
International Journal of Managing Information Technology (IJMIT) Vol.14, No.2, May 2022 

DOI: 10.5121/ijmit.2022.14201                                                                                                                       1 

 
BUILDING RELIABLE CLOUD SYSTEMS  

THROUGH CHAOS ENGINEERING 
 

Yolam Zimba 

 

University of Lusaka, School of Post Graduate Studies, Lusaka, Zambia 
 

ABSTRACT 
 
Cloud computing systems need to be reliable so that they can be accessed and used for computing at any 

given point in time. The complex nature of cloud systems is the motivation to conduct research in novel 

ways of ensuring that cloud systems are built with reliability in mind. In building cloud systems, it is 

expected that the cloud system will be able to deal with high demands and unexpected events that affect the 

reliability and performance of the system. 

 
In this paper, chaos engineering is considered a heuristic method that can be used to build reliable cloud 

systems. Chaos engineering is aimed at exposing weaknesses in systems that are in production. Chaos 
engineering will help identify system weaknesses and strengths when a system is exposed to unexpected 

knocks and shocks while it is in production. 

 
Chaos engineering allows system developers and administrators to get insights into how the cloud system 

will behave when it is exposed to unexpected occurrences. 

 

KEYWORDS 
 
Reliability, Cloud Computing, Chaos Engineering, Distributed Systems 

 

1. INTRODUCTION 
 

Cloud reliability is a measure of the probability that a cloud system delivers the services it was 

designed for at any given point in time [2]. This definition implies that the cloud service should 
be available at any given point in time and function as expected even if unexpected events do 

occur. Cloud systems just like any other computer systems are exposed to various shocks and 

knocks while they are in production or live environments. These shocks and knocks could be a 
result of an unexpected increase in user requests, an unexpected error, or system misuse by the 

user. The system should be able to scale up or down to cater for the sudden rise in demand or 

system usage. [7] states that reliability means that the system should not fail during its operating 

period. 
 

When we build cloud systems, the goal is to ensure that the system is always available and 

accessible to users at any given point in time. Through chaos engineering, experiments are 
conducted on a system in order to build confidence in the system’s ability to withstand turbulent 

conditions while the system is in production [1]. 

 
[4] defines reliability as 

 

“the ability of a system or component to perform its required functions under stated conditions 

for a specified period of time.” 

http://airccse.org/journal/ijmit/vol14.html
https://doi.org/10.5121/ijmit.2022.14201


International Journal of Managing Information Technology (IJMIT) Vol.14, No.2, May 2022 

2 

This definition coincides with [2] but [4] further breaks down the definition by stating that the 
definition of reliability has the following components: 

 

 Ability: This can be measured or expressed quantitatively with the aid of probability. 

 Required Function: This relates to the expected performance of a system or component. 

 Conditions: This relates to the environmental conditions in which the system or 

component operates. 

 Specified time: This refers to the mission time which provides the expected duration of 
time in which the component or system is expected to operate. 

 

[4] further provides a mathematical definition of reliability by positing that, reliability is defined 

as: 
 

“the probability that the random variable time to failure (T) is greater or equal to mission time 

(t) ” 
 

This is illustrated by the formula shown below 

 

 
  (4) 

 

[7] simplifies the definition of reliability by stating that: 
 

“Reliability is the probability of no failures in an interval” 

 
This paper does not delve deeper into the mathematical aspect of reliability, but rather dwells 

much on the principles of chaos engineering and how these principles can be used to build 

reliable cloud systems. Researchers or readers who are interested in exploring the reliability 

phenomenon in a mathematical sense can refer to [4] and [7] as these texts have propounded 
further on the mathematical aspect of reliability engineering.  

 

2. CHAOS ENGINEERING 
 
The above section has laid a foundation by defining reliability and stating that cloud systems 

need to be designed with reliability in mind. In this section, chaos engineering is explored in 

detail. 

 
[5] states that Chaos Engineering 

 

“Involves experimenting on a distributed system to build confidence in its capability to withstand 
turbulent conditions in production” 

 

[6] further posits that chaos engineering is, 
 

“The discipline of experimenting on a system in order to build confidence in the system’s 

capability to withstand turbulent conditions in production.” 

 
This is a very important aspect if we are to build reliable cloud systems. Cloud system users need 

to have confidence in the cloud system and be able to depend on the cloud system for their 

computing activities. Chaos engineering is one technique that can be used in this regard. Chaos 
engineering is more of a back-end technique that is used by system engineers to inject failure into 



International Journal of Managing Information Technology (IJMIT) Vol.14, No.2, May 2022 

3 

a distributed system and observe how the system performs based on hypotheses that are conjured 
by system engineers and developers.  

 

[6] propounds that Chaos Engineering is, 

 
“An empirical, systems-based approach that addresses the chaos in distributed systems at scale 

and builds confidence in the ability of those systems to withstand realistic conditions.” 

 
With this approach, we learn about the behavior of the distributed system by observing how the 

system behaves during controlled experiments in which the system is purposefully exposed to 

aberrant conditions while it is in production [5].  
 

2.1. Principles of Chaos Engineering 
 
Section 3.0 has introduced chaos engineering and its aim. In this section, the principles of chaos 

engineering are introduced.  

 
The chaos engineering phenomenon revolves around four principles, these are: 

 

1. Build a hypothesis around steady-state behavior: In the first principle of chaos 

engineering, we define what our steady-state should be. Steady-state here refers to attributes 
or factors that we consider favorable or in a nutshell what defines the system when it is 

working properly [5]. These could be attributes like availability, response time, or scalability. 

The main aim of chaos engineering is to ensure that the cloud system is working properly and 
the first principle is aimed at ensuring that working properly is defined and the metrics used 

to measure a system that is working properly are defined [5]. With this principle, it is implied 

that complex systems will exhibit certain regular behaviors that enable system engineers to 
predict how the system will perform. In chaos engineering, we come up with hypotheses 

around how the injection of system shocks and knocks will affect the system while it is in 

production [5]. The hypotheses formed during chaos engineering should target a specific 

metric. This metric could be availability or scalability [5]. 
Chaos engineering focuses on the measurable outputs of a system rather than the internal 

attributes of the system [6]. 

 
2. Vary real-world events: This principle suggests that we pick the stimulus for the chaos 

experiment from all possibilities that might occur in the real world or in a given realistic 

scenario. This enables system engineers to test the system on real world events that have 

probably occurred or might occur and this ensures that the experiments are controlled and 
that they are realistic. In a nutshell any input that can affect the steady state is a worthy 

candidate for input or injection into the system undergoing chaos experiments [5][6]. Some 

examples of such inputs could be failing a critical service, flooding the cloud system with 
requests to determine if the system is scalable and performing other aberrant operations that 

give very good insights into the behavior of the system when it is exposed to harsh or 

unfamiliar operations [5]. Although we want to get real insights of what will happen when 
the cloud system is exposed to shocks and knocks,[5] provides a cautionary statement by 

stating that, engineers should be cautious at this stage, the aim is not to harm the system but 

to get an understanding of what really happens when the system is exposed to harsh 

conditions. Any event that is likely to disturb the steady-state in considered as a potential 
variable in a chaos experiment [6] but cloud system engineers should keep in mind that the 

aim is not to harm or break the cloud system but to get realistic insights into how the system 

will function when exposed to aberrant situations or conditions in production. 
 



International Journal of Managing Information Technology (IJMIT) Vol.14, No.2, May 2022 

4 

3. Run experiments in production: This principle advocates for running chaos experiments 
when the cloud system is in production [6]. A number of tools like cloud sim allow cloud 

systems to be simulated.  Chaos experiments must be run on live systems as it is not possible 

to simulate all aspects of a live system. The only sure way of taking all aspects of a system 

into consideration is when the system is in production (live system) and it is being used for 
computing by cloud users. According to [6] it is critical that the experiments are run in such a 

way that cloud users are not severely affected during the experiments. [6] describes this as 

limiting the blast radius. Cloud engineers should be able to row back quickly if the 
experiment seems to get out of control or affects the cloud users. 

 

4. Automate experiments to run continuously: The final principle of chaos engineering 
advocates for the use of automation to ensure consistency and to build confidence in the 

implemented solutions. Scripts can be used here to ensure that aberrant conditions are 

constantly injected in the live system so as to ensure that the solutions implemented are end 

to end and that the steady-state is maintained. This results in system engineers gaining 
confidence in the solutions implemented. This further leads to reliable cloud systems that are 

perceived as dependable by the users. 

According to [5] the idea of using automation is very intimidating because failure is being 
automated and injected into the system, this type of purposeful stimulation of system failures 

is quite daunting for the system engineer. 

Automating the chaos experiments is better than running the experiments manually [6]. 
Manual experiments are tedious and difficult to track. It is also very difficult to drive system 

orchestration and analysis when the experiments are manual [6]. 

 

2.2. Chaos Engineering Life Cycle 
 

Based on the principles explained in section 2.1, the figure shown below is the proposed life 
cycle that can followed to implement successful chaos experiments 

 

 
 

Figure 1. Chaos Engineering Life Cycle adapted from[7] 



International Journal of Managing Information Technology (IJMIT) Vol.14, No.2, May 2022 

5 

From figure 1, we can conclude that once a weakness is identified, it has to be fixed and this 
increases the reliability of the cloud system. On the other hand, if the system is able to overcome 

the induced failure, the scope of the experiment must be increased to identify more weaknesses. 

The goal of the chaos experiments is to identify the cloud system weaknesses and develop 

solutions or mechanisms that increase the reliability of the cloud system. Chaos engineers should 
have this in mind. The aim is not to break the system but to identify weaknesses through 

experimentation to gain empirical insights into how the system performs when it is exposed to 

aberrant conditions. 
 

3. RELIABLE CLOUD SYSTEMS DESIGN CONSIDERATIONS 
 

Section 2.0 introduced the concept of reliability while section 2.1 introduced the concepts and 

principles of chaos engineering. In this section, some aspects that should be considered by cloud 
system engineers when designing reliable cloud systems are discussed. 

 

Designing reliable cloud systems is not easy and cloud engineers are aware of the complex nature 
of cloud systems. It is therefore imperative that different design options are considered and 

appreciating the pros and cons of each design method chosen is really critical to the design of 

reliable cloud systems [3]. 
 

Cloud system engineers should base their solutions on facts rather than conjuncture when 

designing reliable cloud systems. These facts can be gathered through the use of chaos 

engineering. Chaos engineering is one of the empirical methods that can be employed by cloud 
system designers to really formulate solutions that are tried and tested when building reliable 

cloud systems. 

 
Cloud systems are complex, but it is always best to simplify the design so as to reduce on the 

complexity of cloud system [3]. [3] advocates for leaving out marginal complex features when 

designing systems.  
 

[3] further posits that some complex system features should be discarded and system engineers 

should aim at simplifying systems but meet the key functional requirements of the system. 

 
[3] affirms the trade off during system design by stating that: 

 

“Sometimes it will be necessary to discard a few design objectives to achieve a good design. The 
system engineer should always keep in mind that the design objectives generally contain a list of 

key features and a list of desirable features. The design must satisfy the key features, but if one or 

two of the desirable features must be eliminated to achieve a superior design, the trade-off is 

generally a good one.” 
 

[12] proposes that in designing cloud systems, cloud system engineers should consider splitting 

the functions of the application and clustering the cloud application [12]. These designs help with 
isolating system components that develop faults. Though clustering may introduce another level 

of complexity. In a cluster, a group of systems or components function as one unit, if a unit 

develops a fault, it might be very difficult to get the system up and running. 
 

 

 

 
 



International Journal of Managing Information Technology (IJMIT) Vol.14, No.2, May 2022 

6 

4. EXAMPLES OF TOOLS USED IN CHAOS ENGINEERING 
 
The concept of chaos engineering might seem speculative to researchers or readers who have not 

come across this phenomenon. In this section, examples of real-world tools used to automate 

chaos experiments are given. 

 
Using tools conforms to the fourth principle of chaos engineering. Automating chaos experiments 

can efficiently be implemented by using tools. 

 

 Chaos Monkey: Chaos Monkey was developed by the system engineers at Netflix [1][5]. 
It is a tool used to test the resilience of the cloud infrastructure [7]. This tool randomly 

terminates instances in production in order to ensure that the services implemented by 

system engineers are resilient [8]. 

 Litmus: This tool is mostly used to orchestrate chaos in the Kubernetes environment. 

This tool is an open-source tool and it is used to inject unexpected failures into a system 
in order to improve the systems resilience [9]. This tool is used to detect bugs in the 

production environment so that system engineers can improve the reliability of the 

system [7]. 

 Gremlin: This tool is considered a “Failure as a service” tool and it is aimed at making 
the internet more reliable. It offers a platform that can be used by system engineers to 

design and safely conduct experiments on complex systems in order to identify system 

weaknesses and improve the resilience of the cloud system before cloud users are 
affected [7][10]. 

 Toxiproxy: Is a tool designed to test network connections. It is tool that can used to 

ensure that a system has no single point of failure [11]. It has features that enable 

randomised chaos and customisation. It supports deterministic tampering with 

connections [7][11]. 
 

The examples given above are very useful if Chaos engineering is to be used to design reliable 

cloud systems. The tools can be very complex to implement [11] and require a high level of 
specialization. 

 

5. CONCLUSION 
 

Chaos engineering can be used to design reliable cloud systems. Reliable cloud systems are 
always available and function as expected by the users at any given point in time. The complex 

nature of these systems must be appreciated and this should be the motivation for employing 

design techniques and approaches that make cloud systems reliable. 
 

Users need to gain the confidence in cloud systems and cloud system engineers need to be 

confident that their solutions work. This can only be achieved by injecting failures in live systems 
and then observing how the cloud system performs when exposed to aberrant conditions while 

the system is in production and users are using the system. This is the key theme of chaos 

engineering, injecting failure in live systems and observing how the systems performs. This leads 

to system engineers gaining useful insights into the cloud systems. Techniques like chaos 
engineering result in the production of reliable and dependable cloud systems that are fault 

tolerant. 

 
 

 

 



International Journal of Managing Information Technology (IJMIT) Vol.14, No.2, May 2022 

7 

REFERENCES 
 
[1] Russ Miles, 2019, Learning Chaos Engineering, First Edition, O’Reilly Media, United States of 

America. 

[2] Mazin yousif, 2018, Cloud Computing Reliability—Failure is an Option IEEE Cloud Computing. 

[3] Martin L. Shooman, 2002, Reliability of Computer Systems and Networks: Fault Tolerance, Analysis 

and Design, John Wiley & Sons Inc. 

[4] Ajit Kumar Verma. Srividya Ajit, Durga Rao Karanki, 2016, Reliability and Safety Engineering, 

Second Edition, Springer Series in Reliability Engineering. 
[5] Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke Kosewski, Justin Reynolds, and 

Casey Rosenthal, 2016, Chaos Engineering, IEEE software, www.computer.org/software  

[6] Principles of Chaos Engineering, 2019, https://principlesofchaos.org/. Last accessed on 23rd April 

2022 

[7] Chaos Engineering: Approaches, Best Practices and Case Studies, Infostretch, White Paper, 

https://www.infostretch.com/resources/white-papers/chaos-engineering/ last accessed on 3rd May 

2022. 

[8] Chaos Monkey, https://netflix.github.io/chaosmonkey/, last accessed on the 3rd of May 2022. 

[9] Saiyan Pathak, 2020, Chaos Engineering for Kubernetes with Litmus, 

https://www.civo.com/learn/chaos-engineering-kubernetes-litmus last accessed on 3rd May 2022 

[10] IBM, Chaos Engineering with 

Gremlin,https://www.ibm.com/cloud/architecture/architecture/practices/chaos-engineering-with-
gremlin-on-cloud/ last accesses on 3rd May 2022. 

[11] Timothy Agustian, 2021, Simulating Customised Chaos in Golang using Toxiproxy, 

https://medium.com/tokopedia-engineering/simulating-customized-chaos-in-golang-using-toxiproxy-

b913584d88a7 last accessed on 3rd May 2022. 

[12] Kola Ayanlowo, O. Shoewu, Segun O. Olatinwo, Tobi Samuel Fadiji, Segun Adeyanju ,2012, 

Conceptual Design and Implementation of a Cloud Computing Platform Paradigm, Computer 

Engineering and Intelligent Systems, ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online), Vol 3, 

No.12, 2012. 

 

 

 


	Abstract

