skeletons should be at a distance smaller than a given 

threshold (i.e. 15 cm). A similar strategy has been used in other human skeleton tracking 

proposals [21]. 

2. The speed vectors associated to both input skeletons should be similar enough (i.e. the 

angle between vectors close to 0) and should have the same magnitude. 

The algorithm is robust for skeleton merging, even though a skeleton is detected from several 

Kinect cameras. The skeleton tracking keeps working although the person is standing in a 

position that is covered by more than two or three cameras. In case no correspondence can be 

found to include the new skeleton into any existing linked list, then it is considered as a new 

output skeleton and a new linked list is built up. The final joints are calculated by averaging all 

the joints from different cameras. If the confidence of a specific joint within an input skeleton is 

smaller than 0.5, that particular joint will not contribute to calculate the final joint in the output 

skeleton. The advantage of this design is that in case one camera cannot detect a given joint, its 

position can be determined from the information given by other camera. The probability of 

having all the joints describing the available skeleton, and with accurate positions, is increased 

with the number of cameras detecting the skeleton. 

If the room allows a layout of Kinect devices similar to the one depicted in Figure 4, then the 

skeleton tracking algorithm takes advantage of some previous knowledge of the cameras 

distribution. Basically, the system knows precisely the order in which the cameras are placed, 

thus can anticipate the event of a person leaving one camera and walking into the next camera’s 

field of view.  

The first step to improve the algorithm is to check the skeletons already covered by a given 

camera. The information of those skeletons that are yet in the scene is updated in every frame, 

while the last information of those skeletons that are no longer detected is kept in memory for the 

next 15 frames. This is the time needed to determine if that skeleton has abandoned the place or if 

the person has just changed his or her position from the last camera to the previous or next 

camera in the layout. The position where a new skeleton is detected in either of these cameras is 

compared against the estimated position of the previously lost skeleton, so that we can match 

skeletons and labeled information about the user is not lost. The new condition that has to be 

satisfied so that a lost skeleton and a new detected skeleton can be merged is: 
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1. There is a correspondence between the boundaries of the cameras’ field of view. When a 

person disappears from one camera by the left side, he or she must appear into the field of 

view of an opposite camera also by the left side.  

If the three conditions stated above are met, the algorithm merges the involved skeletons. They 

represent indeed the same person, so critical information (i.e. label) about the lost skeleton has to 

be attached to the new skeleton.  

 

 

Figure 7. Skeleton merging algorithm. 

 

3.7 Data visualization and skeleton tracking 

The central client interface uses PCL to visualize the final reconstructed space and allows real-

time tracking of labeled people inside the area covered by the cameras. Figure 8 shows a labeled 

skeleton being monitorized in real-time by 5 cameras. The final scene can be rotated and analyzed 

from any point of view. However, there is a limitation on the available frame rate due to the VTK 

rendering methods employed by the system. When the number of points in the final point cloud 

grows, the frame rate is reduced. This is not a problem related to the compression/decompression 

computational cost, but the visualization methods included in PCL. Future releases of PCL are 

said to address this problem by adding native OpenGL rendering [17]. In order to guarantee 

usability of the system, despite of this problem, the user interface allows subsampling the number 

of points to visualize. Test and results section gives some figures of performance with 5 device 

cameras. 

Finally, the system is designed to store skeleton information of people within the tracking area, 

associated to their labeled output skeletons. Once recording has started, all the user joints are 

stored in a raw file that can be further used to reproduce any occurred situation, or serve as an 

input for another application for situation analysis (i.e. movement recognition application). For 

applications that require human activity registration, the needed storage space is much smaller 

than in conventional 2D video systems, since only the skeletons may need to be stored.  
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Figure 8. Labeled skeleton and associated joints obtained from the combination of 5 cameras information.

 

4. TESTS AND RESULTS 

The system has been tested using 5 Kinect cameras connected to three personal 

desktop computers equipped with an Intel i5

equipped with an Intel i7-3610QM

Xeon X5650 with 24 cores running at 

GPU. The server computers were running Windows 7 operating system, while the 

was running Linux Fedora 16. 

The aim of these tests was to check the performance of the final system in real conditions. 

first conducted tests included data transmission, 

measurements. Using RGB input at 640x480 px resolution and coding depth information to 

320x240 px color maps, the theoretical

a Gigabit Ethernet is higher than 50 for a frame

overhead of TCP connection. In 

maximum number of cameras we manag

However, in our tests, we detected that 

visualization limitations of PCL

client computer was decoding all camera

above, the achieved frame rate depends

visualization of a cloud of points 

is drawn onto the screen. Subsampling

very nice representation of the scene, improves performance to 29 fps.

Frame rate (fps)

7 

13 

22 

29 

Table 2. Frame rate obtained during 

limitation of VTK, not the system itself.

The second battery of tests conducted included 

with different people in the scene and measure the robustness to self
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e system has been tested using 5 Kinect cameras connected to three personal computers: two 

uipped with an Intel i5-2400 CPU running at 3.10 GHz and a laptop 

3610QM CPU running at 2.30 GHz. The client computer

with 24 cores running at 2.66 GHz and equipped with an Nvidia GeForce GTX580 

s were running Windows 7 operating system, while the 

tests was to check the performance of the final system in real conditions. 

tests included data transmission, coding/decoding and visualization

Using RGB input at 640x480 px resolution and coding depth information to 

, the theoretical limit on the number of cameras that can be connected

gher than 50 for a frame rate of 30 fps. These numbers do not consider the 

TCP connection. In our experimental tests, performed with up to 5 cameras (the 

maximum number of cameras we managed to have), the obtained frame rate was actually 

n our tests, we detected that the final scene rendering was affected by VTK 

visualization limitations of PCL, even though every server was transmitting at 30 fps and the 

decoding all cameras information at the same frame rate. As explained 

depends on the number of points in the cloud. Table 

of points constructed from 5 cameras renders only at 7 fps if every point 

ubsampling the number of points by 16, which actually still provides a 

of the scene, improves performance to 29 fps. 

Frame rate (fps) Rendered points  

≈ 5*307200 = 1.536.000

≈ 5*307200/4 =  384000

≈ 5*307200/9 = 170666

≈ 5*307200/16 = 96000
 

obtained during visualization using VTK for 5 cameras 3D reconstruction. This is a 

limitation of VTK, not the system itself. 

of tests conducted included situations to measure the behavior of the system 

with different people in the scene and measure the robustness to self-user and inter
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computers: two 

Hz and a laptop 

computer was an Intel 

Nvidia GeForce GTX580 

s were running Windows 7 operating system, while the central client 

tests was to check the performance of the final system in real conditions. The 

and visualization 

Using RGB input at 640x480 px resolution and coding depth information to 

connected over 

. These numbers do not consider the 

5 cameras (the 

actually 30 fps. 

final scene rendering was affected by VTK 

transmitting at 30 fps and the 

As explained 

. Table 2 shows how 

if every point 

the number of points by 16, which actually still provides a 

 

 5*307200 = 1.536.000 

200/4 =  384000 
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 5*307200/16 = 96000 

using VTK for 5 cameras 3D reconstruction. This is a 

 of the system 

user and inter-user 
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occlusions. The first test consisted in a user placed in the center of the scene. Meanwhile, another 

user revolves around him or her, so that some cameras can see the first user and some others 

cannot. The goal is to test the robustness of the system when different cameras detect and lose 

Kinect skeletons over and over again. The test was conducted ten times using combinations of 

different users’ height and the obtained result was always successful in every situation, since the 

system did not confuse users or incorrectly merged their skeletons. The second test consisted in 

users sitting and getting up from chairs in an office space. This test measured the robustness of 

the system to some skeletons joint occlusions, since some of the cameras are not able to provide 

accurate positions for body parts behind tables or chairs. The test was repeated for ten different 

people sitting in front of the four tables in the scene in Figure 9 and again the system worked 

perfectly. The third test consisted in covering and uncovering one by one the different cameras in 

the scene while 5 people were being tracked in the scene. The goal was to test what happens when 

multiple Kinect input skeletons are removed and detected at the same time. The result was again 

satisfactory and every computed output skeletons in the scene kept being tracked consistently.  

 

 

Figure 9. Inter-user occlusion test within a space monitorized by 5 cameras. 

 

5. CONCLUSIONS  

This article describes a distributed CORBA system for remote space 3D monitoring using Kinect 

consumer depth-cameras. Due to the high bandwidth needs of these cameras, the maximum 

number of cameras that can be connected to a single computer is usually two. The solution 

provided in this paper includes a client-server application that can handle the information 

acquired by any number of cameras connected to any number of computer servers. Since one 

Kinect camera can only detect precisely the depth information within a field of view of 3.5 

meters, the proposed system solves, at the same time, the limitation on the size of the location that 

can be monitorized precisely. A central client computer can be used to monitor the reconstructed 

3D space in real time and track the movements of people within it.  

In the central client computer, a skeleton-merging algorithm is used to combine the information 

of skeletons belonging to the same person, but generated by different Kinect cameras, into a 

single output skeleton. The conducted tests showed that this algorithm is robust under several 

situations, avoiding unwanted duplication of skeletons when new people enter the scene or under 

camera or inter-user occlusions. Moreover, the algorithm combines the information coming from 
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each skeleton joint independently, so the 3D location of joints in the final generated skeleton is 

more precise, having been averaged among all the cameras that detected that joint. In case a self-

user or a inter-user occlusion causes one joint not to be detected by one or more of the cameras, 

its position is reconstructed using the information coming from cameras in which the joint has 

been detected with enough confidence. Output skeleton movements can be stored in raw files for 

further analysis of situations.  

This system provides a very precise and convenient way of monitoring a 3D space at an 

affordable price. People activity in the scene can be registered for further analysis and the storage 

needed to keep track of human behavior under different circumstances can be much lower than 

for conventional 2D systems, if only the skeletons are needed. Future research tasks will include 

designing a top activity recognition layer that could monitor people behavior and interactions. 
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