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ABSTRACT 

 

Thresholding operators have been used successfully for denoising signals, mostly in the wavelet domain. 

These operators transform a noisy coefficient into a denoised coefficient with a mapping that depends on 

signal statistics and the value of the noisy coefficient itself. This paper demonstrates that a polynomial 

threshold mapping can be used for enhanced denoising of Principal Component Analysis (PCA) transform 

coefficients. In particular, two polynomial threshold operators are used here to map the coefficients 

obtained with the popular local pixel grouping method (LPG-PCA), which eventually improves the 

denoising power of LPG-PCA. The method reduces the computational burden of LPG-PCA, by eliminating 

the need for a second iteration in most cases. Quality metrics and visual assessment show the improvement.  
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1.  INTRODUCTION 

 

Noise in an image can be due to a variety of reasons and can be introduced during the acquisition, 

transmission, or processing stages. But for data to be analyzed for a meaningful purpose either by 

the human eye or a computer, noise must be reduced or eliminated. The problem of noise removal 

has been studied extensively. These include, but are not limited to mean filters, the nonlinear 

median filter, simple adaptive filters, the Wiener filter, bandpass, and band-reject filters [1]. 

Modern algorithms may act on more complicated domains, such as dictionary domains [2] or the 

wavelet domain [3]. 

 

When performing a PCA transformation, the principal component will point in the direction for 

which the data has the highest variability (i.e. variance) and subsequent components will be 

ordered from highest to lowest variability, always having the maximum variability possible while 

being orthogonal to preceding components. In the context of image denoising, this means that 

information for distinguishing features of an image, such as edges, will be concentrated in the 

first components, whereas information about the noise will spread more evenly throughout the 

rest of components [5]. In the simplest scenario, denoising in the PCA domain can be performed 

by setting to zero some of the coefficients with the lowest variability. 

 

Algorithms that denoise in a PCA domain can differ in many aspects when applied to image 

denoising. First, there are many ways to decompose the image into signals that will be denoised 

in their PCA domain. An obvious way to do this is to decompose the image into blocks of the 

same size. To denoise each one of these signals, several samples of each of those signals must be 

gathered in order to calculate the PCA transform for each one of them. Therefore, a grouping of 

signals similar to the target signal needs to be performed. There exists several ways to perform 
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this grouping. Second, once in the PCA domain, the signals can be denoised in different ways. 

The simplest way to do this is to set some of the last components in each PCA transformed signal 

to zero. Finally, the denoised signals must somehow be aggregated into a denoised image. For 

example, if there is an overlap between the windows to be denoised, then corresponding 

components in the original domain, or pixel locations, can be averaged. Some algorithms do not 

denoise signals directly in the PCA domain but rather use the domain to obtain better statistics 

that can be used in the denoising process. The principal neighborhood dictionaries for non-local 

means (PND-NLM) approach proposed in [4], for example, makes use of PCA to calculate more 

accurate weights for pixels to be weight-averaged into a denoised version of the target pixel. Such 

method is an improvement to the popular NLM denoising approach, which calculates the weights 

based on metrics obtained from the original domain. For PND-NLM, the results show that 

denoising accuracy peaks when calculating the weights using only a low number of dimensions 

compared to the number of dimensions in the original domain. 
 

A very competitive denoising solution is proposed in [5] that uses local pixel grouping and 

principal component analysis (LPG-PCA).  Although originally designed for grayscale and 

color images, the method has been also used successfully in the denoising of color filter array 

(CFA) images from single-sensor digital cameras [6]. One of the reasons LPG-PCA is attractive 

is because it is directly applicable to CFA images, whereas other state-of-the-art algorithms need 

the CFA images to be demosaicked or interpolated before application, as CFA images have a 

mosaic structure. 
 

One disadvantage of (LPG-PCA) is its computational burden. The LPG-PCA algorithm, as 

described in [5], must be applied twice to obtain good denoising results. This is because the PCA 

transform and the grouping may be biased. The transform and the neighborhood grouping can be 

biased due to the noise and the lack of enough samples. Besides reducing the amount of noise, the 

first application is used to setup ground for better grouping and reduced bias of the PCA 

transform in the second stage. In this paper, an improvement to the first stage is proposed, which 

reduces the residual noise due to biasing of the transform and biasing of the grouping. The 

modification drastically improves the results obtained with a single application of LPG-PCA and 

it also reduces the artifacts obtained in a second application. The proposed improvement can be 

also extended to [6][7] and applied to other state-of-the-art methods such as the block-matching 

and 3-D filtering (BM3D) proposed in [8]. 
 

The authors of BM3D proposed a denoising method that stacks similar neighborhoods in a 3D 

image and performs a 3D transform. Their method has obtained good results when compared to 

other state-of-the-art methods, such as Portilla’s Scale mixtures [9] and sparse and redundant 

representations over trained dictionaries (K-SVD) [10]. Their method is also composed of two 

stages. The purpose of the first stage is to setup the ground for improved grouping of blocks in the 

second stage. 

 

Section 2 of this paper presents an overview of the LPG-PCA method for image denoising. In 

Secion 3, polynomial thresholding is discussed. Section 4 describes how polynomial thresholding 

can be used to denoise the PCA coefficients obtained by LPG-PCA. Denoising experiments and 

results are presented in Section 5 and Section 6, respectively. Finally, remarks about performance 

and future outlook are discussed in Section 7. 
 

2. LPG-PCA DENOISING 
 

This section is an overview of the LPG-PCA method proposed by Zhang, Dong, Zhang, and Shi 

[5]. In [5], a variable block of pixels and a wider training blockcentered on the variable block are 

defined. In this paper the variable block is referred to as the target block, and the training block as 

the training window. The target block is the one to be denoised and it is selected with a sliding 
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window that slides across the entire image. Blocks that are similar to the target block are found in 

the training window in order to calculate the target block’s PCA transform. Selection of similar 

neighborhoods inside the training window is performed based on block matching. Once similar 

blocks are found, they are used to define and apply PCA transform. In the PCA domain, the linear 

minimum mean square-error (LMMSE) technique is used to denoise the target block. The goal of 

LMMSE is to find the parameters for a linear function that can map a noisy coefficient into a 

clean coefficient. A different linear function is used for each component. After mapping, a 

“clean” version of the target block is obtained by transforming the target block back to image 

domain. Finally, redundant pixels from the sliding window are averaged. 
  
The target block is denoted by 
 

 � = �x�x� … x�	
         (2.1) 
 
 

where� is the total number of pixels in the block. The training window is used as the search 

space for blocks that are similar to the target block. Selected blocks, including the target block are 

aggregated into a matrix as follows 
 

 

� = 
��
� x�� x��x�� x��

⋯ x��⋯ x��⋮ ⋮x�� x�� ⋱ ⋮⋯ x�� ���
�
         (2.2) 

 

 

Every column in �represents a sample of the signal to be denoised, and every row represents a 

pixel position in the blocks. The average signal or block is obtained by averaging the matrix in 

(2.2) horizontally. The centralized matrix of � is a matrix from which the average block has been 

substracted from all the columns, and it is expressed as 

 
 

�� = 
��
� x��� x���x��� x���

⋯ x���⋯ x���⋮ ⋮x��� x��� ⋱ ⋮⋯ x��� ���
�
          (2.3) 

 

The PCA transform is derived for the set of columns in (2.3), denoted further as orthonormal 

transform ���, which can decorrelate the dimensions of ��. It is found by firstcomputing the 

covariance matrix of �� 

 ��� = �� �����     (2.4) 

 

 

where� is the number of the block samples for covariance matrix estimation. Since ���  is 

symmetric, it can be diagonalized with 
 

 ��� = ���
     (2.5) 
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where� is the orthonormal eigenvector matrix of ��� and � is the diagonal eigenvalue matrix. 

The PCA transform of ��is then defined as 

 ��� = ��     (2.6) 

 

 

and the PCA linear transformation is applied as  

 

  � = �����                (2.7) 

 

 

In other words, ��� is found by diagonalizing the covariance matrix of ��. While ��� is not 

diagonal, the covariance matrix of  �, denoted as � � should be diagonal so that the components of  �are decorrelated.  

 

When clean samples are not available, the PCA transform can be calculated from a matrix of 

noisy samples 

 ��! = �� + #                      (2.8) 

 

 

It is justified in [5], that the PCA transform of ��!approximates that of �� if the noise is assumed to 

be white additive with zero mean, and uncorrelated to the image. The noisy dataset in the PCA 

domain can be written as 

 

  �! = �����! = ���$�� + #% = ����� + ���# =  � + #&      (2.9) 

 

 

where#& is the noise transformed with ���. 

 

There are several ways to remove noise from the target block ��!in PCA transform domain. A 

simple way would be to set some of the last rows in  �! to zero. In the methods described in 

[6][7], the target block is denoised with the linear minimum mean square error (LMMSE) 

technique. With LMMSE, each row in  � is estimated with 

 
 Y() = *)Y�+)                         (2.10) 

 

 

where the subscript ,has been used to denote the row number and *)  is the weight for row (i.e., 

PCA component) ,. The optimum weights are calculated as 
 

 *) = Ω.�$),)%Ω.�0$),)%                          (2.11) 

 

 

The covariance matrix of the clean dataset in the PCA domain � � is not directly available. 

However, assuming  � and #&are uncorrelated, we can write � �!as 
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� �! = 12  �! �!� = 12 3 � �� +  �#&� + #& �� + #&#&�4 ≈ 12 3 � �� + #&#&�4 = � � + �!&                                                            (2.12) 

 
 

Because the noise is uncorrelated, �!& is a diagonal matrix �!& = σ+7, where σ+ is the variance 

of the noise. And 

 
 � � = �8�0 − �!& = �8�0 − σ+7    (2.13) 

 

 

The estimate of the centralized target block is then obtained with  

 �( = ���� (                               (2.14) 

 
 

3. POLYNOMIAL THRESHOLD OPERATORS 
 
Thresholding operators have been used extensively in the wavelet domain with the purpose of 

image denoising. Their effectiveness in the wavelet domain has been shown in 

[9][10][11][12][13]. A thresholding operator is a function that is used to map a noisy coefficient 

value into a denoised coefficient value. Two very popular thresholding operators are the hard and 

soft thresholding operators proposed in [14]. In the case of the hard thresholding operator, 

coefficients that have a value less than a threshold are set to zero. In the case of the soft threshold 

operator, coefficients that are lower than the threshold are set to zero and coefficients that exceed 

the threshold are diminished in magnitude by the value of the threshold. There are many 

approaches for finding the appropriate value for the threshold. The Universal threshold was 

proposed in [14]. This threshold value is the expected maximum value of : independent samples 

from a normal distribution :$0, σ%[15], calculated as 

 λ= = σ>2log $:%                                                                             (3.1) 

 

A class of polynomial threshold operators (PTOs) has been proposed in [11]. These operators 

have a linear response for coefficients higher than the threshold and an odd polynomial response 

for coefficients lower than the threshold. Several degrees of freedom allow for the slope and 

intercept of the linear part to be adjusted as well as the coefficients of the polynomial section of 

the operator. In the literature, these type of operators have been optimized by using a linear least 

squares (LLS) optimization approach, which makes use of matrix inversions. An adaptive least 

mean squares (LMS) optimization technique for denoising filter adaptation was used in [16]. The 

same adaptive technique has been used in [12] in the context of wavelet thresholding. 

 

Suppose we have a corrupted signal D!and we wish to calculate DE, which is an estimate of the 

clean signal D. The polynomial threshold operator is defined as 

 

 sGH = T3s+J4 = KaMN�s+J − aMsign3s+J4λQs+JQ > λ∑ aTs+J�TU�                 |s+J| ≤XN�TY� λZ                                 (3.2) 
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where[GH is the estimate of the \th sample of the clean signal, []J is the \th sample of the noisy 

signal, ^ is a vector with coefficients for the polynomial and linear parts of the operator, and λ is 

the threshold. 

 

For denoising of an entire signal, we group the samples in a vector and rewrite equation (3.2) in 

vector form 

 DE = T$D!% = _$D!%`                                                         (3.3) 

 

where_$D!%is a matrix for which the \th row is  

 

 

aJ$D!% = K�0     0        …      0        s+J     − sgn3s+J4λ	       Qs+JQ > λbs+Js+Jc … s+J�MNc        0     0d                  |s+J| ≤ λ Z   (3.4) 

 

The optimal coefficients of `, which can be used to minimize the mean-square-error (MSE) 

between the clean signal and the noisy signal can be found by solving 

 

 `efg = arg min`jD − _$D!%`jk                (3.5) 

 

Even though a linear system of equations lm = nwhere lis a matrix and mandn are vectors, may 

have no solution, the solution m̂to l�lm̂ = l�n is the solution that minimizes jlm − nj�. 

Therefore, the linear least squares solution in (3.5) can be obtained with 

 

 _�$D!%_$D!%`efg = _�$D!%D `efg = p_
$D!%_$D!%qN1_
$D!%D              (3.6) 

 

 

The coefficients of `efgcan then be used to denoise the signal D!.This section is an overview of 

the LPG-PCA method proposed by Zhang, Dong, Zhang, and Shi [5]. In [5], a variable block of 

pixels and a wider training blockcentered on the variable block are defined. In this paper the 

variable block is referred to as the target block, and the training block as the training window. 

 

4. DUAL POLYNOMIAL THRESHOLDING OF PCA COEFFICIENTS 

 
In this section we explain how the denoised coefficients obtained with (2.10) can be further 

denoised by using PTOs. The coefficients to be further denoised are the LMMSE denoised 

coefficients of the target block in its PCA domain and not the coefficients from other blocks in 

the training window, since those blocks are only used to calculate the PCA transform and the 

weights in (2.11). The PTOs are applied to the column of  (that corresponds to the target block 

(the block to be denoised), before transforming the column back to image domain and assembling 

it into the denoised version of the image. We will refer to the column of each  (that corresponds to 

the target block as&E. 

 

When denoising each sample of &E, one PTO is used from two that are available for each PCA 

component. In other words, a total of � × 2 PTOs are used to denoise the entire image, where m 

is the number of pixels in the target block. Selection of the right PTO from the two that are 
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available for each PCA component is done with a simple binary classification scheme. If the 

sample yE)of &Eis estimated to be composed mainly of noise, a highly suppressive PTO should be 

used to denoise it. On the other hand, if the sample is estimated to be mostly clean, a less 

suppressive PTO is to be used. 

 

The weights calculated in (2.11) can be used to estimate the level of noise on a given sample yE). 

The diagonals of the covariance matrices from which the weights are calculated can also be 

written as 

 

� � = tu �� v��v�� u �� ⋯ v��⋯ ⋮⋮ ⋮v�� ⋯ ⋱ ⋮⋯ u ��
w     (4.1) 

 

 

�8�0 = tu �0x v��v�� u �0y
⋯ v��⋯ ⋮⋮ ⋮v�� ⋯ ⋱ ⋮⋯ u �0z

w     (4.2) 

 

whereu �{ and u �0| are the variances of the kth row of  � and  �+, respectively. These are the 

variances of each PCA component for the given training window. The weight for the ,th
 PCA 

component in (2.11) can therefore be rewritten as   

 

 *) = } �~y} �0~y              (4.3) 

 

 

A dual polynomial threshold operator (BPTO) for further denoising of &Ecan then be defined as 

 

 T�$yE)% = �T)�$yE)%*) ≥ �)T)�$yE)%*) < �) Z         (4.4) 

 

Where T,1 corresponds to PTO 1 of the ,th PCA component of the block and T)� corresponds to 

PTO 2 of the ,th
 PCA component of the block, and �) is a threshold for the ,th

 weight, which can 

be heuristically adjusted for different type of images. 
 

Training of the operator T�, which can be used to denoise the entire image consists of finding the 

optimum polynomial coefficient sets `)�and `)�for each pair of PTOs. The total number of 

coefficients will be : × � × 2, given that the total number of coefficients per polynomial is : 

and the number of pixels in each target block is m. The thresholds �)� and �)� in (3.2), can be 

calculated with (3.1), unless a different type of threshold is chosen. To estimate `)�,`)�,and the 

optimum weight threshold �) for each component,, we can calculate `)�and `)�using(3.5),for 

discrete values of �), selecting the �),`)�and `)� that minimize MSE between the training 

image and its noisy counterpart. 
 

5. CASE STUDY 
 
Figure 1 shows a noisy brain MRI image, and the image that results after denoising with LPG-

PCA. The original image was artificially corrupted with Gaussian noise (u = 20). 
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Figure 1. Brain MRI image corrupted with Gaussian noise (

 

Fig. 2 shows a plot of the clean vs. noisy LPG

Only the second PCA component 

LMMSE to clean the noisy coefficients. The LMMSE denoised coefficients vs. noisy coefficients 

are plotted in Fig. 3. Ideally, the plots in Fig. 2 and Fig. 3 would be very similar.

 

Figure 2. Clean (y-axis) vs. noisy (x
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Brain MRI image corrupted with Gaussian noise (u = 20) (left); denoised with LPG

(right) 

Fig. 2 shows a plot of the clean vs. noisy LPG-PCA coefficients of the corrupted MRI image. 

Only the second PCA component is shown in Fig. 2. The original LPG-PCA method uses 

LMMSE to clean the noisy coefficients. The LMMSE denoised coefficients vs. noisy coefficients 

are plotted in Fig. 3. Ideally, the plots in Fig. 2 and Fig. 3 would be very similar. 

 
 
 

axis) vs. noisy (x-axis) LPG-PCA coefficients for the 2
nd

 component of corrupted 

brain MRI image 
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) (left); denoised with LPG-PCA 

PCA coefficients of the corrupted MRI image. 

PCA method uses 

LMMSE to clean the noisy coefficients. The LMMSE denoised coefficients vs. noisy coefficients 

 

component of corrupted 



The International Journal of Multimedia & Its Applications (IJMA) Vol.8, No.1, February 2016

Figure 3. LMMSE denoised (y-axis) vs. noisy (x

 

It is clear from the plots in Fig. 2

LPG-PCA coefficients can be further improved. In particular, the coefficients obtained with 

LMMSE denoising do not reflect the sparsity of the original signal, shown in Fig. 2, since ther

are not many denoised coefficients clustered around zero. The proposed adaptive polynomial 

technique can be used to map the LMMSE denoised coefficients to better denoised coefficients 

by training the polynomial with similar images that have been corrupte

distribution. Two polynomials have been used per component instead of one in order to reduce 

biasing of nonzero coefficients by the coefficients that are supposed to be zero. Thus, the 

coefficients for a particular component are clas

with a separate polynomial. Classification into each group is done by thresholding the weights 

calculated from the LMMSE denoising procedure as in (4.4). The correct threshold is found by 

minimizing the MSE of the reconstructed coefficients separately for every component during 

training. 

 

Fig. 4 shows the clean and noisy images that were used to train the PTOs used to denoise the 

image in Fig. 1. The original training image is the concatenation of 4 brain MR

noisy counterpart has been corrupted with Gaussian noise (

the size of the target image in every dimension.

 

Figure 4. Original training image (left); corrupted with Gaussian noise (
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axis) vs. noisy (x-axis) LPG-PCA coefficients for the 2nd component of 

corrupted brain MRI image 

Fig. 2-3 that the correction obtained by applying only LMMSE to the 

PCA coefficients can be further improved. In particular, the coefficients obtained with 

LMMSE denoising do not reflect the sparsity of the original signal, shown in Fig. 2, since ther

are not many denoised coefficients clustered around zero. The proposed adaptive polynomial 

technique can be used to map the LMMSE denoised coefficients to better denoised coefficients 

by training the polynomial with similar images that have been corrupted with a similar noise 

distribution. Two polynomials have been used per component instead of one in order to reduce 

biasing of nonzero coefficients by the coefficients that are supposed to be zero. Thus, the 

coefficients for a particular component are classified into two subgroups. Each group is denoised 

with a separate polynomial. Classification into each group is done by thresholding the weights 

calculated from the LMMSE denoising procedure as in (4.4). The correct threshold is found by 

of the reconstructed coefficients separately for every component during 

Fig. 4 shows the clean and noisy images that were used to train the PTOs used to denoise the 

image in Fig. 1. The original training image is the concatenation of 4 brain MRI images and its 

noisy counterpart has been corrupted with Gaussian noise (u = 20). The training images are twice 

the size of the target image in every dimension. 

 
 

 
 

. Original training image (left); corrupted with Gaussian noise (u = 20) (right)

The International Journal of Multimedia & Its Applications (IJMA) Vol.8, No.1, February 2016 

9 

 

component of 

3 that the correction obtained by applying only LMMSE to the 

PCA coefficients can be further improved. In particular, the coefficients obtained with 

LMMSE denoising do not reflect the sparsity of the original signal, shown in Fig. 2, since there 

are not many denoised coefficients clustered around zero. The proposed adaptive polynomial 

technique can be used to map the LMMSE denoised coefficients to better denoised coefficients 

d with a similar noise 

distribution. Two polynomials have been used per component instead of one in order to reduce 

biasing of nonzero coefficients by the coefficients that are supposed to be zero. Thus, the 

sified into two subgroups. Each group is denoised 

with a separate polynomial. Classification into each group is done by thresholding the weights 

calculated from the LMMSE denoising procedure as in (4.4). The correct threshold is found by 

of the reconstructed coefficients separately for every component during 

Fig. 4 shows the clean and noisy images that were used to train the PTOs used to denoise the 

I images and its 

). The training images are twice 

) (right) 
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After training, the PTOs can be used to further denoise the LMMSE denoised LPG

coefficients of a target image. In the case of the image in Fig. 1, the denoised coefficients vs. 

noisy coefficients for the 2
nd

 component are shown in Fig. 5. The plot shows many more 

coefficients closer to zero than those in Fig. 3, which were calculated by applying only LMMSE. 

These are the coefficients for which the weight in (4.3) is much lower, which means they were 

mostly made of noise. Coefficients with higher weights are almost left untouched.

Figure 5. LMMSE Polynomial denoised coefficients (y

component of the MRI image in Fig. 1

Figure 6. Brain MRI image denoised with

with LMMSE and polynomial thresholding (right)
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After training, the PTOs can be used to further denoise the LMMSE denoised LPG

coefficients of a target image. In the case of the image in Fig. 1, the denoised coefficients vs. 

component are shown in Fig. 5. The plot shows many more 

coefficients closer to zero than those in Fig. 3, which were calculated by applying only LMMSE. 

These are the coefficients for which the weight in (4.3) is much lower, which means they were 

de of noise. Coefficients with higher weights are almost left untouched. 

 

 
 

. LMMSE Polynomial denoised coefficients (y-axis) vs. noisy coefficients (x-axis) for 2

component of the MRI image in Fig. 1 

 

 
 

. Brain MRI image denoised with LMMSE without polynomial thresholding (left); denoised 

with LMMSE and polynomial thresholding (right) 
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After training, the PTOs can be used to further denoise the LMMSE denoised LPG-PCA 

coefficients of a target image. In the case of the image in Fig. 1, the denoised coefficients vs. 

component are shown in Fig. 5. The plot shows many more 

coefficients closer to zero than those in Fig. 3, which were calculated by applying only LMMSE. 

These are the coefficients for which the weight in (4.3) is much lower, which means they were 

 

axis) for 2
nd

 

LMMSE without polynomial thresholding (left); denoised 
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The image that results by using LMMSE and the image that results when post-processing with the 

two polynomials per component are shown together for comparison in Fig. 6. 
 

6. PERFORMANCE ASSESSMENT 
 

The proposed modification to LPG-PCA was tested on the denoising of three datasets of five 

128X128 8-bit grayscale images each. The first dataset contains slices from a 3D brain MRI 

image; the second dataset contains slices from a microscopic 3D femur bone image; and the third 

dataset contains slices from a 3D neuron cells image. Slices from 3D images were used because 

of the similarity between the images, meaning that a single trained set of polynomials could be 

used to denoise each type of image. The datasets were corrupted by Gaussian noise with u =10,20,30and 40. 

 

The fast version of LPG-PCA was used in the experiments. This version of the algorithm 

performs a dimensionality reduction so that only 40 percent of the PCA coefficients are used in 

the grouping phase of the algorithm. All of the coefficients are then used in the PCA 

decomposition and denoising phases of the algorithm. 
 

In the implementation of polynomial thresholding a total of : = 4 coefficients were used for 

each PTO. The threshold for the polynomial operator was set to be the universal threshold. While 

training the PTOs for each component, the threshold for the LMMSE weights was varied between 

0 and 3 at intervals of .02. At each one of these thresholds the optimum polynomials were 

calculated. The polynomial threshold operator, the LMMSE weight threshold and their 

corresponding two polynomials that minimized MSE for each component were chosen as the 

optimum parameters for denoising each component in a particular set of images. Polynomial 

thresholding was not used, however, for PCA components in which the number of coefficients 

above the threshold was less than 20. In these cases the LMMSE denoised coefficients were used 

as the final denoised coefficients. This was done in order to avoid overfitting of the polynomial to 

a very few coefficients. 
 

The performance of the modified LPG-PCA algorithm was compared to that of the original LPG-

PCA algorithm for one and two iterations. The amount of noise to be reduced by the second 

iteration is considerably less so that a different set of polynomials were trained to be used for the 

second iteration. This means that two sets of polynomials were generated during training. 
 

The peak signal to noise ratio (PSNR) results in Table 1 show that a single iteration of the 

modified LPG-PCA method performs much better than a single iteration of the original LPG-

PCA. In fact, a single iteration of the modified LPG-PCA performs better than two iterations of 

the original method for most of the experiments when using PSNR as a measure of performance. 

When using the structural similarity index (SSIM) as the performance metric, the results of a 

single iteration of the modified LPG-PCA are very close to those obtained with two iterations of 

the original LPG-PCA. In the second iteration of the modified LPG-PCA there is an additional 

improvement to both metrics in most cases. In both iterations the improvement to the original 

method is better for high levels of noise. The visual results from Fig. 7-9 show that the 

improvement by the modification is seen in a reduction of the residual noise, but also in the 

artifacts created by the original method. 
 

7. CONCLUSION 
 

An enhanced LPG-PCA method has been proposed in this paper. The linear mapping of PCA 

coefficients by LMMSE in the original implementation of LPG-PCA has been improved by 

adding an optimal nonlinear mapping stage. The additional mapping of coefficients is done by 

separating coefficients for every PCA component into two subgroups and using a separate 
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polynomial for each group. The polynomials are trained to denoise specific types of images. 

Image degradation metrics and visual appearance show that the proposed stage is an improvement 

to the original LPG-PCA method. Possible future directions would be to explore whether the 

method described can improve denoising in other domains and to assess its performance for other 

types of noise. 
 

 

Table 1. PSNR and SSIM results for denoising brain MRI, neuron cells, and femur bone images with LPG-

PCA and LPG-PCA with polynomial thresholding 
 

 

Dataset 
Noise 

Level 

PSNR SSIM 

LPG-PCA                

One 

iteration 

LPG-PCA 

Modifie

d One 

iteration 

LPG-PCA                

Two 

iteration

s 

LPG-PCA 

Modified 

Two 

iteration

s 

LPG-

PCA                

One 

iteratio

n 

LPG-PCA 

Modifie

d One 

iteration 

LPG-PCA                

Two 

iteration

s 

LPG-PCA 

Modified 

Two 

iteration

s 

Brain 

MRI 

u = 10 36.4 37.3 37.4 36.0 0.92 0.94 0.95 0.95 

u = 20 31.7 33.2 33.1 33.8 0.78 0.86 0.87 0.89 

u = 30 29.0 31.0 30.8 31.6 0.66 0.79 0.80 0.84 

u = 40 27.0 29.4 29.3 29.7 0.55 0.73 0.73 0.79 

Neuron

s 

u = 10 33.5 33.9 33.9 34.0 0.92 0.95 0.95 0.95 

u = 20 28.9 29.6 29.5 29.8 0.78 0.88 0.88 0.91 

u = 30 26.3 27.2 27.1 27.5 0.65 0.82 0.82 0.86 

u = 40 24.4 25.5 25.5 25.9 0.54 0.75 0.74 0.83 

Femur 

u = 10 34.2 34.8 34.6 35.2 0.88 0.90 0.91 0.92 

u = 20 29.3 30.0 29.7 30.5 0.68 0.75 0.75 0.80 

u = 30 26.6 27.4 27.2 27.9 0.50 0.61 0.61 0.67 

u = 40 24.9 26.0 25.8 26.3 0.38 0.51 0.51 0.57 
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Figure 7. Brain MRI training image (top left); original image for testing (top right); first iteration  

 

denoising with LPG-PCA (middle left); first iteration denoising with LPG-PCA and polynomial 

thresholding (middle right); second iteration denoising with LPG-PCA (bottom left); second 

iteration denoising with LPG-PCA and polynomial thresholding (bottom right) 
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Figure 8. Femur bone training image (top left); original image for testing (top right); first iteration] 

  

denoising with LPG-PCA (middle left); first iteration denoising with LPG-PCA and polynomial 

thresholding (middle right); second iteration denoising with LPG-PCA (bottom left); second 

iteration denoising with LPG-PCA and polynomial thresholding (bottom right) 
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Figure 9. Neuron cells training image (top left); original image for testing (top right); first iteration 
 

Figure 9. Neuron cells training image (top left); original image for testing (top right); first iteration 

denoising with LPG-PCA (middle left); first iteration denoising with LPG-PCA and polynomial 

thresholding (middle right); second iteration denoising with LPG-PCA (bottom left); second 

iteration denoising with LPG-PCA and polynomial thresholding (bottom right) 
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