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ABSTRACT 
 
Question Answering has been a well-researched NLP area over recent years. It has become necessary for 
users to be able to query through the variety of information available - be it structured or unstructured. In 

this paper, we propose a Question Answering module which a) can consume a variety of data formats - a 

heterogeneous data pipeline, which ingests data from product manuals, technical data forums, internal 

discussion forums, groups, etc. b) addresses practical challenges faced in real-life situations by pointing to 

the exact segment of the manual or chat threads which can solve a user query c) provides segments of texts 

when deemed relevant, based on user query and business context. Our solution provides a comprehensive 

and detailed pipeline that is composed of elaborate data ingestion, data parsing, indexing, and querying 

modules. Our solution is capable of handling a plethora of data sources such as text, images, tables, 

community forums, and flow charts. Our studies performed on a variety of business-specific datasets 

represent the necessity of custom pipelines like the proposed one to solve several real-world document 

question-answering. 
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1. INTRODUCTION 
 
In this study, we examine factoid question-answering when a data source is restricted to a 

constrained domain, such as the Hi-Tech one. The agent peruses several product manuals as the 

data source to determine a technical answer to a client query. Product manuals can be considered 
a source of information that is continuously evolving when there are multiple versions and 

releases of a product. Manuals offer a more reliable and up-to-date source than a knowledge base 

with a structured source of information like FAQs, which may not be comprehensive and require 

time and manual effort to create and validate, but are easier for computers to digest and process. 
Hence manuals become the perfect candidate for a long-term and scalable system. However, 

these manuals are intended for humans to read rather than for machines to parse, making them 

more difficult to parse automatically. 
 

In businesses, compiling product manuals requires time, effort, and coordination by several 

teams, which often results in the lack of manuals for a very long period. We could solve this issue 

if we leveraged real-time interactive data sources such as community forums and technical 
discussion forums where users post problems they face and community members respond with 

their solutions and useful links. The extraction of data from these forums can be very useful to 

businesses in creating a crowd sourced knowledge platform. The data, however, cannot be 
consumed in the raw form and has noise associated with it that needs to be cleaned and processed 

for our system to use this effectively. So, the community conversation threads are also an integral 

component of our system for extracting relevant information. 
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The goal of this system is to reduce the amount of time and effort required to locate relevant 
articles in the manual or community conversation forums, then manually navigate to the 

appropriate section with the most appropriate answer, as a result of manual intervention. As a 

result, for every user request, the system returns a set of related topics from numerous guides and 

conversations, as well as the parent, just like a standard question-and-answer system. This 
decision is based on the business rationale that several manuals may contain information relevant 

to your request. When a user asks a question like What is the expected time for my battery to be 

fully charged? and the solution may be found in the manuals for a variety of devices, all of those 
sections must be recommended to the user. The system must also be able to interpret any 

additional context provided by the user that aids in narrowing down the manuals - for example, if 

the user asks What is the expected time for device A’s battery to be charged?, the system must 
recognize that device A is an additional context and should only be able to search manuals for 

device A. 

 

The use of hundreds of conversation threads and user manuals for question answering involves 
the inclusion of a document indexer engine in the question answering system, which should be 

executed at scale because the questions should be addressed in real-time. As a result, the system 

should be able to retrieve relevant sections among hundreds of acquired manuals and 
conversations for each user query. Because it can process both textual (paragraphs, summaries, 

etc.) and non-textual (tables, images, flow diagrams, etc.) information, this system can be 

extended to any domain as long as manuals, documents, or even books and articles are available. 
 

In traditional question answering scenarios, a small chunk of text can be regarded as an answer to 

the question asked. We cannot, however, make the same argument for our business use case. If a 

user inquires about What are the steps for me to log in to a device?, the response cannot be 
provided in a short segment and must be replied using an entire section titled How to use and set 

up?. As a result, the system should be able to decide whether the answer should be returned as a 

short sequence or as a portion of text in real-time. 
 

In this paper, we show how various existing systems try to solve this domain based question 

answering by comparing their performances on a standard business dataset. We also introduce 

Intelligent Question Answering system which is composed of 
 

– Document parser, a transformer-based deep learning model that can parse and manage a 

wide range of unstructured data, including images, tables, textual content etc. The parser is 

mainly comprised of two sub-modules to parse user manual documents and extract 

conversation threads from the technical forums. 

– Document indexer, a module that uses indexed databases to index documents with essential 

information to keep all different types of data in a single collection, such as images, tables, 

and so on. 

– Document Retriever, a natural-language-based query processor that handles several 

business-specific preparation processes, recognizes if the query has any “context,” and gets 

the top relevant chunks of text from the indexed database. 

– Document Reader, a multi-layer transformer-based model which has been fine-tuned for the 

task of specific domain-based question answering. The document reader also has a classifier 
that has been trained to decide if the answer should be a small segment or section of text. 

 

In this paper, we study the application of several deep learning models to the question answering 

task. Our experiments show that the Intelligent Question Answering system outperforms 
traditional question answering systems on standard business-specific datasets. 
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1.1. Related work 
 

The study teams first focused on factoid questions, which are queries for which answers can be 

extracted with certainty from a defined text source. However, there may be a few deviations to 
this assumption in real-world scenarios, which can be handled by other classifier modules. These 

teams were mostly interested in factoid questions, such as “Where was X born?” and “Which 

year did Y take place?”. Now, the emphasis is on solving difficult problems which one 
encounters regularly in real-world like “How can Y be done?”, “A was moved from B to C and 

later to D. Where is A now?”. These issues, in some cases, necessitate complex comprehension 

and context inference, as well as information flow between sentences. These challenges can no 

longer be solved with simple comprehension models or named entity models. The Text Retrieval 
Conference (TREC) has featured an annual evaluation track of question answering systems since 

1999. (Voorhees 2001, 2003b). Following TREC’s success, both the CLEF and NTCIR 

workshops began multilingual and cross-lingual QA tracks in 2002, with a focus on European and 
Asian languages, respectively as done by Magnini et al. 2006; Yutaka Sasaki and Lin 2005 in [8]. 

Other datasets, such as P. Rajpurkar, et al. 2016 [11] and P. Rajpurkar, et al. 2018 [10], that 

focused on question answering, were also released in the past few years. 
 

The collection of knowledge in the field of quality assurance has expanded to the point where 

various models reliably address the QA domain. On the other hand, the majority of these models 

and strategies focus on academic data sources that have been selected by humans and follow great 
grammar and linguistic patterns. 

 

Data is commonly distributed across pages or portions of pages in the real world, making parsing 
and further inference of this type of data significantly more difficult than in the academic setting. 

 

There are also several advanced complete pipeline QA systems that leverage either the Web, as 
does QuASE (Sun et al., 2015) [13], or Wikipedia as a resource, as do Microsoft’s AskMSR 

(Brill et al., 2002) [14], IBM’s DeepQA (Ferrucci et al., 2010) [20] and YodaQA (Baudi s, 2015; 

Baudi s and Sediv‘y, 2015) [15]. AskMSR is a search-engine-based QA system that prioritizes 

”data redundancy over complex linguistic analyses of either queries or probable responses,” in 
other words, it doesn’t prioritize machine understanding as we do. Few methods attempt to deal 

with both unstructured and structured data, such as text segments and documents, as well as 

knowledge bases and databases. DeepQA is one such instance. Other systems based on DeepQA, 
such as YodaQA, incorporate information extraction from unstructured sources such as websites, 

text, and Wikipedia. 

 

This task is difficult since researchers must deal with scalability and accuracy issues. Rapid 
development has been made in recent years, and the performance of factoid and open-domain QA 

systems has greatly improved (Sasaki et al. [8], 2017; S. Schwager et al., 2019 [4] ;K. Jiang et al., 

2019, [1]). Several alternatives have been offered, notably DrQA’s two-stage ranker-reader 
system (Chen et al., 2017 [9]) end-to-end transformer-based models (S.Schwager et al., 2019) [4] 

and unified framework-based models to handle all text-based language difficulties (Raffel et al., 

2020) [7]. 
 

QAConv, as developed by C.S Wu et al., [23] is a new dataset that uses conversations as 

knowledge source. The data is mainly composed of business emails, panel discussions, technical 

conversations and work channels. Unlike open-domain and task-oriented dialogues, these 
conversations are usually long, complex, asynchronous, and involve strong domain knowledge. 

Traditional question answering models have proven to be inefficient on this kind of data, proving 

the need for a custom and enhanced pipeline to address such data sources. 
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2. OUR PROPOSAL 
 
Our system, Intelligent Question Answering Pipeline, is described in the following sections, and 

it is made up of four parts: Document Parser (1), Document Indexer (2), Document Retriever (3), 

and Document Reader (4) modules. 5 is a diagram of the entire architecture. 

 

2.1. Document parser 
 
The document parser is the input processing block that reads the data and converts it into a format 

that can be handled by ensuing modules. The document parser is composed of two main building 

blocks a) The deep learning based framework that is used to convert conversational threads from 

technical forums and internal chat forums to our desired format so that they can be further 
processed for question answering. b) The Mask RCNN based fine tuned instance segmentation 

model, which is fine adjusted to recognise tables and images with text contained in the document, 

is the core part of the document parser. In addition to the existing branch for classification and 
bounding box regression, the Mask R-CNN extends Faster RCNN by adding a branch for 

predicting segmentation masks on each Region of 

Interest (RoI). 

 
Deep learning based conversational thread parser The deep learning based conversation 

parser module is depicted in fig 1. 

 

 
 

Fig 1. Detailed overview of Intelligent Question Answering for Product manuals 

 

We built a specialized pipeline to process information from technical forums and community 
websites. The pipeline has the following characteristics : 

 

– uses natural language inference models to identify the key sections of a conversation 

– from the conversation threads, extracts the most relevant response 

– compiles the information into a usable format that can be put in an indexed database with 

information collected from manuals. 

 
An intent categorization model is used in the initial section of the conversational thread parser. 

This model is built on a BERT-based classifier that has been fine-tuned using the natural 

language inference dataset. As described in [26], the classifier was fine-tuned for the terms 

entailment, non-entailment, and neutral. As a zero-shot textual entailment issue, we employ this 
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fine-tuned model to classify intents in our data. The classes for which the model was trained as 
“intents” are “application related, feature update, software error” etc . These intents were noun 

chunks that were the most prominent in the data and were prioritised using domain expertise 

provided by agents. 

 
The intent identification model determines the question’s intent from a list of pre-defined intents 

Ik and preserves messages in the conversation thread that are also part of the same intent as Ik. 

This removes non-relevant messages, which is the first degree of noise reduction. For example, if 
the user asks, “My battery does not function, has anyone had this issue,” the intent classifier 

predicts “software error” as the intent for the inquiry. The model then predicts intents for all 

individual messages in the threads, keeping just those that contain the expected intent of 
“software error.” 

 

Since these forums are typically free-text based, there is a risk of users adding non-relevant 

inputs to the threads. This degree of intent-based-filtering helps the model remove all the 
unnecessary messages such as “Thanks” or other random remarks in the threads. 

 

The Answer identification module makes up the second half of the conversational thread parser. 
Since we do not have that information of which answer in a thread actually solved a user 

question, the answer identification module plays a crucial role in generating actual question-

answer pairs which can be considered “completely error free” and can be indexed with the other 
the data sources. Once the first level of noisy messages has been removed from a thread using the 

intent identification module, it is critical to determine if a proposed response truly answers the 

user’s inquiry and to keep only that. 

 
This is performed by our question-answering system which is built on modern text-to-text 

framework such as T5 [27]. The data we utilised to fine-tune our model was curated in a way 

similar to the BoolQA dataset, in which we extracted question and answer pairs from community 
forums. Around 700 discussion threads were retrieved, with a total of 2500 question-answer pairs 

annotated from these threads. The data structure is as mentioned in 2 : 

 

To encode the question and answer together into a single input into a text in - text out format, we 
first establish an uniform encoding format. The query is encoded first, followed by knowledge 

context - the candidate responses for each of the dialogue threads. The delimiter “\n” is used to 

connect these inputs into a single sequence. We don’t use any prefixes, data, or task specific 
identifiers in the encoding or model, unlike other sequence to sequence models fine-tuned on T5. 

The model is trained in such a way that the answers are inferred from the context and question, 

which is far superior to standard question answering systems that extract 
 

 
 

Fig 2. Sample data format used to fine tune T5 model 

 
or abstract answer blocks from the provided context. The model has been trained to minimise the 

categorical cross entropy loss defined as 
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Where y ∈ R5 is a one-hot label vector and Nc is the number of classes. 

 

Once the model has been fine tuned to identify if an answer is really the technical solution which 

helps solves a question, we use this model to fully clean our data and extract question and 
corresponding answer pairs from conversations. This is done by passing questions and all the 

noise-removed candidate answers, in our desired encoded format to the fine tuned model. Since 

the model has been trained to return “yes” if a context actually contains the technical solution to 
the question, we retain only the answers in a thread which has output “yes” as the model’s output. 

If there are more than one answers which has been predicted relevant (i.e. model output is yes), 

we use the prediction probabilities from the output softmax layer and keep the answer which has 
the maximum prediction probability. This finally helps us narrow down to one particular answer 

from the entire thread, removing the other noisy responses which can further be passed to the 

question answering modules. 

 
Once we’ve extracted the correct response to each question given in the user forum, we’ll need to 

encode it in the same format as the other data sources so it can be indexed in the same indexed 

databases as the others. From the entire data of the technical forums and community forums, the 
data collator extracts structured pairs of questions and related responses. The collator then adds 

suitable metadata fields to act as data source identifiers before pushing the collected data into the 

indexed databases. 
 

Mask RCNN based instance segmentation model The architecture of a Mask RCNN is as 

depicted in 3 and 4 

 
The premise of Mask R-CNN is simple: For each candidate object, the faster R-CNN [17] has 

two outputs: a class label and a bounding-box offset; to this, we 

 

 
 

Fig 3. Mask RCNN framework for instance segmentation 
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Fig 4. Head architecture of Faster R-CNN 

 

add a third branch that produces the object mask. The additional mask output, on the other hand, 
is separate from the class and box outputs, necessitating the extraction of a much finer spatial 

arrangement of an item. Because Mask RCNN uses picture centric training, the images are shrunk 

to a scale of 800 pixels. Formally, a multi-task loss on each sampled RoI that is used during 

training is defined as 
 

L = Lcls + Lbox + Lmask 
 
The classification loss Lcls is defined as 

 

Lcls(p,u) = −logpu 

 
which is the log loss for the true class u and bounding-box loss Lbox is defined as 

 
 
For each RoI, the mask branch produces a Km2- dimensional output, which encodes K binary 

masks of resolution m m, one for each of the K classes. A perpixel sigmoid is applied, and Lmask is 

defined as the average binary cross-entropy loss. Lmask is only specified on the kth mask for a RoI 

associated with ground-truth class k. (other mask outputs do not contribute to the loss). 
 

The mask RCNN [18] based object detector is fine tuned as depicted in 3. The following 

modules make up the Document Parser’s primary stages: 

– The RCNN model has been fine-tuned to recognise two primary objects: tables and photos 

with captions. 

– The Document Parser then uses the fine-tuned model to divide the incoming document into 

three categories: tables, images with captions, and paragraph sections. 

– Based on the identified object, all three sections of the document are then stored in suitable 

databases. 
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Fig 5. Detailed overview of Intelligent Question Answering for Product manuals 

 

2.2. Document indexer 
 

The indexer is responsible for indexing and storing the parsed data in structured databases and 
indexed databases. These sections are indexed with relevant indicator/metadata characteristics 

during index time, which can then be mapped to the object class such as table, text, and so on. We 

chose a Lucene-based indexer for indexed databases after examining several business 
characteristics such as data volume, indexing speed, and retrieval speed during query time. The 

document parsing and indexing is done in batches, with triggers configured to start the process 

when new documents are added to the source repository. 
 

2.3. Document retriever 
 

 
 

Fig 6. Fine tuned word embedding vector space 
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Fig. 7. Fine tuned models to parse user query 

 

The real-time query process is handled by the retriever and reader after the documents have been 
batched indexed. Despite the fact that we have thousands of documents spanning hundreds of 

pages, we can query through them in real time because to the document retriever’s quick 

information retrieval. The modules that make up the retriever are as follows: 

 
Contextualised synonyms extractor We use GloVe word embeddings [21], which have been 

fine-tuned on our business data, to give the retriever semantic abilities during the query stage. 

Aside from the fact that they seek to maximise the log probability while a context window scans 
across the corpus, much of the intricacies of these models have not been explored due to the 

brevity of this study. Although the training is done in an online, stochastic manner, the inferred 

global objective function can be expressed as, 

 

 
 

This results in word embedding that look like 6 in the higher dimensional vector space. 
 

Using fine-tuned word embedding, we cluster words based on their embedding to group 

semantically similar words together, resulting in a set of contextual synonyms that aid in semantic 
and contextual query retrieval. 

 

Metadata and Context extractor A context extractor, which is a named entity model that has 
been trained on metadata such as product family, product line, and model name, is the next stage 

of document retrieval. For the objective of single phrase tagging, this named entity model was 

trained using a variation of BERT cite5. This model’s construction is depicted in 8. After 

extracting the entities from the user query, the metadata information is used to enhance the 
retrieval by pulling information only from documents that have relevant metadata. 
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Fig. 8. Architecture for Named entity model fine Tuning 

 
 

Fig. 9. Training data preparation for Question Answering 
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Tf-idf based retriever and collator The pre-processed query is then run through a Lucene-based 
indexed Query processor, which converts the query into a Lucene index-specific format and 

returns the n most relevant documents, along with their IDs, Tf-Idf relevance scores, and 

metadata. As shown in 7, the user query is delivered in parallel to all object classes. 

 
The gathered document results are then sent into our BM25-based similarity scorer, which re-

prioritizes the retrieved results as follows: 

 

 

 
where 

 
 
 

 

2.4. Document Reader 
 

The document reader is responsible for producing the final consumable user results using the 

following models once the results have been retrieved and aggregated: 
 

Fine tuned textual and Image question answering model Despite the widespread availability 

of pre-trained question-answering models that can answer generic queries, real-world questions 

typically provide less than satisfactory results. For this use case, we constructed an unsupervised 
question answering training dataset (similar to Cloze translation [16]), which was then utilised to 

fine-tune pre-trained BERT [5] models, as shown in 9. 

 
One difference between the usual SQuAD scenario and our commercial use case is that the 

questions we might be asked require more detailed responses. It’s possible that the questions 

related to our business case are What or Why or How inquiries, such as How shall I switch my 
phone off? or What is the meaning of error X?. In the first situation, a paragraph may be required 

as an answer, whereas in the second, only a small portion of the paragraph may be required. To 

categorise incoming questions into one of these classes, a conventional Naive Bayes based 

classifier is employed, and a decision is made based on whether the answer to the question should 
be a short answer or a long one. 

 

This approach is also applied to photographs that have text captions. The OCR parser in the 
image-based question-answering model extracts textual information from the document’s picture 

segments. The fine-tuned question-answering model is then used to extract relevant answer 

segments. 

 
Tabular question answering model The Data Reader’s second section uses fine-tuned models 

based on the BERT architecture to answer table questions. This method is based on K. 

Chakrabarti et al TableQnA’s [2]. This module contains finding the correct table from a list of 
tables and utilising the TableQnA model to get the cell that could be the answer. The model also 

includes a collection of table handling and parsing algorithms that convert multiple tabular forms 

to the TableQnA format, as well as a post processor that returns the answer in a userfriendly 
format. 
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3. EXPERIMENTS AND DATA 
 
We evaluated a comparison between two widely used standard approaches and our pipeline for 

the purposes of comparison. 

 

3.1. Standard Tf-Idf based Retrieval Based Approach 
 

As a domain, information retrieval has been thought of as a search engine-based task in which 
retrieval from indexed databases leads to the final solution. For many question types, a basic 

inverted index lookup followed by term vector model scoring works fairly well. With minimum 

contextualisation, we indexed all of the manuals’ subsections into a Lucene-based indexed 

database. The test queries were then passed to the database as database queries, and the top 
relevant section of the manual was extracted as the answer. 

 

3.2. SQuAD Based Retrieval Approaches 
 

Traditional SQuAD-based models [4] were the second option we wanted to test to see how they 

performed in real-world use cases. Because the SQuAD model has only ever been evaluated on 
extremely small text blocks, when we apply it for larger chunks of text like Wikipedia or 

documents, it frequently fails in terms of both run time and performance by failing to capture the 

correct area of the product manual. 
 

3.3. Comparison of Average Run Time 
 
On a test size of 50 user questions, the methods’ average execution time is as follows:  

 
Table 1. Average run time (ms) 

 

Tf-Idf based SQuAD based Our approach 

100 300000 150 

 
Because the objective is to return the response in real-time, the SQuAD approach makes it 

infeasible for the user to wait approximately 5 minutes for each question to arrive at the 
corresponding answer. 

 

3.4. Comparison of Performance metrics 
 

We chose measures for this experiment that would demonstrate the predicted answer’s lexical and 

semantic similarity to the actual answer. The Rouge score was the first metric used, and it was 
defined as 

 

 
where 

countmatch(ngram) = n(A ∩ B) 
 

A token t is considered to be common between A and B if the semantic similarity between t and 
at least one token in sequence B is greater than a pre-defined threshold. We use ROUGE1 and 

ROUGE2. 
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The Overlap similarity metric, on the other hand, seeks to capture the similarity between the 
expected and predicted answer. We define it as: 

 

 
 
This metric denotes the percentage of tokens in the expected answer S1, which is semantically 

equivalent to S2. Semantic similarity between two vectors A and B is measured as 

 

 
 

The performance numbers are as below: 

 
Table 2. Performance comparison 

 

Approach Metric Performance 

Tf-Idf based approach 

Rouge1 - F score 
Rouge2 - F score 

0.0838 
0.0514 

 Overlap measure 0.2245 

SQuAD based approach 

Rouge1 - F score 

Rouge2 - F score 

0.0609 

0.0224 

 Overlap measure 0.2041 

Intelligent QnA Pipeline 

Rouge1 - F score 

Rouge2 - F score 

0.2463 

0.2094 

 Overlap measure 0.5918 

 
The figures shown here are for when only the first prediction was taken into account for 

comparison. When even the top three results are accounted for comparison the numbers increase 

SIGNIFICANTLY AND WAS ACCEPTED FOR THE BUSINESS USE-CASE 

 

3.5. Inference 
 
The Tf-IDF approach worked well for simple scenarios, but the returned responses were too long 

for the end user to absorb. In majority of these cases, the solutions were only available in a 

subsection of the manuals, making it impractical in a business scenario to trawl through extensive 

passages to find the answer. Furthermore, because there were other sections with the same 
keywords, the answer was frequently not found in the first returned result, but rather somewhere 

further down. The SQuAD-based results had two major drawbacks: run time and result quality. 

For both simple and complicated problems, the model frequently failed to return the correct 
answer. This demonstrates that, while traditional methods can perform well in some situations, 

the smaller domain specific complexities provided into our pipeline have shown to be helpful in 

obtaining the right response in the least amount of time. 
 

4. CONCLUSION 
 

In this paper, we suggested a novel question-answering pipeline based on structured and 

unstructured data sources such as manuals, images, and product user guides in this paper. We 
have our main focus on extracting information from heterogeneous data sources which usually 
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pose several practical challenges to parse and understand. We’ve also shown, with concrete data, 
how to layer bespoke domain knowledge on top of existing and traditional systems to produce 

contextualised outputs for a certain business domain. Our method has also been used in a variety 

of domain use-cases to help users find relevant answers to their problems fast. 

 
This paper extends the work done on question answering on product manuals as studied in [24]. 

We apply several fine tuned models to handle heterogeneous data with significant effort and 

performance. One limitation of the existing approach is that the current pipeline does not allow 
the incorporation of human feedback for various sub modules. As described in Future Work, we 

expect to undertake that as part of our pipeline enhancement initiatives. 

 

5. FUTURE WORK 
 
In the current system, there is a simple layer of user feedback and named entities as mentioned in 

[25] that is used to improve the final answer generated by the automated pipeline. User signals 

such as feedback and more annotated data for new labels will be incorporated into our future 
work. Individual components of the current pipeline will perform better as a result of these 

signals being plugged into various pipeline sub-modules. One area of improvement, as proposed 

by G. Abinaya et al. [22], is designing a system capable of ingesting such feedback. The 
aforementioned structure will include dedicated modules that determine which section of the 

pipeline feedback should flow into, the cadence at which feedback should be reflected in the 

module, and the weights that should be assigned to feedback based on its importance, user 

preferences, and other factors. 
 

For the scope of this paper, we prioritised the question answering module, which was trained for 

the Hi-Tech domain. Another area of consideration in the named entity recognizer module will be 
the incorporation of domain knowledge and domain specific jargons, starting with the generation 

of domain specific data using unstructured methodologies and then developing named entity 

classifiers utilising this data. 
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