
International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024

DOI:10.5121/ijmvsc.2024.15104 33

STREAMLINING ROADSIDE INSPECTION

REPORTING IN FLEET MANAGEMENT SYSTEMS

Sahil Nyati

Director Engineering, Maven Machines, Austin, Texas, USA

ABSTRACT

This research paper explores the development and implementation of an enhanced roadside inspection

feature within a fleet management system. The focus is on the integration of a new form within the driver

application, facilitating the streamlined reporting of roadside inspections. The feature allows drivers to

input, transmit, and store key data relevant to inspections, aiding compliance and operational efficiency.

KEYWORDS

Fleet Management, Roadside Inspection, Data Integration, Driver Application, Real-Time Reporting.

1. INTRODUCTION

In the evolving landscape of fleet management, the need for effective and efficient regulatory

compliance, particularly in roadside inspections, is paramount. The research paper authored by

Sahil Nyati, a seasoned expert in fleet management systems, delves into the technological
advancements aimed at refining this critical aspect of fleet operations. With a focus on the

development and implementation of an enhanced roadside inspection feature within a fleet

management system, the paper explores the integration of a novel form in the driver application.

This form is designed to facilitate seamless and accurate reporting of roadside inspections,
thereby aiding compliance, and enhancing operational efficiency. The introduction of this digital

solution marks a pivotal shift from traditional manual processes, addressing the challenges of

time consumption and inaccuracies. The paper is set to offer a comprehensive exploration of the
feature's design, its practical implementation, and the consequential impact on the overarching

process of fleet management.

2. OVERVIEW

The evolution of fleet management has increasingly emphasized the importance of regulatory

compliance, particularly in the context of roadside inspections. Such inspections are critical for

ensuring the safety and legality of fleet operations, mandating a need for precise and timely
reporting of inspection data. Recent advancements in fleet management technology have led to

the development of an enhanced roadside inspection feature within driver applications. This

paper provides an in-depth exploration of this feature, focusing on its design, implementation,

and impact on the fleet management process.

2.1. Background and Significance

Roadside inspections are a regular aspect of fleet operations, entailing a thorough review of

vehicle conditions, driver compliance, and adherence to transportation regulations. Traditionally,

the process of recording and communicating the details of such inspections has been manual,

https://airccse.org/journal/mvsc/ijmvsc.html
https://doi.org/10.5121/ijmvsc.2024.15104

International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024

34

time-consuming, and prone to inaccuracies. The introduction of a digital solution, integrated into
the driver application, represents a significant shift towards automating and streamlining this

process.

2.2. Objectives

The primary objective of this enhanced feature is to facilitate the efficient recording and
transmission of roadside inspection data directly from the driver's interface. This involves

capturing a range of information, including inspection details, driver and vehicle data, and any

noted violations or remarks. The system aims to simplify the process for drivers, ensure data

accuracy, and improve the speed of communication to relevant fleet management personnel.

2.3. Technological Advancement

The feature exemplifies technological advancement in several ways:

2.3.1. Automation:

Automatically populating fields such as driver ID, vehicle number, and location data reduces

manual entry and potential errors.

2.3.2. Real-Time Data Capture:

The ability to instantly record and transmit inspection data reflects a move towards real-time,

data-driven fleet management.

2.3.3. User-Centric Design:

The focus on creating an intuitive and straightforward user interface in the driver application

highlights the importance of user-centric design in technology development.

3. DATA COMMUNICATION

The data communication aspect of the enhanced roadside inspection feature in the fleet

management system is pivotal for its functionality. It involves transmitting detailed inspection

data from the driver application to the central fleet management system or directly to designated
personnel via email. This section discusses the two primary methods of data communication:

Integration Event and Email and provides detailed code examples for each.

[“Figure 1.”]

International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024

35

3.1. Integration Event

The Integration Event method involves sending data from the driver application to a centralized

system for storage and distribution. This method is typically used when real-time data processing
and integration with other fleet management functionalities are required.

Code For Integration Event:
```python 

import requests 

import json 

 
def send_inspection_data(data): 

api_endpoint = 'https://api.fleetmanagement.com/inspection' 

    headers = {'Content-Type': 'application/json'} 
 

    try: 

        response = requests.post(api_endpoint, headers=headers, data=json.dumps(data)) 
response.raise_for_status() 

        return response.json() 

    except requests.HTTPError as http_err: 

        print(f'HTTP error occurred: {http_err}') 
    except Exception as err: 

        print(f'An error occurred: {err}') 

 
# Sample inspection data 

inspection_data = { 

    'driverCode': '502614', 
    'driverName': 'Volkel, Daniel', 

    'vehicleNumber': 'D2475', 

    # ... other fields 

} 
 

# Sending the inspection data 

send_inspection_data(inspection_data)``` 
 

This Python code defines a function `send_inspection_data` that sends inspection data to a 

specified API endpoint. The function takes a dictionary `data`, converts it into JSON format, and 

makes a POST request to the 'https://api.fleetmanagement.com/inspection' URL. It sets the 
appropriate headers for a JSON request. If the request is successful, it returns the response in 

JSON format. If there's an HTTP error or any other exception during the request, it prints an error 

message. The `inspection_data` dictionary contains sample data, which is then sent using this 
function. This code is typically used to transmit inspection data from a client (like a fleet 

management app) to a server for processing and storage. 

 

3.2. Email 
 

The Email method is used when data needs to be communicated directly to specific individuals or 
departments, such as in cases where immediate action is required or when integration with the 

central system is not feasible. 

 

Code Example for Sending Email: 
```python 


International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024

36

import smtplib
from email.mime.text import MIMEText

def send_email(subject, body, to_addr):

 from_addr = 'noreply@fleetmanagement.com'
 msg = MIMEText(body)

 msg['Subject'] = subject

 msg['From'] = from_addr
 msg['To'] = to_addr

 # SMTP server configuration
 server = smtplib.SMTP('smtp.fleetmanagement.com', 587)

 server.starttls()

 server.login('email_user', 'email_password')

 server.sendmail(from_addr, to_addr, msg.as_string())
 server.quit()

Sample email content
subject = 'Roadside Inspection Report'

body = 'Inspection Date/Time: 04/25/2023 22:30\nDriver: Volkel, Daniel – 502614\n...'

to_address = 'roadsideinspection@fleetmanagement.com'

Sending the email

send_email(subject, body, to_address)

``` 
 

This Python function `send_email` creates and sends an email using the SMTP protocol. It takes 

the subject, body, and recipient's address as inputs and sends an email formatted with these 
details. 

 

4. DRIVER APPLICATION 
 

The driver application is a crucial component of the fleet management system, serving as the 
interface for drivers to input and manage data related to roadside inspections. This section 

discusses the modifications to the driver application to include a Roadside Inspection Form 

feature and provides detailed code examples for its implementation. 



International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024 

37 

 
 

[“Figure 2.”] 

 

Modifications in the Driver Application 
 

4.1. Roadside Inspection Form Integration 
 

The driver application is enhanced with a new feature allowing drivers to complete a Roadside 

Inspection Form. This form is designed to capture all necessary data efficiently and accurately 
during a roadside inspection. 

 

4.2. User Interface Changes 
 

The user interface of the driver application is updated to include: 

3.2.1. A dedicated option for selecting the 'Roadside Inspection Form'. 
3.2.2. A form interface for drivers to enter and submit inspection details. 

 

4.3. Form Submission Workflow 
 

The workflow for submitting the roadside inspection form involves: 

3.3.1. Selection of the form by the driver. 
3.3.2. Entry of required data fields. 

3.3.3. Submission of the form for processing and communication. 

 

Code for Driver Application 
 

HTML and JavaScript for Form Interface: 
```html 

<!DOCTYPE html>

<html lang="en">
<head>

 <meta charset="UTF-8">

 <title>Roadside Inspection Form</title>
 <link rel="stylesheet" href="style.css">

</head>

International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024

38

<body>
 <form id="inspection-form">

 <label for="inspection-date">Inspection Date:</label>

 <input type="date" id="inspection-date" name="inspection-date" required>

 <label for="inspection-time">Inspection Time:</label>

 <input type="time" id="inspection-time" name="inspection-time" required>

 <!-- Additional fields like Driver ID, Vehicle Number, etc. -->

 <button type="submit">Submit</button>
 </form>

 <script src="script.js"></script>

</body>
</html>

``` 

 
```javascript 

// script.js

document.getElementById('inspection-form').addEventListener('submit', function(event) {
 event.preventDefault();

 const formData = new FormData(event.target);

 const data = Object.fromEntries(formData.entries());

 // Function to handle form data submission

 submitInspectionData(data);
});

function submitInspectionData(data) {

 // Code to handle data submission to the server
 console.log('Submitting inspection data:', data);

 // Implementation details depend on the backend API

}
``` 

 

5. METHODOLOGY 
 

 
 

[“Figure 3.”] 

 



International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024 

39 

The methodology for implementing the Roadside Inspection Form feature within a fleet 
management system involves a multi-faceted approach, focusing on software development, data 

handling, and user interface design. This section will outline the key stages in the development 

process, including backend integration, frontend design, and testing. 

 

5.1. Backend Development 
 
The backend handles data processing, storage, and communication. It is responsible for receiving 

data from the driver application, processing it, and optionally sending it via email or storing it in 

a database. 

 

Code for Backend Processing: 
```python 
from flask import Flask, request, jsonify

import json

import smtplib

from email.mime.text import MIMEText

app = Flask(__name__)

@app.route('/submit-inspection', methods=['POST'])

def submit_inspection():

 data = request.json
 store_inspection_data(data)

 send_inspection_email(data)

 return jsonify({"status": "success"})

def store_inspection_data(data):

 # Code to store data in database

 pass

def send_inspection_email(data):

 subject = f"Roadside Inspection Report for {data['driverName']}"

 body = json.dumps(data, indent=4)
 # Setup SMTP server and send email

 pass

if __name__ == '__main__':

 app.run(debug=True)

``` 
 

This Python Flask application provides an API endpoint for submitting inspection data. It handles 

storing the data and sending an email with the inspection details. 

 

5.2. Frontend Development 
 
The frontend involves the design and implementation of the Roadside Inspection Form within the 

driver application. The focus here is on creating an intuitive and user-friendly interface. 

 

HTML and JavaScript for the Frontend Form: 
```html 


International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024

40

<!-- HTML for Roadside Inspection Form -->
<form id="inspection-form">

 <!-- Form fields for inspection data -->

 <input type="text" name="driverName" placeholder="Driver Name" required>

 <!-- Additional form fields -->
 <button type="submit">Submit</button>

</form>

``` 
 

```javascript 

// JavaScript for handling form submission
document.getElementById('inspection-form').addEventListener('submit', function(event) {

 event.preventDefault();

 const formData = new FormData(event.target);

 const data = Object.fromEntries(formData.entries());
 submitInspectionData(data);

});

function submitInspectionData(data) {

 fetch('/submit-inspection', {

 method: 'POST',
 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify(data)
 })

 .then(response =>response.json())

 .then(data => {
 console.log('Success:', data);

 })

 .catch((error) => {

 console.error('Error:', error);
 });

}

``` 
 

This JavaScript code handles the form submission, capturing the data and sending it to the 

backend API for processing. 
 

6. ROADSIDE INSPECTION FORM DETAILS 
 

The Roadside Inspection Form within the driver application is a critical component for 

compliance and record-keeping. This section outlines the detailed structure and functionality of 
the form, emphasizing the graphical user interface (GUI) design, data fields, and email 

communication. 

 



International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024 

41 

 
 

[“Figure 4.”] 

 

6.1. Driver Gui Fields 
 

The layout of the Roadside Inspection Form is designed for ease of use, ensuring drivers can 
quickly enter necessary information.The form includes several fields, each designed to capture 

specific inspection-related data: 

 

Inspection Date/Time: Automatically filled with the current date and time but editable by the 
driver. 

Driver ID and Name: Auto-populated based on the driver logged into the device. 

Vehicle and Trailer Number: Defaults to the current vehicle but editable. 
Manifest Number: Optionally filled with the current manifest. 

Inspection Type: A choice between 'Roadside' and 'Fixed'. 

Violation Indicator: A binary choice indicating if there were any violations. 
Out of Service Indicator: Indicates if the vehicle was taken out of service. 

Violations: A text field for detailing the violations, if any. 

Remarks: Additional notes or remarks about the inspection. 

 

6.2. Email 
 
The email generated from the form submission includes all the fields from the form. 

The email is sent to a predefined address designated for roadside inspection reports. 

An example email format that includes all the necessary information in a structured and readable 

format. 
For integration with backend systems, the data is formatted in JSON. This format ensures 

seamless integration with the fleet management system for data processing and storage. 

 

Code Implementation 
 

Javascript for Form Submission and Email Generation: 
```javascript 

// JavaScript function to handle form submission

function handleSubmit(event) {

International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024

42

 event.preventDefault();

 const formData = new FormData(event.target);

 const data = Object.fromEntries(formData.entries());

 sendEmail(data); // Function to send data via email
}

// Function to send email with form data
function sendEmail(data) {

 // Convert data to email format

 const emailBody = formatEmailBody(data);
 const emailSubject = `Roadside Inspection: ${data.driverName} - ${data.driverID}`;

 const toAddress = "inspection@fleetmanagement.com";

 // Email sending logic (SMTP setup or Email API call)
 // ...

}

// Function to format email body
function formatEmailBody(data) {

 return `

 Inspection Date/Time: ${data.inspectionDateTime}
 Driver: ${data.driverName} - ${data.driverID}

 Vehicle: ${data.vehicleNumber}

 Trailer: ${data.trailerNumber}

 Manifest: ${data.manifestNumber}
 Inspection Type: ${data.inspectionType}

 Found Violation(s): ${data.violationIndicator}

 Out of Service: ${data.outOfServiceIndicator}
 Violations: ${data.violations}

 Remarks: ${data.remarks}

 Location: ${data.inspectionAddress}

 Latitude: ${data.inspectionLatitude}
 Longitude: ${data.inspectionLongitude}

 Odometer: ${data.odometer}

 `;
}

// Attach event listener to the form
document.getElementById('roadside-inspection-form').addEventListener('submit',

handleSubmit);

``` 

 
This JavaScript code provides the logic for capturing form data, formatting it for an email, and 

handling the submission process. It ensures that the data collected from the driver's input is 

systematically organized and transmitted for compliance and record-keeping. 
 

7. RESULTS AND DISCUSSION 
 

This section evaluates the outcomes and implications of the implemented Roadside Inspection 

Form feature within the fleet management system. The assessment focuses on the system's 
performance, user experience, and overall impact on fleet management processes, drawing on 

data collected post-implementation. 



International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024 

43 

7.1. System Performance Evaluation 
 

7.1.1. Accuracy and Efficiency of Data Capture 

 
The system showed a high degree of accuracy in capturing and transmitting roadside inspection 

data. The automated fields reduced human error, while the streamlined submission process 

significantly improved the efficiency of reporting. 
 

Performance metrics, such as time taken to complete a form and error rates in data entry, 

indicated substantial improvements over the previous manual processes. 

 

7.1.2. Backend System Reliability 

 

The backend infrastructure, including the server and database systems, demonstrated robust 
performance with minimal downtime or errors. This reliability ensured uninterrupted service for 

drivers using the application. 

 

7.2. User Experience 
 

7.2.1. Driver Feedback 
 

Overall, drivers responded positively to the new inspection form feature. They appreciated the 

simplicity and ease of use, noting that the automated field population and clear interface reduced 
the time and effort required to report inspections. 

 

Some drivers provided constructive feedback, suggesting areas for further improvement, such as 

more intuitive navigation within the form and enhanced functionality for entering violation 
details. 

 

7.2.2. Training and Adaptation 
 

The introduction of the feature required minimal training for drivers, indicating a successful 

design in terms of intuitiveness and user-friendliness. Ongoing support and feedback channels 

were established to assist drivers in adapting to the new system. 
 

7.3. Operational Impact 
 

7.3.1. Compliance and Reporting Efficiency 

 

The feature significantly improved compliance with regulatory requirements for roadside 
inspections. The timely and accurate reporting facilitated by the system ensured adherence to 

legal standards and helped avoid potential fines or penalties. 

 
The efficiency gains in reporting also translated into better resource management, allowing fleet 

managers to focus on other critical operational aspects. 

 

7.3.2. Data Utilization And Decision Making 

 

The rich data captured through the system provided valuable insights into common compliance 

issues and areas requiring attention. This data-driven approach enabled more informed decision-
making at both the operational and strategic levels. 

 



International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024 

44 

7.4. Challenges and Limitations 
 

7.4.1. Technical Challenges 

 
Initial teething issues, such as occasional synchronization problems between the app and the 

backend system, were observed and promptly addressed. 

 
Ensuring consistent data connectivity in remote areas was identified as a challenge, necessitating 

future enhancements in offline data capture and synchronization. 

 

7.4.2. Scope For Future Enhancements 
 

The potential for integrating advanced analytics to derive deeper insights from the collected data 

was identified as a key area for future development. 
 

Expanding the system’s capabilities to include predictive maintenance alerts based on inspection 

data was also considered a valuable addition. 
 

Advanced Analytics Integration: Incorporating more sophisticated analytics to provide deeper 

insights into inspection data, aiding in predictive maintenance and strategic decision-making. 

 
Enhanced User Interface: Improving the driver application’s user interface for even greater ease 

of use, possibly including voice-command features for hands-free operation. 

 
Offline Functionality: Developing capabilities for offline data capture and synchronization to 

ensure seamless operation in areas with poor connectivity. 

 
Automated Violation Alerts: Implementing a system that automatically flags potential violations 

based on inspection data, alerting fleet managers in real-time. 

 

Integration with Other Systems: Enhancing compatibility with other fleet management tools and 
systems, such as maintenance scheduling and logistics planning software. 

 

Customizable Reporting: Allowing for more personalized report generation based on specific 
fleet or regulatory requirements. 

 

Driver Training Modules: Integrating educational resources within the application to help drivers 

understand compliance requirements and improve their inspection routines. 
 

Enhanced Security Features: Strengthening data encryption and security measures to protect 

sensitive information captured during inspections. 
 

Data Visualization Tools: Incorporating dashboards and visual tools for better interpretation of 

inspection data by fleet managers. 
 

Feedback Mechanism: Establishing a system for drivers to provide feedback on the roadside 

inspection process, fostering continuous improvement of the application. 

 
 

 

 



International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024 

45 

8. CONCLUSION 
 
The implementation of the Roadside Inspection Form feature in the fleet management system 

represents a significant stride in the domain of digital fleet management solutions. This 

innovation has effectively addressed the critical need for efficient and accurate roadside 

inspection reporting, a key aspect of regulatory compliance and operational efficiency in fleet 
logistics. 

 

Key Achievements 
 

8.1. Enhanced Compliance and Accuracy  

 

The digital solution has streamlined the process of roadside inspection reporting, ensuring 

compliance with transportation regulations through accurate and timely data submission. 

 

8.2. Improved Operational Efficiency 

 
Automating the data entry process has not only minimize human error but also expedited the 

reporting process, freeing up drivers and fleet managers to focus on core operational activities. 

 

8.3. Positive User Adoption and Feedback 

 

The user-friendly design and intuitive interface of the driver application have been well-received 
by drivers, demonstrating successful user adoption and highlighting the importance of user-

centric design in software development for fleet management. 

 

REFERENCES 
 
[1] Johnson, M., & Thompson, R. (2014). Digital Transformation in Fleet Management. Journal of 

Logistics and Transportation Technology, 32(2), 120-135. 

[2] Foster, C., & Wilson, T. (2014). The Impact of Mobile Applications on Fleet Management Practices. 

Journal of Mobile Technology in Transportation, 29(2), 159-174. 

[3] Davis, L., & Green, P. (2015). Compliance and Efficiency in Fleet Operations: The Role of 

Technology. International Journal of Fleet Management, 27(4), 234-250. 

[4] H. Lee and D. Kim, “Role-Based User Interfaces in Fleet Management:  A Case Study,” Journal of 

Information Technology Case and Application Research, vol. 14, no. 1, pp. 18–31, 2016. 
 

AUTHOR 

 
Sahil Nyati is not just a leader in supply chain, logistics and trucking operations 

automation but also a dynamic entrepreneur. Through their entrepreneurial journey, 

he has redefined the logistics and transportation industry with groundbreaking 

innovations and an entrepreneurial spirit that challenges the status quo. 
 

As the Director of Engineering at Maven Machines, his journey is characterized by 

the successful integration of advanced technologies in Trucking Dispatch Systems, 

Linehaul Trips and Manifests, LTL Inbound Planning, and the development of sophisticated Route 

Optimization for Planning Stops. Sahil Nyati's proficiency in enhancing ELD Movements and Fault Codes 

interpretation has set new benchmarks in the industry. 

 

Under his vision, Maven Machines has seen significant advancements in Reporting frameworks, focusing 

on Productivity, Terminal, and Driver analytics, and in the development of Driver Scorecards to ensure 

Safety and Performance in trucking operations. 



International Journal of Managing Value and Supply Chains (IJMVSC) Vol.15, No.1, March 2024 

46 

 

 

Sahil Nyati’s innovative approach extends to DVIR, Dollies, Trucking Operations and Costing, and the 

intricate VDA and Hardware Reliability. His pioneering work in Computing Vehicle Data Pipeline is a 

testament to his commitment to enhancing diagnostics and efficiency in the transportation sector. 
 

As a researcher, Sahil Nyati has been at the forefront of integrating IoT, AI in Logistics, and other 

emerging technologies to automate and transform the supply chain landscape. His insights into 

Transportation Cost Economics, Route Efficiency, and Supply Chain Process Optimization reflect his 

holistic understanding of the industry’s needs. 

 

Sahil Nyati's role as a member of various esteemed logistics and supply chain organizations, coupled with 

his experience as a judge in prestigious panels, highlights his ability to inspire and lead innovation in the 

field. 

 

In essence, Sahil Nyati's unique blend of technical expertise, research, visionary entrepreneurship, and 

practical experience make him an invaluable asset to any judging panel, award committee, or conference in 
the logistics and transportation sector. His entrepreneurial mindset not only drives his company forward but 

also propels the entire industry towards a more efficient, sustainable, and technologically advanced future.  

 

 

 

 

 


