
International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

DOI : 10.5121/ijngn.2023.15101 1

DYNAMIC SDN CONTROLLER PLACEMENT BASED

ON DEEP REINFORCEMENT LEARNING

Fan Shen, Levi Perigo

Department of Computer Science, University of Colorado Boulder, CO 80309, USA

ABSTRACT

Software-defined Networking (SDN) is a revolutionary network architecture whose benefits stem partly

from separating the data plane and control plane. In this scheme, the control functionalities are relocated

to a logically centralized SDN controller which makes efficient and globally optimal forwarding decisions

for network devices. Despite the fact that network virtualization technologies enable elastic capacity

engineering and seamless fault recovery of the SDN controller, an optimal controller placement strategy

that can adapt to changes in networks is an important but underexplored research topic. This paper

proposes a novel deep reinforcement learning-based model that dynamically and strategically adjusts the

location of the controller to minimize the OpenFlow latency in a virtualized environment. The experimental

results demonstrate that the proposed strategy out performs both a random strategy and a generic strategy.

Furthermore, this paper provides detailed instructions on how to implement the proposed model in real-

world software-defined networks.

KEYWORDS

SDN, controller placement problem, latency, deep reinforcement learning, DQN

1. INTRODUCTION

In Software-defined Networking (SDN), the control plane of network devices is separated from

the hardware and moved to a logically centralized and physically distributed location. The

separation of the control plane and data plane has many advantages, including optimal decisions
for the network because of the global network view from the SDN controller, more openness and

programmability, and lower CapEx and OpEx. The way a network device in traditional SDN with

OpenFlow deals with an incoming packet is as follows: if the packet matches a flow entry in its

flow table, it takes the action that is specified in that flow entry; otherwise, it forwards the packet
to the controller, and northbound applications instruct the controller how to handle the packet and

a flow entry could also be installed on switches. As the control plane functionalities of network

devices are moved to the logically centralized controller in SDN, it is crucial to guarantee the
non-stop operation and sufficient processing capability of the controller. Network function

virtualization (NFV) has been shown to be a viable solution for SDN controllers that require

elastic infrastructure resources [1] [2] [3]. In addition, by using network virtualization
technologies (virtual machines (VM), containers) and creating the SDN controller as a virtual

network function (VNF), the failure of SDN controllers can be seamlessly mitigated, because, if

the SDN controller is a container or VM hosted in a virtualized server environment, then failures

can be reduced due to the redundant nature of the virtualized infrastructure. Although issues like
capacity adjustment and fault tolerance can be mitigated by an SDN controller VNF to provide

network resilience, the location of the SDN controller also needs to be strategically selected to

achieve service agility by minimizing the latency of the traffic between switches and controller,
which adds more granularity to the standard placement strategy which relies on servers.

https://www.airccse.org/journal/ijngn/current2023.html
https://doi.org/10.5121/ijngn.2023.15101

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

2

The SDN controller placement problem is mainly about the optimization of the location and the
number of controllers and the switch-controller mapping, in order to achieve the best network

performance regarding the metrics of interests. Many studies attempt to solve the SDN controller

placement problem in the network provisioning phase, thus analytically giving an optimal but

static placement solution in terms of their objective function with some constraints. However, the
operational network dynamically changes, for example, the available bandwidth of paths in the

physical network between switches and SDN controllers are affected by dynamic patterns of

traffic using those paths. Therefore, a static placement strategy is not optimal in the long term.
Some existing works study dynamic SDN controller placement to adapt to network changes, but

there are some open issues that need to be addressed. First, the dynamic placement decision is

made based on recent but outdated network state information, since the future network state after
taking the placement action is possibly different than the network state used for calculating the

optimal placement solution, such models could generate sub-optimal placement strategy. Second,

only switch-controller traffic is assumed to exist in the network between switches and SDN

controllers, which is not completely true when considering an SDN controller VNF is used. Third,
existing studies using deep reinforcement learning lack sufficient understanding about the

mathematical model, and detailed implementation instructions for interactions between the

placement model and the empirical rather than the simulated stats of an SDN environment.

This paper focuses on the SDN controller placement problem in virtualized network

environments, and proposes a model based on deep reinforcement learning to minimize switch-
controller (OpenFlow) latency by solving the optimal placement strategy that adapts to

dynamically changing network state. The contributions of this paper are: it improves exiting

dynamic controller placement studies by considering the discrepancy of network states before

and after controller placement; it formally formulates the SDN controller placement problem
using deep reinforcement learning in a virtualized network environment, where both Open Flow

and Non-Open Flow traffic exist in the network between switches and SDN controller; and it is a

novel work that provides tooling and detailed instructions on how the proposed model can be
implemented in real-world software-defined networks.

The remaining of this paper is outlined as follows. Section 2 reviews existing studies on latency-

aware SDN controller placement problems. Section 3 presents the problem setting. Section 4
provides technical details of proposed strategic controller placement model. Section 5 describes

main procedures of experiment setup and experimental results analysis. Section 6 concludes this

work and suggests some constructive future extensions.

2. RELATED WORK

There are three primary subproblems in SDN controller placement studies: the number of
controllers, the location of controllers, and the switch-controller mapping [4] [5] [6]. In order to

optimize controller placement, existing works consider various objectives, for example, the

control latency or switch-controller latency, network resilience or controller failure tolerance,

deployment cost, load-balancing and quality-of-service [6] [7] [8], and the use of appropriate
metrics to evaluate their placement strategy. Since the objective of the proposed controller

placement strategy in this paper is to minimize switch-controller latency which is an important

factor in the agility of SDN [8] [9] [10] [11], this section reviews existing papers on the latency-
aware controller placement problem (CPP) first, then demonstrates the contributions of the

proposed model.

Early studies on latency-aware CPP focus on static placement of SDN controller(s). Such works
consider placement strategy in the network provisioning phase and formulate CPP as an

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

3

optimization problem. Then, classic models and algorithms for solving the facility location
problem [12] are used to solve the optimal placement of SDN controller.

The authors of [5] consider average-case control latency and worst-case control latency in their

objective function respectively, and formulate it as a minimum k-means optimization problem,
and a minimum k-center optimization problem. However, an enumeration of all possible

placements given k number of controllers is needed in that paper for solving the optimal

placement which is not efficient, because the computation complexity increases exponentially as
k increases. [8] studies the multi-controller placement problem to minimize switch-controller

latency by proposing an optimized k-means clustering algorithm, which progressively partitions

the network. Their experiments showed that the optimized k-means algorithm achieves preferable
locally minimum latency. However, the experimental networks used for evaluation are simulated

networks and it is assumed that only switch-controller traffic exists in the network, for example,

if the SDN environment is based on OpenFlow, then there is only OpenFlow traffic in the

network. Most importantly, they use algorithms from graph theory and all nodes in the graph are
identical meaning that all nodes are valid locations for switches and controllers, which is not

exactly true in real-world networks where controller nodes and switch nodes are heterogeneous.

This is also the problem of most SDN controller placement studies using k-means. [11] also
considers the capacity of SDN controllers when deciding placement to minimize switch-

controller latency. The authors use the Integer Programming algorithm proposed in [13], but their

solution is still a static placement.

Since the network where switches and SDN controllers operate is always changing, a static

controller placement strategy is not optimal in the long term because it lacks elasticity to match

the changing network. Therefore, dynamic controller placement that can adapt to network
changes has become an important topic in the area of CPP. [14] [15] study dynamic SDN

controller placement to respond to the number of new flows generated by switches. In their

proposed model, a threshold on the latency between any two nodes in a network is used to
partition the network first, then the location of controller(s) is calculated to minimize the

maximum switch-controller latency in each sub-network. However, it assumes that all nodes in

the network are valid locations for both switches and controllers, and re-computation of optimal

controller placement once the network changes is not efficient.

The authors of [1] [16] [17] study dynamic containerized SDN controller placement, and apply a

rule-based decision tree to find the optimal controller location given the OpenFlow latency of
each switch-controller pair. However, the latency used for running the decision tree to instruct

controller placement is recent but outdated data, which could lead to sub-optimal placement.

[18] [19] apply deep reinforcement learning (RL) which is widely used in control systems to

solve optimal SDN controller placement. [19] solves dynamic optimal clustering of SDN

switches and controllers, but the way the authors define and use states in their model is a misuse

of RL. In their model, states are able to be optimized just like actions, but in RL states are a
characterization of the environment which can be observed by the agent, then the action of the

agent further affects the evolution of the environment. [18] solves dynamic optimal controller

locations by considering both the switch-controller latency and load-balancing in their objective
function. However, there is only switch-controller traffic in their experimental network, and the

data used for training the proposed model is from a simulated network which is different from

empirical data. Therefore, their proposed model has limited applicability to virtualized SDN
controller scenarios.

In summary, existing studies on CPP have provided both static and dynamic solutions by

considering various objectives and constraints of interests, but there are still some open

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

4

challenges. First, the static placement strategy cannot adapt to network changes, thus making it
less optimal. Second, existing dynamic placement studies have unresolved problems, for example,

they assume that the physical network between switches and controllers only transfers switch-

controller traffic (such as OpenFlow); simulated networks rather than real software-defined

networks are used in experiments; sub-optimal placement is caused by using outdated network
information for decision making and misuse of mathematical models in existing learning-based

studies. In this paper, a dynamic SDN controller placement strategy based on deep reinforcement

learning is proposed to address some of these issues.

3. PROBLEM SETTING

This paper focuses on minimizing the latency of OpenFlow (OF) traffic in a virtualized network
environment, where switches communicate with SDN controllers hosted on servers and those

servers will also receive additional traffic to their services such as HTTP traffic to a web server

hosted in the same virtualized environment. The latency of OF traffic is influenced by various

factors, including the available bandwidth of links in the network, which is dynamic due to the
changing sizes of both OF traffic and non-OpenFlow (NOF) traffic. Additionally, the location of

the active (in use) SDN controller impacts the paths that OF traffic takes, and congested links on

these paths may cause delays. While a network orchestrator cannot determine the size and type of
traffic initiated by end hosts, it can strategically determine the placement of the active SDN

controller to affect network performance. The proposed model introduces an additional layer of

granularity to standard server or virtual machine placement which typically prioritizes resource

usage of machines over network metrics. In other words, the proposed model enables dynamic
service-level relocation, even when server locations are fixed, to improve network performance.

Suppose there are n servers hosting SDN controllers and only one of the them is active each time,
using a fixed strategy to place the active SDN controller is usually not optimal because it cannot

adapt to changing network state. Therefore, it is desired to adjust the location of the active SDN

controller based on the recent network state. The network state characterization in the paper
includes the size of both OF traffic and NOF traffic received by each server and the available

bandwidth of each path from OF switches to servers. To decide the optimal placement of the

active SDN controller, a strategic placement model is proposed based on deep reinforcement

learning which is known for solving sequential decision-making problems [20]. Differentiating
from exiting studies whose placement strategy is adjusted only according to a single network

state, the proposed model considers the inter-dependencies between network states and it makes

decision not only by current network state (OF and NOF) but also the effect of a decision on
future network states. By considering a long-term reward of reducing the latency of OF traffic,

the proposed model is able to make optimal and proactive decision of SDN controller placement,

which is beneficial to a tightly-coupled network system.

4. STRATEGIC PLACEMENT MODEL

The proposed SDN controller placement model is based on deep reinforcement learning which

has been widely used for solving strategic decision-making problems in control systems [21],
such as its applications in AlphaGo and robotics. The mathematical formulation of reinforcement

learning is based on the Markov Decision Process [22] whose components can be represented by

a 5-tuple (S, A, R, P,) in a single agent scenario. In a single agent RL model, the agent interacts

with an environment and takes actions to maximize its utility. S is a set of states of the

environment. A is a set of feasible actions that the agent can take in each state. R is a set of
reward (feedback) received by the agent after taking an action in an environment state. P is a

state transition model representing the probability of transitioning from one state to another state

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

5

by taking an action, which is usually unknown.  is called a discount factor which is used to

characterize the diminishing effect of future rewards on the value function of current state.

The objective of the agent in the reinforcement learning model is to maximize a long-term utility.

So, when the agent decides the action to take in a state, it considers not only the immediate

reward but also a sequential of future rewards. Suppose st is the environment state at time t, r(st)
is the immediate reward the agent receives in st, and sT is a terminal state representing the end of

a sequence (or an episode), then the long-term utility of the agent in st is a cumulative value V(st)

formulated as follows:

𝑉(𝑠𝑡) = 𝑟(𝑠𝑡) + 𝛾𝑟(𝑠𝑡+1) + 𝛾2𝑟(𝑠𝑡+2) +⋯+ 𝛾𝑇−𝑡𝑟(𝑠𝑇) (1)

where  is the discount factor, a value in [0, 1], V(st) is also called the value function, and the

objective of the agent is to find the optimal action to maximize it in all environment states.

Another important function in reinforcement learning is the state-action value function Q(st, at)
(also known as the Q function). It calculates the long-term utility of the agent when taking the

action at in environment state st:

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 ∑ 𝑃(𝑠′𝑡+1|𝑠𝑡 , 𝑎𝑡) ∙ 𝑉(𝑠′𝑡+1)𝑠′𝑡+1 (2)

where r(st, at) is the immediate reward of taking the action at in environment state st, and the

second term in Equation (2) is the expectation of future rewards which is the weighted sum of

value of all possible states st+1. Therefore, the optimization function of the agent can be
formulated as:

max
𝜋(𝑠)

∑ 𝑄(𝑠, 𝑎) ∙ 𝜋(𝑎)𝑎 (3)

where (s) is the agent’s strategy of taking actions in state s, which is simply a distribution over

all feasible actions. If there is only one action a* which has the largest Q value in state s, then the
optimal strategy will be a fixed strategy, that is, to always take that action a* in state s.

As stated in the above, in order to characterize the network state, the proposed strategic SDN
controller placement model combines the amount of network traffic (both OF and NOF) on the

links and the available bandwidth of all paths from OF switches and servers hosting SDN

controllers. However, these values in a network state are continuous, and it is impossible to

enumerate all possible network states. Therefore, the proposed model is based on deep
reinforcement learning which uses a neural network to calculate the optimal placement for the

active SDN controller given a network state.

In the proposed model, a scenario with one OF switch and n servers (s1, s2, ..., sn) hosting SDN

controllers is considered. The 5-tuple (S, A, R, P,) of the model is defined as follows:

State: a network state is represented by (ci, of1, nof1, abw1, of2, nof2, abw2, ..., ofn, nofn, abwn),

where ci (I  [1, n]) is the current active SDN controller, of k (k [1, n]) is the OF traffic received

by server k, nofk is the NOF traffic received by server k, and abwk is the available bandwidth of

the path from server k to the OF switch.

Action: the feasible actions of the decision maker (network orchestrator) in any network state are

choosing one of the n servers to host the active SDN controller.

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

6

Reward: based on the objective of the proposed model which is to minimize the latency of the
OF traffic, it is desired to use a latency-related metric to be the feedback to an action. Since a

path with better latency is equivalent to a path with larger available bandwidth, the proposed

model uses the available bandwidth of the path from the OF switch to the active SDN controller

abwof as the immediate reward because it is easy to measure.

State transition: the state transition model P is assumed to be unknown because a real-world

network environment has uncertainties, but P can be estimated from observations.

Discount factor:  is assumed to be a fixed value in [0, 1], which should be adjusted based on the

decision maker’s view of how important future rewards are to the agent’s utility in any state. In

the experiments of this paper,  = 0.8.

The proposed neural network model has 5 layers, including the input layer, 3 dense layers and the
output layer. Suppose n is the number of servers, then the input of the model is a network state

whose dimension is 1 by (1+3n); the output is the estimated utility of taking each feasible action

in the given network state whose dimension is 1 by n, hence the action with the largest utility is

the optimal placement decision; the three dense layers have dimensions of (1 + 3n) by 50, 50 by
50 and 50 by n respectively, the first two dense layers use the ReLU activation function and the

third dense layer uses a linear activation function. The Mean Square Error (MSE) loss function

and the Adam optimizer are used in the proposed model.

5. EXPERIMENTS

In this section, the main procedures of setting up the experimental environment to implement and

evaluate the proposed strategic SDN controller placement model are first presented. Then, the
experiment results are shown and discussed.

5.1. Experiment Network Setup

The network used in the experiment of this work consists of three Ubuntu virtual machines. As

shown in Figure 1, “SDN Ctrl (controller) 1 VM” and “SDN Ctrl 2 VM” host multiple services
including the Floodlight SDN controller, web service and iperf service, and “Mininet VM” has

Open vSwitch (OvS), iperf server and Mininet running on it. GNS3 is used to connect the three

VMs shown in Figure2. A simple Mininet topology with one OvS and two end hosts is initiated
on the “Mininet VM”.

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

7

Figure 1.The interactions between the proposed SDN controller placement model

and the experimental network

After completing the configurations of all the VMs and network devices in the experimental

network to enable connectivity in the network, some network traffic needs to be injected into the
network. In the proposed strategic placement model, only two types of traffic are defined in the

network state characterization that are OF traffic and NOF traffic, and only the real-time traffic

size of OF traffic and the the real-time traffic size of NOF traffic matter. Therefore, Shell scripts

which define dynamichttp request traffic profiles are running on the “Mininet VM” to generate
NOF traffic to servers hosting controller and other services. In addition, both the frequency and

size of the http traffic are manipulated to add variation to traffic patterns. Note that, iperf traffic is

another source of NOF traffic although the main purpose of using it is to collect available
bandwidth of switch-controller paths. Regarding OF traffic generation, shell scripts which define

dynamic ping request traffic profiles to an unknown IP address are running on the virtual hosts

inside the Mininet network, and both the frequency and size of the ping traffic are manipulated as
well. However, when the destination IP address is unknown, the Packet-In packet to the

controller encapsulates an arp request instead of the intended ping request. To fix that, the MAC

address of the unreachable destination is statically added into the MAC address table of each host,

then the intended ping request encapsulated in the Packet-In packet is successfully forwarded to
the controller.

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

8

Figure 2. Network topology in GNS3

The proposed strategic SDN controller placement model is hosted on another machine “SDN
Controller Placement Engine”, which connects to the network via out-of-band communication.

5.2. Network Monitoring and Data Collection

The OF traffic, as well as the NOF traffic received by “SDN Ctrl 1 VM” and “SDN Ctrl 2 VM” is

constantly monitored by tcpdump and the traffic sizes (in byte) are used to form network state
characterization. The available bandwidth of paths from “SDN Ctrl 1 VM” and “SDN Ctrl 2 VM”

to “Mininet VM” is constantly measured by iperf on controller VMs and is used to form network

state.
The available bandwidth of the path taken by OF traffic is measured by the iperf on “Mininet

VM”, because it reflects the OF latency and is used as the reward to current controller placement

action.

To extract the information of interest from the output of monitoring data, Python applications are

running on the three VMs to constantly process the raw monitoring data and save useful

information locally as indicated by the tables in Figure 1.

5.3. Placement Decision-Making and Execution

In order to accelerate the training process of the proposed SDN controller placement model, the

deep Q-network (DQN) algorithm [23] is used in this paper. Two characteristics make DQN an

efficient deep reinforcement learning algorithm. First, it uses another neural network called
“target network” with the same structure as the “Q-network” to calculate the predicted long-term

reward quickly, and the weights of the target network are slowly copied from the Q-network

without adding training overhead. Second, it maintains an inventory called “replay memory”
storing past experiences. Each experience is represented by a 4-tuple (st, at, rt, st + 1) telling the

immediate reward rt and the next statest+1 after taking the action at in the state st. The pseudocode

of the DQN algorithm is shown in Algorithm 1.

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

9

The proposed strategic placement model enables the “SDN Controller Placement Engine” to

output the optimal placement action given a network state. The code for implementing the

proposed model is based on the single agent reinforcement learning setting, which mainly defines
an agent class and an environment class with some key functions in each of them.

Key functions performed by the agent are: (1) build the neural network that predicts the long-

term reward of taking every placement action in a given network state; (2) extract the optimal

placement action from the neural network output, with/without the consideration of decayed -
greedy in training/testing; (3) train the “Q-network”; (4) maintain and update parameters needed

for running the algorithm in the model training process, for example “replay memory” and

weights alignment of the “target network”; (5) collect the long-term reward of using different
placement strategies.

Key functions performed by the environment are: (1) provide the current network state to the

agent, which includes fetching current ofk, nofk and abwk (k[1, n]) from each controller VM; (2)

provide the immediate reward to the agent’s most recent placement action, which is obtained by
fetching the abwi (i represents the controller in use) from “Mininet VM”; (3) evolve network state

according to the agent’s action, by converting the optimal placement action from the model to

real network configurations to relocate active SDN controller.

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

10

5.4. Experiment Results and Analysis

The weights of the Q-network are saved periodically during training, which is beneficial for both

version control and iterative and progressive training. To evaluate the performance of the Q-
network, the best profile of weights is loaded onto the Q-network and the agent places the SDN

controller dynamically by following the output action of the model. Since the Q-network is

already trained, no large computation overhead is caused when mapping to the optimal action
given a network state.

The long-term average latency of OpenFlow traffic is used for model evaluation. The proposed

controller placement strategy which is also simplified as DQN strategy is compared with the
following two strategies:

Random strategy: when the agent receives the network state information, it selects the location
to place the SDN controller randomly. This random strategy can relate to latency-unaware

placement in scenarios where minimizing the switch-controller latency is not part of the objective

of the decision maker. For example, when a hypervisor places VMs or VNFs based on resource
usages, it is possible that the placement strategy is unrelated to the switch-controller latency.

Generic strategy: when the agent receives the network state information, it only looks at the

available bandwidth of paths from each controller server to the switch and picks the server with
the largest available bandwidth value to place the SDN controller. It is obvious that this strategy

performs poorly when the network states, both before and after controller relocation, are vastly

different.

The performance of each of the three placement strategies is shown in Figure 3. The x-axis

denotes DQN strategy, generic strategy, and random strategy from left to right. The y-axis
indicates the time needed to transfer 1 Kb OpenFlow traffic between switch and controller. The

data points used for plotting the box of each strategy are collected as follows. In the proposed

controller placement model, 10 consecutive placement actions are defined as one episode, and the

average OpenFlow latency in each episode is calculated by dividing the cumulative total latency
by 10 which forms one data point. Each strategy is evaluated by 20 episodes and the 20 data

points are used in the plot of each strategy in Figure 3.

Three important measurements in a box plot: first quartile Q1, the median and the third quartile

Q3 are used for comparing the three placement strategies.

In terms of Q1, the value of the DQN strategy is 0.113, the value of the generic strategy is 0.135,
and the value of the random strategy is 0.150. The random strategy is least optimal, and the

proposed strategy achieves best OpenFlow latency which improves the generic strategy by 16.3%

and improves the random strategy by 24.7%.

In terms of median, the value of the DQN strategy is 0.118, the value of the generic strategy is

0.148, and the value of the random strategy is 0.166. The random strategy is the worst, and the
proposed strategy achieves the best OpenFlow latency which improves the generic strategy by

20.3% and improves the random strategy by 28.9%.

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

11

Figure 3. Long-term average latency of transferring 1 Kb Open Flow traffic using different strategies

In terms of Q3, the value of the DQN strategy is 0.124, the value of the generic strategy is 0.159,

and the value of the random strategy is 0.195. The random strategy is still the worst, and the

proposed strategy achieves the best OpenFlow latency which improves the generic strategy by

22.0% and improves the random strategy by 36.4%.

Therefore, the experiment results show that the proposed SDN controller placement strategy,

based on deep reinforcement learning, outperforms the other two placement strategies in terms of
minimizing the long-term OpenFlow latency in a dynamic operational network. In addition, as

the network expands or the uncertainty of network states increases, the advantage of the proposed

SDN controller placement strategy should be more significant.

6. CONCLUSION

This paper proposes a novel dynamic SDN controller placement model, which utilizes deep

reinforcement learning techniques to minimize long-term OpenFlow latency. The proposed
model effectively addresses several limitations in previous studies on the SDN controller

placement problem. These limitations include: the inability of the placement solution to adapt to

dynamically changing network states; sub-optimal placement due to the neglect of the
discrepancy of network states before and after controller relocation; insufficient tooling and

instructions for implementing a dynamic controller placement model in real-world software-

defined networks; as well as exclusive switch-controller traffic consideration in works that use

deep reinforcement learning.

The main contributions of this paper are as follows. First, it formulates the SDN controller

placement problem using deep reinforcement learning in a virtualized network environment,
where both OpenFlow and Non-OpenFlow traffic exist in the network between switches and

SDN controller. Second, it enhances current dynamic controller placement models by accounting

for the discrepancy of network states before and after controller placement, which is handled by

the state transition estimation in the model. The experimental results demonstrate that the
proposed strategy outperforms both a random strategy and a generic strategy in terms of

OpenFlow latency. Additionally, it provides detailed tooling and instructions on how to

implement the proposed model in real-world software-defined networks.

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

12

The proposed model can also be extended to scenarios that either consider more and conflicting
metrics in the objective function, or focus on optimal strategy to place multiple services instead

of only the SDN controller. These extensions are left for future works.

REFERENCES

[1] D. Gedia & L. Perigo, (2019) “Latency-aware, static, and dynamic decision-tree placement algorithm

for containerized SDN-VNF in OpenFlow architectures”, In 2019 IEEE Conference on Network

Function Virtualization and Software Defined Networks (NFV-SDN), pp. 1-7.

[2] M. P. Odini & A. Manzalini, (2016) “SDN in NFV architectural frame work”, IEEE Software

Defined Networks Newsletter.
[3] R. Munoz et al., (2015) “Integrated SDN/NFV management and orchestration architecture for

dynamic deployment of virtual SDN control instances for virtual tenant networks”, Journal of Optical

Communications and Networking, Vol. 7, No. 11, pp. 62-70.

[4] T. Hu et al., (2018) “Multi-controller based software-defined networking: A survey”,IEEE Access,

Vol. 6, pp. 15980-15996.

[5] B. Heller, R. Sherwood & N. McKeown, (2012) “The controller placement problem”,ACM

SIGCOMM Computer Communication Review, Vol. 42, No. 4, pp. 473-478.

[6] T. Das, V. Sridharan & M. Gurusamy, (2019) “A survey on controller placement in SDN”,IEEE

communications surveys & tutorials, Vol. 22, No. 1, pp. 472-503.

[7] G. Wang et al., (2017) “The controller placement problem in software defined networking: A survey”,

IEEE Network, Vol. 31, No. 5, pp. 21-27.

[8] G. Wang et al., (2016) “A K-means-based network partition algorithm for controller placement in
software defined network”, In 2016 IEEE International Conference on Communications (ICC), pp. 1-

6.

[9] B. Yanet al., (2021) “A survey of low-latency transmission strategies in software defined

networking”, Computer Science Review, Vol. 40.

[10] M. Jammal et al., (2014) “Software defined networking: State of the art and research challenges”,

Computer Networks, Vol. 72, pp. 74-98.

[11] G. Yaoet al., (2014) “On the capacitated controller placement problem in software defined networks”,

IEEE communications letters, Vol. 18, No. 8, pp. 1339-1342.

[12] R. D. Meller & K. Y. Gau, (1996) “The facility layout problem: recent and emerging trends and

perspectives”,Journal of manufacturing systems, Vol. 15, No. 5, pp. 351-366.

[13] F. A. Özsoy & M. Ç. Pınar, (2006) “An exact algorithm for the capacitated vertex p-center problem”,
Computers & Operations Research, Vol. 33, No. 5, pp. 1420-1436.

[14] M. T. I. ulHuque, G. Jourjon & V. Gramoli, (2015) “Revisiting the controller placement problem”,

In2015 IEEE 40th conference on local computer networks (LCN), pp. 450-453.
[15] M. T. I. ulHuque et al., (2017) “Large-scale dynamic controller placement”,IEEE Transactions on

Network and Service Management, Vol. 14, No. 1, pp. 63-76.

[16] D. Gedia & Levi Perigo, (2022) “Decision-Tree Placement Algorithm for Containerized VoIP VNFs:

A Network Management Approach”, In 2022 25th Conference on Innovation in Clouds, Internet and

Networks (ICIN), pp. 1-5.

[17] D. Gedia, L. Perigo & R. Gandotra, (2020) “Micro-Economic Benefits of Peer-Producing

Containerized Network Functions”,Open Journal of Business and Management, Vol. 8, No. 5, pp.

2285-2302.

[18] Y. Wu et al., (2020) “Deep reinforcement learning for controller placement in software defined
network”, In IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), pp. 1254-1259.

[19] E. H. Bouzidi et al., (2022) “Dynamic clustering of software defined network switches and controller

placement using deep reinforcement learning”,Computer Networks, Vol. 207.

[20] M.V. Otterlo& M. Wiering, (2012) “Reinforcement learning and markov decision processes”,

Reinforcement learning: State-of-the-art, pp. 3-42.

[21] F. Shen, L. Perigo & J. Curry, (2023) “SR2APT: A Detection and Strategic Alert Response Model

Against Multistage APT Attacks”,In Security and Communication Networks (forthcoming),

DOI:10.1155/1969/6802359.

International Journal of Next-Generation Networks (IJNGN) Vol.15, No.1, March 2023

13

[22] M.L. Puterman, (2014) “Markov decision processes: discrete stochastic dynamic programming”,John

Wiley & Sons.

[23] V. Mnih et al., (2015) “Human-level control through deep reinforcement learning”,Nature, Vol. 518,

No. 7540, pp. 529-533.

AUTHORS

Fan Shen received the B.A. degree in Communication from Wuhan University in 2014,

and the M.A. degree in Science Communication from the University of Science and

Technology of China in 2017. She is currently pursuing the M.S. degree in Network

Engineering and the Ph.D. degree in Telecommunications Engineering with the

Department of Computer Science, University of Colorado Boulder. Her research

interests are cyber intelligence, deep learning, game theory, and Software-defined

Networking.

Levi Perigo received the B.S. degree in Information Systems Computer Science from
Anderson University, the M.S. in Information and Communication Sciences from Ball

State University, and the Ph.D. degree in Information Systems from Nova Southeastern

University. He has ten years work experience as a Lead and Senior Network Engineer

for ADTRAN Inc., and since 2015 he has been a Scholar in Residence at the University

of Colorado Boulder's Professional Master's Degree program in Network Engineering.

Dr. Perigo is the Director of the ONF Certified SDN Professional program, on the

research council for MEF SDN-NFV, and on the Technical Program Committee for IEEE NFV-SDN.

