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ABSTRACT 
 
Software-defined Networking (SDN) is a revolutionary network architecture whose benefits stem partly 

from separating the data plane and control plane. In this scheme, the control functionalities are relocated 

to a logically centralized SDN controller which makes efficient and globally optimal forwarding decisions 

for network devices. Despite the fact that network virtualization technologies enable elastic capacity 

engineering and seamless fault recovery of the SDN controller, an optimal controller placement strategy 

that can adapt to changes in networks is an important but underexplored research topic. This paper 

proposes a novel deep reinforcement learning-based model that dynamically and strategically adjusts the 

location of the controller to minimize the OpenFlow latency in a virtualized environment. The experimental 

results demonstrate that the proposed strategy out performs both a random strategy and a generic strategy. 

Furthermore, this paper provides detailed instructions on how to implement the proposed model in real-

world software-defined networks. 
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1. INTRODUCTION 
 
In Software-defined Networking (SDN), the control plane of network devices is separated from 

the hardware and moved to a logically centralized and physically distributed location. The 

separation of the control plane and data plane has many advantages, including optimal decisions 
for the network because of the global network view from the SDN controller, more openness and 

programmability, and lower CapEx and OpEx. The way a network device in traditional SDN with 

OpenFlow deals with an incoming packet is as follows: if the packet matches a flow entry in its 

flow table, it takes the action that is specified in that flow entry; otherwise, it forwards the packet 
to the controller, and northbound applications instruct the controller how to handle the packet and 

a flow entry could also be installed on switches. As the control plane functionalities of network 

devices are moved to the logically centralized controller in SDN, it is crucial to guarantee the 
non-stop operation and sufficient processing capability of the controller. Network function 

virtualization (NFV) has been shown to be a viable solution for SDN controllers that require 

elastic infrastructure resources [1] [2] [3]. In addition, by using network virtualization 
technologies (virtual machines (VM), containers) and creating the SDN controller as a virtual 

network function (VNF), the failure of SDN controllers can be seamlessly mitigated, because, if 

the SDN controller is a container or VM hosted in a virtualized server environment, then failures 

can be reduced due to the redundant nature of the virtualized infrastructure. Although issues like 
capacity adjustment and fault tolerance can be mitigated by an SDN controller VNF to provide 

network resilience, the location of the SDN controller also needs to be strategically selected to 

achieve service agility by minimizing the latency of the traffic between switches and controller, 
which adds more granularity to the standard placement strategy which relies on servers. 

https://www.airccse.org/journal/ijngn/current2023.html
https://doi.org/10.5121/ijngn.2023.15101
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The SDN controller placement problem is mainly about the optimization of the location and the 
number of controllers and the switch-controller mapping, in order to achieve the best network 

performance regarding the metrics of interests. Many studies attempt to solve the SDN controller 

placement problem in the network provisioning phase, thus analytically giving an optimal but 

static placement solution in terms of their objective function with some constraints. However, the 
operational network dynamically changes, for example, the available bandwidth of paths in the 

physical network between switches and SDN controllers are affected by dynamic patterns of 

traffic using those paths. Therefore, a static placement strategy is not optimal in the long term. 
Some existing works study dynamic SDN controller placement to adapt to network changes, but 

there are some open issues that need to be addressed. First, the dynamic placement decision is 

made based on recent but outdated network state information, since the future network state after 
taking the placement action is possibly different than the network state used for calculating the 

optimal placement solution, such models could generate sub-optimal placement strategy. Second, 

only switch-controller traffic is assumed to exist in the network between switches and SDN 

controllers, which is not completely true when considering an SDN controller VNF is used. Third, 
existing studies using deep reinforcement learning lack sufficient understanding about the 

mathematical model, and detailed implementation instructions for interactions between the 

placement model and the empirical rather than the simulated stats of an SDN environment. 
 

This paper focuses on the SDN controller placement problem in virtualized network 

environments, and proposes a model based on deep reinforcement learning to minimize switch-
controller (OpenFlow) latency by solving the optimal placement strategy that adapts to 

dynamically changing network state. The contributions of this paper are: it improves exiting 

dynamic controller placement studies by considering the discrepancy of network states before 

and after controller placement; it formally formulates the SDN controller placement problem 
using deep reinforcement learning in a virtualized network environment, where both Open Flow 

and Non-Open Flow traffic exist in the network between switches and SDN controller; and it is a 

novel work that provides tooling and detailed instructions on how the proposed model can be 
implemented in real-world software-defined networks. 

 

The remaining of this paper is outlined as follows. Section 2 reviews existing studies on latency-

aware SDN controller placement problems. Section 3 presents the problem setting. Section 4 
provides technical details of proposed strategic controller placement model. Section 5 describes 

main procedures of experiment setup and experimental results analysis. Section 6 concludes this 

work and suggests some constructive future extensions. 
 

2. RELATED WORK 
 

There are three primary subproblems in SDN controller placement studies: the number of 
controllers, the location of controllers, and the switch-controller mapping [4] [5] [6]. In order to 

optimize controller placement, existing works consider various objectives, for example, the 

control latency or switch-controller latency, network resilience or controller failure tolerance, 

deployment cost, load-balancing and quality-of-service [6] [7] [8], and the use of appropriate 
metrics to evaluate their placement strategy. Since the objective of the proposed controller 

placement strategy in this paper is to minimize switch-controller latency which is an important 

factor in the agility of SDN [8] [9] [10] [11], this section reviews existing papers on the latency-
aware controller placement problem (CPP) first, then demonstrates the contributions of the 

proposed model. 

 

Early studies on latency-aware CPP focus on static placement of SDN controller(s). Such works 
consider placement strategy in the network provisioning phase and formulate CPP as an 
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optimization problem. Then, classic models and algorithms for solving the facility location 
problem [12] are used to solve the optimal placement of SDN controller. 

 

The authors of [5] consider average-case control latency and worst-case control latency in their 

objective function respectively, and formulate it as a minimum k-means optimization problem, 
and a minimum k-center optimization problem. However, an enumeration of all possible 

placements given k number of controllers is needed in that paper for solving the optimal 

placement which is not efficient, because the computation complexity increases exponentially as 
k increases. [8] studies the multi-controller placement problem to minimize switch-controller 

latency by proposing an optimized k-means clustering algorithm, which progressively partitions 

the network. Their experiments showed that the optimized k-means algorithm achieves preferable 
locally minimum latency. However, the experimental networks used for evaluation are simulated 

networks and it is assumed that only switch-controller traffic exists in the network, for example, 

if the SDN environment is based on OpenFlow, then there is only OpenFlow traffic in the 

network. Most importantly, they use algorithms from graph theory and all nodes in the graph are 
identical meaning that all nodes are valid locations for switches and controllers, which is not 

exactly true in real-world networks where controller nodes and switch nodes are heterogeneous. 

This is also the problem of most SDN controller placement studies using k-means. [11] also 
considers the capacity of SDN controllers when deciding placement to minimize switch-

controller latency. The authors use the Integer Programming algorithm proposed in [13], but their 

solution is still a static placement. 
 

Since the network where switches and SDN controllers operate is always changing, a static 

controller placement strategy is not optimal in the long term because it lacks elasticity to match 

the changing network. Therefore, dynamic controller placement that can adapt to network 
changes has become an important topic in the area of CPP. [14] [15] study dynamic SDN 

controller placement to respond to the number of new flows generated by switches. In their 

proposed model, a threshold on the latency between any two nodes in a network is used to 
partition the network first, then the location of controller(s) is calculated to minimize the 

maximum switch-controller latency in each sub-network. However, it assumes that all nodes in 

the network are valid locations for both switches and controllers, and re-computation of optimal 

controller placement once the network changes is not efficient. 
 

The authors of [1] [16] [17] study dynamic containerized SDN controller placement, and apply a 

rule-based decision tree to find the optimal controller location given the OpenFlow latency of 
each switch-controller pair. However, the latency used for running the decision tree to instruct 

controller placement is recent but outdated data, which could lead to sub-optimal placement. 

 
[18] [19] apply deep reinforcement learning (RL) which is widely used in control systems to 

solve optimal SDN controller placement. [19] solves dynamic optimal clustering of SDN 

switches and controllers, but the way the authors define and use states in their model is a misuse 

of RL. In their model, states are able to be optimized just like actions, but in RL states are a 
characterization of the environment which can be observed by the agent, then the action of the 

agent further affects the evolution of the environment. [18] solves dynamic optimal controller 

locations by considering both the switch-controller latency and load-balancing in their objective 
function.  However, there is only switch-controller traffic in their experimental network, and the 

data used for training the proposed model is from a simulated network which is different from 

empirical data. Therefore, their proposed model has limited applicability to virtualized SDN 
controller scenarios. 

 

In summary, existing studies on CPP have provided both static and dynamic solutions by 

considering various objectives and constraints of interests, but there are still some open 
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challenges. First, the static placement strategy cannot adapt to network changes, thus making it 
less optimal. Second, existing dynamic placement studies have unresolved problems, for example, 

they assume that the physical network between switches and controllers only transfers switch-

controller traffic (such as OpenFlow); simulated networks rather than real software-defined 

networks are used in experiments; sub-optimal placement is caused by using outdated network 
information for decision making and misuse of mathematical models in existing learning-based 

studies. In this paper, a dynamic SDN controller placement strategy based on deep reinforcement 

learning is proposed to address some of these issues. 
 

3. PROBLEM SETTING 
 

This paper focuses on minimizing the latency of OpenFlow (OF) traffic in a virtualized network 
environment, where switches communicate with SDN controllers hosted on servers and those 

servers will also receive additional traffic to their services such as HTTP traffic to a web server 

hosted in the same virtualized environment. The latency of OF traffic is influenced by various 

factors, including the available bandwidth of links in the network, which is dynamic due to the 
changing sizes of both OF traffic and non-OpenFlow (NOF) traffic. Additionally, the location of 

the active (in use) SDN controller impacts the paths that OF traffic takes, and congested links on 

these paths may cause delays. While a network orchestrator cannot determine the size and type of 
traffic initiated by end hosts, it can strategically determine the placement of the active SDN 

controller to affect network performance. The proposed model introduces an additional layer of 

granularity to standard server or virtual machine placement which typically prioritizes resource 

usage of machines over network metrics. In other words, the proposed model enables dynamic 
service-level relocation, even when server locations are fixed, to improve network performance. 

 

Suppose there are n servers hosting SDN controllers and only one of the them is active each time, 
using a fixed strategy to place the active SDN controller is usually not optimal because it cannot 

adapt to changing network state. Therefore, it is desired to adjust the location of the active SDN 

controller based on the recent network state. The network state characterization in the paper 
includes the size of both OF traffic and NOF traffic received by each server and the available 

bandwidth of each path from OF switches to servers. To decide the optimal placement of the 

active SDN controller, a strategic placement model is proposed based on deep reinforcement 

learning which is known for solving sequential decision-making problems [20]. Differentiating 
from exiting studies whose placement strategy is adjusted only according to a single network 

state, the proposed model considers the inter-dependencies between network states and it makes 

decision not only by current network state (OF and NOF) but also the effect of a decision on 
future network states. By considering a long-term reward of reducing the latency of OF traffic, 

the proposed model is able to make optimal and proactive decision of SDN controller placement, 

which is beneficial to a tightly-coupled network system. 
 

4. STRATEGIC PLACEMENT MODEL 
 

The proposed SDN controller placement model is based on deep reinforcement learning which 

has been widely used for solving strategic decision-making problems in control systems [21], 
such as its applications in AlphaGo and robotics. The mathematical formulation of reinforcement 

learning is based on the Markov Decision Process [22] whose components can be represented by 

a 5-tuple (S, A, R, P,) in a single agent scenario. In a single agent RL model, the agent interacts 

with an environment and takes actions to maximize its utility. S is a set of states of the 

environment. A is a set of feasible actions that the agent can take in each state. R is a set of 
reward (feedback) received by the agent after taking an action in an environment state. P is a 

state transition model representing the probability of transitioning from one state to another state 
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by taking an action, which is usually unknown.  is called a discount factor which is used to 

characterize the diminishing effect of future rewards on the value function of current state. 

 
The objective of the agent in the reinforcement learning model is to maximize a long-term utility. 

So, when the agent decides the action to take in a state, it considers not only the immediate 

reward but also a sequential of future rewards. Suppose st  is the environment state at time t, r(st) 
is the immediate reward the agent receives in st, and sT is a terminal state representing the end of 

a sequence (or an episode), then the long-term utility of the agent in st is a cumulative value V(st) 

formulated as follows: 
 

𝑉(𝑠𝑡) = 𝑟(𝑠𝑡) + 𝛾𝑟(𝑠𝑡+1) + 𝛾2𝑟(𝑠𝑡+2) +⋯+ 𝛾𝑇−𝑡𝑟(𝑠𝑇)  (1) 

 

where  is the discount factor, a value in [0, 1], V(st) is also called the value function, and the 

objective of the agent is to find the optimal action to maximize it in all environment states. 

Another important function in reinforcement learning is the state-action value function Q(st, at) 
(also known as the Q function). It calculates the long-term utility of the agent when taking the 

action at in environment state st: 

 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 ∑ 𝑃(𝑠′𝑡+1|𝑠𝑡 , 𝑎𝑡) ∙ 𝑉(𝑠′𝑡+1)𝑠′𝑡+1 (2) 

 
where r(st, at) is the immediate reward of taking the action at in environment state st, and the 

second term in Equation (2) is the expectation of future rewards which is the weighted sum of 

value of all possible states st+1. Therefore, the optimization function of the agent can be 
formulated as: 

 

max
𝜋(𝑠)

∑ 𝑄(𝑠, 𝑎) ∙ 𝜋(𝑎)𝑎                           (3) 

 

where (s) is the agent’s strategy of taking actions in state s, which is simply a distribution over 

all feasible actions. If there is only one action a* which has the largest Q value in state s, then the 
optimal strategy will be a fixed strategy, that is, to always take that action a* in state s. 

 

As stated in the above, in order to characterize the network state, the proposed strategic SDN 
controller placement model combines the amount of network traffic (both OF and NOF) on the 

links and the available bandwidth of all paths from OF switches and servers hosting SDN 

controllers. However, these values in a network state are continuous, and it is impossible to 

enumerate all possible network states. Therefore, the proposed model is based on deep 
reinforcement learning which uses a neural network to calculate the optimal placement for the 

active SDN controller given a network state.  

 
In the proposed model, a scenario with one OF switch and n servers (s1, s2, ..., sn) hosting SDN 

controllers is considered. The 5-tuple (S, A, R, P,) of the model is defined as follows: 

 

State: a network state is represented by (ci, of1, nof1, abw1, of2, nof2, abw2, ..., ofn, nofn, abwn), 

where ci (I  [1, n]) is the current active SDN controller, of k (k [1, n]) is the OF traffic received 

by server k, nofk is the NOF traffic received by server k, and abwk is the available bandwidth of 

the path from server k to the OF switch. 
 

Action: the feasible actions of the decision maker (network orchestrator) in any network state are 

choosing one of the n servers to host the active SDN controller. 
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Reward: based on the objective of the proposed model which is to minimize the latency of the 
OF traffic, it is desired to use a latency-related metric to be the feedback to an action. Since a 

path with better latency is equivalent to a path with larger available bandwidth, the proposed 

model uses the available bandwidth of the path from the OF switch to the active SDN controller 

abwof as the immediate reward because it is easy to measure. 
 

State transition: the state transition model P is assumed to be unknown because a real-world 

network environment has uncertainties, but P can be estimated from observations.  
 

Discount factor:  is assumed to be a fixed value in [0, 1], which should be adjusted based on the 

decision maker’s view of how important future rewards are to the agent’s utility in any state. In 

the experiments of this paper,  = 0.8. 

 

The proposed neural network model has 5 layers, including the input layer, 3 dense layers and the 
output layer. Suppose n is the number of servers, then the input of the model is a network state 

whose dimension is 1 by (1+3n); the output is the estimated utility of taking each feasible action 

in the given network state whose dimension is 1 by n, hence the action with the largest utility is 

the optimal placement decision; the three dense layers have dimensions of (1 + 3n) by 50, 50 by 
50 and 50 by n respectively, the first two dense layers use the ReLU activation function and the 

third dense layer uses a linear activation function. The Mean Square Error (MSE) loss function 

and the Adam optimizer are used in the proposed model. 
 

5. EXPERIMENTS 
 

In this section, the main procedures of setting up the experimental environment to implement and 

evaluate the proposed strategic SDN controller placement model are first presented. Then, the 
experiment results are shown and discussed. 

 

5.1. Experiment Network Setup 
 

The network used in the experiment of this work consists of three Ubuntu virtual machines. As 

shown in Figure 1, “SDN Ctrl (controller) 1 VM” and “SDN Ctrl 2 VM” host multiple services 
including the Floodlight SDN controller, web service and iperf service, and “Mininet VM” has 

Open vSwitch (OvS), iperf server and Mininet running on it. GNS3 is used to connect the three 

VMs shown in Figure2. A simple Mininet topology with one OvS and two end hosts is initiated 
on the “Mininet VM”. 
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Figure 1.The interactions between the proposed SDN controller placement model  

and the experimental network 

 

After completing the configurations of all the VMs and network devices in the experimental 

network to enable connectivity in the network, some network traffic needs to be injected into the 
network. In the proposed strategic placement model, only two types of traffic are defined in the 

network state characterization that are OF traffic and NOF traffic, and only the real-time traffic 

size of OF traffic and the the real-time traffic size of NOF traffic matter. Therefore, Shell scripts 

which define dynamichttp request traffic profiles are running on the “Mininet VM” to generate 
NOF traffic to servers hosting controller and other services. In addition, both the frequency and 

size of the http traffic are manipulated to add variation to traffic patterns. Note that, iperf traffic is 

another source of NOF traffic although the main purpose of using it is to collect available 
bandwidth of switch-controller paths. Regarding OF traffic generation, shell scripts which define 

dynamic ping request traffic profiles to an unknown IP address are running on the virtual hosts 

inside the Mininet network, and both the frequency and size of the ping traffic are manipulated as 
well. However, when the destination IP address is unknown, the Packet-In packet to the 

controller encapsulates an arp request instead of the intended ping request. To fix that, the MAC 

address of the unreachable destination is statically added into the MAC address table of each host, 

then the intended ping request encapsulated in the Packet-In packet is successfully forwarded to 
the controller. 
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Figure 2. Network topology in GNS3 

 

The proposed strategic SDN controller placement model is hosted on another machine “SDN 
Controller Placement Engine”, which connects to the network via out-of-band communication. 

 

5.2. Network Monitoring and Data Collection 
 

The OF traffic, as well as the NOF traffic received by “SDN Ctrl 1 VM” and “SDN Ctrl 2 VM” is 

constantly monitored by tcpdump and the traffic sizes (in byte) are used to form network state 
characterization. The available bandwidth of paths from “SDN Ctrl 1 VM” and “SDN Ctrl 2 VM” 

to “Mininet VM” is constantly measured by iperf on controller VMs and is used to form network 

state. 
The available bandwidth of the path taken by OF traffic is measured by the iperf on “Mininet 

VM”, because it reflects the OF latency and is used as the reward to current controller placement 

action. 

 
To extract the information of interest from the output of monitoring data, Python applications are 

running on the three VMs to constantly process the raw monitoring data and save useful 

information locally as indicated by the tables in Figure 1. 
 

5.3. Placement Decision-Making and Execution 
 
In order to accelerate the training process of the proposed SDN controller placement model, the 

deep Q-network (DQN) algorithm [23] is used in this paper. Two characteristics make DQN an 

efficient deep reinforcement learning algorithm. First, it uses another neural network called 
“target network” with the same structure as the “Q-network” to calculate the predicted long-term 

reward quickly, and the weights of the target network are slowly copied from the Q-network 

without adding training overhead. Second, it maintains an inventory called “replay memory” 
storing past experiences. Each experience is represented by a 4-tuple (st, at, rt, st + 1) telling the 

immediate reward rt and the next statest+1 after taking the action at in the state st. The pseudocode 

of the DQN algorithm is shown in Algorithm 1. 
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The proposed strategic placement model enables the “SDN Controller Placement Engine” to 

output the optimal placement action given a network state. The code for implementing the 

proposed model is based on the single agent reinforcement learning setting, which mainly defines 
an agent class and an environment class with some key functions in each of them. 

 

Key functions performed by the agent are: (1) build the neural network that predicts the long-

term reward of taking every placement action in a given network state; (2) extract the optimal 

placement action from the neural network output, with/without the consideration of decayed -
greedy in training/testing; (3) train the “Q-network”; (4) maintain and update parameters needed 

for running the algorithm in the model training process, for example “replay memory” and 

weights alignment of the “target network”; (5) collect the long-term reward of using different 
placement strategies. 

 

Key functions performed by the environment are: (1) provide the current network state to the 

agent, which includes fetching current ofk, nofk and abwk (k[1, n]) from each controller VM; (2) 

provide the immediate reward to the agent’s most recent placement action, which is obtained by 
fetching the abwi (i represents the controller in use) from “Mininet VM”; (3) evolve network state 

according to the agent’s action, by converting the optimal placement action from the model to 

real network configurations to relocate active SDN controller. 
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5.4. Experiment Results and Analysis 
 

The weights of the Q-network are saved periodically during training, which is beneficial for both 

version control and iterative and progressive training. To evaluate the performance of the Q-
network, the best profile of weights is loaded onto the Q-network and the agent places the SDN 

controller dynamically by following the output action of the model. Since the Q-network is 

already trained, no large computation overhead is caused when mapping to the optimal action 
given a network state. 

 

The long-term average latency of OpenFlow traffic is used for model evaluation. The proposed 

controller placement strategy which is also simplified as DQN strategy is compared with the 
following two strategies: 

 

Random strategy: when the agent receives the network state information, it selects the location 
to place the SDN controller randomly. This random strategy can relate to latency-unaware 

placement in scenarios where minimizing the switch-controller latency is not part of the objective 

of the decision maker. For example, when a hypervisor places VMs or VNFs based on resource 
usages, it is possible that the placement strategy is unrelated to the switch-controller latency. 

 

Generic strategy: when the agent receives the network state information, it only looks at the 

available bandwidth of paths from each controller server to the switch and picks the server with 
the largest available bandwidth value to place the SDN controller. It is obvious that this strategy 

performs poorly when the network states, both before and after controller relocation, are vastly 

different. 
 

The performance of each of the three placement strategies is shown in Figure 3. The x-axis 

denotes DQN strategy, generic strategy, and random strategy from left to right. The y-axis 
indicates the time needed to transfer 1 Kb OpenFlow traffic between switch and controller. The 

data points used for plotting the box of each strategy are collected as follows. In the proposed 

controller placement model, 10 consecutive placement actions are defined as one episode, and the 

average OpenFlow latency in each episode is calculated by dividing the cumulative total latency 
by 10 which forms one data point. Each strategy is evaluated by 20 episodes and the 20 data 

points are used in the plot of each strategy in Figure 3. 

 
Three important measurements in a box plot: first quartile Q1, the median and the third quartile 

Q3 are used for comparing the three placement strategies. 

 

In terms of Q1, the value of the DQN strategy is 0.113, the value of the generic strategy is 0.135, 
and the value of the random strategy is 0.150. The random strategy is least optimal, and the 

proposed strategy achieves best OpenFlow latency which improves the generic strategy by 16.3% 

and improves the random strategy by 24.7%. 
 

In terms of median, the value of the DQN strategy is 0.118, the value of the generic strategy is 

0.148, and the value of the random strategy is 0.166. The random strategy is the worst, and the 
proposed strategy achieves the best OpenFlow latency which improves the generic strategy by 

20.3% and improves the random strategy by 28.9%. 
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Figure 3. Long-term average latency of transferring 1 Kb Open Flow traffic using different strategies 

 
In terms of Q3, the value of the DQN strategy is 0.124, the value of the generic strategy is 0.159, 

and the value of the random strategy is 0.195. The random strategy is still the worst, and the 

proposed strategy achieves the best OpenFlow latency which improves the generic strategy by 

22.0% and improves the random strategy by 36.4%. 
 

Therefore, the experiment results show that the proposed SDN controller placement strategy, 

based on deep reinforcement learning, outperforms the other two placement strategies in terms of 
minimizing the long-term OpenFlow latency in a dynamic operational network. In addition, as 

the network expands or the uncertainty of network states increases, the advantage of the proposed 

SDN controller placement strategy should be more significant. 

 

6. CONCLUSION 
 

This paper proposes a novel dynamic SDN controller placement model, which utilizes deep 

reinforcement learning techniques to minimize long-term OpenFlow latency. The proposed 
model effectively addresses several limitations in previous studies on the SDN controller 

placement problem. These limitations include: the inability of the placement solution to adapt to 

dynamically changing network states; sub-optimal placement due to the neglect of the 
discrepancy of network states before and after controller relocation; insufficient tooling and 

instructions for implementing a dynamic controller placement model in real-world software-

defined networks; as well as exclusive switch-controller traffic consideration in works that use 

deep reinforcement learning. 
 

The main contributions of this paper are as follows. First, it formulates the SDN controller 

placement problem using deep reinforcement learning in a virtualized network environment, 
where both OpenFlow and Non-OpenFlow traffic exist in the network between switches and 

SDN controller. Second, it enhances current dynamic controller placement models by accounting 

for the discrepancy of network states before and after controller placement, which is handled by 

the state transition estimation in the model. The experimental results demonstrate that the 
proposed strategy outperforms both a random strategy and a generic strategy in terms of 

OpenFlow latency. Additionally, it provides detailed tooling and instructions on how to 

implement the proposed model in real-world software-defined networks. 
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The proposed model can also be extended to scenarios that either consider more and conflicting 
metrics in the objective function, or focus on optimal strategy to place multiple services instead 

of only the SDN controller. These extensions are left for future works. 
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