
International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

DOI: 10.5121/ijnlc.2021.10601 1

QUESTION ANSWERING MODULE LEVERAGING

HETEROGENEOUS DATASETS

Abinaya Govindan, Gyan Ranjan and Amit Verma

Neuron7.ai, USA

ABSTRACT

Question Answering has been a well-researched NLP area over recent years. It has become necessary for
users to be able to query through the variety of information available - be it structured or unstructured. In

this paper, we propose a Question Answering module which a) can consume a variety of data formats - a

heterogeneous data pipeline, which ingests data from product manuals, technical data forums, internal

discussion forums, groups, etc. b) addresses practical challenges faced in real-life situations by pointing to

the exact segment of the manual or chat threads which can solve a user query c) provides segments of texts

when deemed relevant, based on user query and business context. Our solution provides a comprehensive

and detailed pipeline that is composed of elaborate data ingestion, data parsing, indexing, and querying

modules. Our solution is capable of handling a plethora of data sources such as text, images, tables,

community forums, and flow charts. Our studies performed on a variety of business-specific datasets

represent the necessity of custom pipelines like the proposed one to solve several real-world document

question-answering.

KEYWORDS

Machine comprehension, document parser, question answering, information retrieval, heterogeneous data

1. INTRODUCTION

In this study, we examine factoid question-answering when a data source is restricted to a

constrained domain, such as the Hi-Tech one. The agent peruses several product manuals as the

data source to determine a technical answer to a client query. Product manuals can be considered
a source of information that is continuously evolving when there are multiple versions and

releases of a product. Manuals offer a more reliable and up-to-date source than a knowledge base

with a structured source of information like FAQs, which may not be comprehensive and require

time and manual effort to create and validate, but are easier for computers to digest and process.
Hence manuals become the perfect candidate for a long-term and scalable system. However,

these manuals are intended for humans to read rather than for machines to parse, making them

more difficult to parse automatically.

In businesses, compiling product manuals requires time, effort, and coordination by several

teams, which often results in the lack of manuals for a very long period. We could solve this issue

if we leveraged real-time interactive data sources such as community forums and technical
discussion forums where users post problems they face and community members respond with

their solutions and useful links. The extraction of data from these forums can be very useful to

businesses in creating a crowd sourced knowledge platform. The data, however, cannot be
consumed in the raw form and has noise associated with it that needs to be cleaned and processed

for our system to use this effectively. So, the community conversation threads are also an integral

component of our system for extracting relevant information.

https://airccse.org/journal/ijnlc/vol10.html
https://doi.org/10.5121/ijnlc.2021.10601

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

2

The goal of this system is to reduce the amount of time and effort required to locate relevant
articles in the manual or community conversation forums, then manually navigate to the

appropriate section with the most appropriate answer, as a result of manual intervention. As a

result, for every user request, the system returns a set of related topics from numerous guides and

conversations, as well as the parent, just like a standard question-and-answer system. This
decision is based on the business rationale that several manuals may contain information relevant

to your request. When a user asks a question like What is the expected time for my battery to be

fully charged? and the solution may be found in the manuals for a variety of devices, all of those
sections must be recommended to the user. The system must also be able to interpret any

additional context provided by the user that aids in narrowing down the manuals - for example, if

the user asks What is the expected time for device A’s battery to be charged?, the system must
recognize that device A is an additional context and should only be able to search manuals for

device A.

The use of hundreds of conversation threads and user manuals for question answering involves
the inclusion of a document indexer engine in the question answering system, which should be

executed at scale because the questions should be addressed in real-time. As a result, the system

should be able to retrieve relevant sections among hundreds of acquired manuals and
conversations for each user query. Because it can process both textual (paragraphs, summaries,

etc.) and non-textual (tables, images, flow diagrams, etc.) information, this system can be

extended to any domain as long as manuals, documents, or even books and articles are available.

In traditional question answering scenarios, a small chunk of text can be regarded as an answer to

the question asked. We cannot, however, make the same argument for our business use case. If a

user inquires about What are the steps for me to log in to a device?, the response cannot be
provided in a short segment and must be replied using an entire section titled How to use and set

up?. As a result, the system should be able to decide whether the answer should be returned as a

short sequence or as a portion of text in real-time.

In this paper, we show how various existing systems try to solve this domain based question

answering by comparing their performances on a standard business dataset. We also introduce

Intelligent Question Answering system which is composed of

– Document parser, a transformer-based deep learning model that can parse and manage a

wide range of unstructured data, including images, tables, textual content etc. The parser is

mainly comprised of two sub-modules to parse user manual documents and extract

conversation threads from the technical forums.

– Document indexer, a module that uses indexed databases to index documents with essential

information to keep all different types of data in a single collection, such as images, tables,

and so on.

– Document Retriever, a natural-language-based query processor that handles several

business-specific preparation processes, recognizes if the query has any “context,” and gets

the top relevant chunks of text from the indexed database.

– Document Reader, a multi-layer transformer-based model which has been fine-tuned for the

task of specific domain-based question answering. The document reader also has a classifier
that has been trained to decide if the answer should be a small segment or section of text.

In this paper, we study the application of several deep learning models to the question answering

task. Our experiments show that the Intelligent Question Answering system outperforms
traditional question answering systems on standard business-specific datasets.

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

3

1.1. Related work

The study teams first focused on factoid questions, which are queries for which answers can be

extracted with certainty from a defined text source. However, there may be a few deviations to
this assumption in real-world scenarios, which can be handled by other classifier modules. These

teams were mostly interested in factoid questions, such as “Where was X born?” and “Which

year did Y take place?”. Now, the emphasis is on solving difficult problems which one
encounters regularly in real-world like “How can Y be done?”, “A was moved from B to C and

later to D. Where is A now?”. These issues, in some cases, necessitate complex comprehension

and context inference, as well as information flow between sentences. These challenges can no

longer be solved with simple comprehension models or named entity models. The Text Retrieval
Conference (TREC) has featured an annual evaluation track of question answering systems since

1999. (Voorhees 2001, 2003b). Following TREC’s success, both the CLEF and NTCIR

workshops began multilingual and cross-lingual QA tracks in 2002, with a focus on European and
Asian languages, respectively as done by Magnini et al. 2006; Yutaka Sasaki and Lin 2005 in [8].

Other datasets, such as P. Rajpurkar, et al. 2016 [11] and P. Rajpurkar, et al. 2018 [10], that

focused on question answering, were also released in the past few years.

The collection of knowledge in the field of quality assurance has expanded to the point where

various models reliably address the QA domain. On the other hand, the majority of these models

and strategies focus on academic data sources that have been selected by humans and follow great
grammar and linguistic patterns.

Data is commonly distributed across pages or portions of pages in the real world, making parsing
and further inference of this type of data significantly more difficult than in the academic setting.

There are also several advanced complete pipeline QA systems that leverage either the Web, as
does QuASE (Sun et al., 2015) [13], or Wikipedia as a resource, as do Microsoft’s AskMSR

(Brill et al., 2002) [14], IBM’s DeepQA (Ferrucci et al., 2010) [20] and YodaQA (Baudi s, 2015;

Baudi s and Sediv‘y, 2015) [15]. AskMSR is a search-engine-based QA system that prioritizes

”data redundancy over complex linguistic analyses of either queries or probable responses,” in
other words, it doesn’t prioritize machine understanding as we do. Few methods attempt to deal

with both unstructured and structured data, such as text segments and documents, as well as

knowledge bases and databases. DeepQA is one such instance. Other systems based on DeepQA,
such as YodaQA, incorporate information extraction from unstructured sources such as websites,

text, and Wikipedia.

This task is difficult since researchers must deal with scalability and accuracy issues. Rapid
development has been made in recent years, and the performance of factoid and open-domain QA

systems has greatly improved (Sasaki et al. [8], 2017; S. Schwager et al., 2019 [4] ;K. Jiang et al.,

2019, [1]). Several alternatives have been offered, notably DrQA’s two-stage ranker-reader
system (Chen et al., 2017 [9]) end-to-end transformer-based models (S.Schwager et al., 2019) [4]

and unified framework-based models to handle all text-based language difficulties (Raffel et al.,

2020) [7].

QAConv, as developed by C.S Wu et al., [23] is a new dataset that uses conversations as

knowledge source. The data is mainly composed of business emails, panel discussions, technical

conversations and work channels. Unlike open-domain and task-oriented dialogues, these
conversations are usually long, complex, asynchronous, and involve strong domain knowledge.

Traditional question answering models have proven to be inefficient on this kind of data, proving

the need for a custom and enhanced pipeline to address such data sources.

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

4

2. OUR PROPOSAL

Our system, Intelligent Question Answering Pipeline, is described in the following sections, and

it is made up of four parts: Document Parser (1), Document Indexer (2), Document Retriever (3),

and Document Reader (4) modules. 5 is a diagram of the entire architecture.

2.1. Document parser

The document parser is the input processing block that reads the data and converts it into a format

that can be handled by ensuing modules. The document parser is composed of two main building

blocks a) The deep learning based framework that is used to convert conversational threads from

technical forums and internal chat forums to our desired format so that they can be further
processed for question answering. b) The Mask RCNN based fine tuned instance segmentation

model, which is fine adjusted to recognise tables and images with text contained in the document,

is the core part of the document parser. In addition to the existing branch for classification and
bounding box regression, the Mask R-CNN extends Faster RCNN by adding a branch for

predicting segmentation masks on each Region of

Interest (RoI).

Deep learning based conversational thread parser The deep learning based conversation

parser module is depicted in fig 1.

Fig 1. Detailed overview of Intelligent Question Answering for Product manuals

We built a specialized pipeline to process information from technical forums and community
websites. The pipeline has the following characteristics :

– uses natural language inference models to identify the key sections of a conversation

– from the conversation threads, extracts the most relevant response

– compiles the information into a usable format that can be put in an indexed database with

information collected from manuals.

An intent categorization model is used in the initial section of the conversational thread parser.

This model is built on a BERT-based classifier that has been fine-tuned using the natural

language inference dataset. As described in [26], the classifier was fine-tuned for the terms

entailment, non-entailment, and neutral. As a zero-shot textual entailment issue, we employ this

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

5

fine-tuned model to classify intents in our data. The classes for which the model was trained as
“intents” are “application related, feature update, software error” etc . These intents were noun

chunks that were the most prominent in the data and were prioritised using domain expertise

provided by agents.

The intent identification model determines the question’s intent from a list of pre-defined intents

Ik and preserves messages in the conversation thread that are also part of the same intent as Ik.

This removes non-relevant messages, which is the first degree of noise reduction. For example, if
the user asks, “My battery does not function, has anyone had this issue,” the intent classifier

predicts “software error” as the intent for the inquiry. The model then predicts intents for all

individual messages in the threads, keeping just those that contain the expected intent of
“software error.”

Since these forums are typically free-text based, there is a risk of users adding non-relevant

inputs to the threads. This degree of intent-based-filtering helps the model remove all the
unnecessary messages such as “Thanks” or other random remarks in the threads.

The Answer identification module makes up the second half of the conversational thread parser.
Since we do not have that information of which answer in a thread actually solved a user

question, the answer identification module plays a crucial role in generating actual question-

answer pairs which can be considered “completely error free” and can be indexed with the other
the data sources. Once the first level of noisy messages has been removed from a thread using the

intent identification module, it is critical to determine if a proposed response truly answers the

user’s inquiry and to keep only that.

This is performed by our question-answering system which is built on modern text-to-text

framework such as T5 [27]. The data we utilised to fine-tune our model was curated in a way

similar to the BoolQA dataset, in which we extracted question and answer pairs from community
forums. Around 700 discussion threads were retrieved, with a total of 2500 question-answer pairs

annotated from these threads. The data structure is as mentioned in 2 :

To encode the question and answer together into a single input into a text in - text out format, we
first establish an uniform encoding format. The query is encoded first, followed by knowledge

context - the candidate responses for each of the dialogue threads. The delimiter “\n” is used to

connect these inputs into a single sequence. We don’t use any prefixes, data, or task specific
identifiers in the encoding or model, unlike other sequence to sequence models fine-tuned on T5.

The model is trained in such a way that the answers are inferred from the context and question,

which is far superior to standard question answering systems that extract

Fig 2. Sample data format used to fine tune T5 model

or abstract answer blocks from the provided context. The model has been trained to minimise the

categorical cross entropy loss defined as

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

6

Where y ∈ R5 is a one-hot label vector and Nc is the number of classes.

Once the model has been fine tuned to identify if an answer is really the technical solution which

helps solves a question, we use this model to fully clean our data and extract question and
corresponding answer pairs from conversations. This is done by passing questions and all the

noise-removed candidate answers, in our desired encoded format to the fine tuned model. Since

the model has been trained to return “yes” if a context actually contains the technical solution to
the question, we retain only the answers in a thread which has output “yes” as the model’s output.

If there are more than one answers which has been predicted relevant (i.e. model output is yes),

we use the prediction probabilities from the output softmax layer and keep the answer which has
the maximum prediction probability. This finally helps us narrow down to one particular answer

from the entire thread, removing the other noisy responses which can further be passed to the

question answering modules.

Once we’ve extracted the correct response to each question given in the user forum, we’ll need to

encode it in the same format as the other data sources so it can be indexed in the same indexed

databases as the others. From the entire data of the technical forums and community forums, the
data collator extracts structured pairs of questions and related responses. The collator then adds

suitable metadata fields to act as data source identifiers before pushing the collected data into the

indexed databases.

Mask RCNN based instance segmentation model The architecture of a Mask RCNN is as

depicted in 3 and 4

The premise of Mask R-CNN is simple: For each candidate object, the faster R-CNN [17] has

two outputs: a class label and a bounding-box offset; to this, we

Fig 3. Mask RCNN framework for instance segmentation

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

7

Fig 4. Head architecture of Faster R-CNN

add a third branch that produces the object mask. The additional mask output, on the other hand,
is separate from the class and box outputs, necessitating the extraction of a much finer spatial

arrangement of an item. Because Mask RCNN uses picture centric training, the images are shrunk

to a scale of 800 pixels. Formally, a multi-task loss on each sampled RoI that is used during

training is defined as

L = Lcls + Lbox + Lmask

The classification loss Lcls is defined as

Lcls(p,u) = −logpu

which is the log loss for the true class u and bounding-box loss Lbox is defined as

For each RoI, the mask branch produces a Km2- dimensional output, which encodes K binary

masks of resolution m m, one for each of the K classes. A perpixel sigmoid is applied, and Lmask is

defined as the average binary cross-entropy loss. Lmask is only specified on the kth mask for a RoI

associated with ground-truth class k. (other mask outputs do not contribute to the loss).

The mask RCNN [18] based object detector is fine tuned as depicted in 3. The following

modules make up the Document Parser’s primary stages:

– The RCNN model has been fine-tuned to recognise two primary objects: tables and photos

with captions.

– The Document Parser then uses the fine-tuned model to divide the incoming document into

three categories: tables, images with captions, and paragraph sections.

– Based on the identified object, all three sections of the document are then stored in suitable

databases.

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

8

Fig 5. Detailed overview of Intelligent Question Answering for Product manuals

2.2. Document indexer

The indexer is responsible for indexing and storing the parsed data in structured databases and
indexed databases. These sections are indexed with relevant indicator/metadata characteristics

during index time, which can then be mapped to the object class such as table, text, and so on. We

chose a Lucene-based indexer for indexed databases after examining several business
characteristics such as data volume, indexing speed, and retrieval speed during query time. The

document parsing and indexing is done in batches, with triggers configured to start the process

when new documents are added to the source repository.

2.3. Document retriever

Fig 6. Fine tuned word embedding vector space

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

9

Fig. 7. Fine tuned models to parse user query

The real-time query process is handled by the retriever and reader after the documents have been
batched indexed. Despite the fact that we have thousands of documents spanning hundreds of

pages, we can query through them in real time because to the document retriever’s quick

information retrieval. The modules that make up the retriever are as follows:

Contextualised synonyms extractor We use GloVe word embeddings [21], which have been

fine-tuned on our business data, to give the retriever semantic abilities during the query stage.

Aside from the fact that they seek to maximise the log probability while a context window scans
across the corpus, much of the intricacies of these models have not been explored due to the

brevity of this study. Although the training is done in an online, stochastic manner, the inferred

global objective function can be expressed as,

This results in word embedding that look like 6 in the higher dimensional vector space.

Using fine-tuned word embedding, we cluster words based on their embedding to group

semantically similar words together, resulting in a set of contextual synonyms that aid in semantic
and contextual query retrieval.

Metadata and Context extractor A context extractor, which is a named entity model that has
been trained on metadata such as product family, product line, and model name, is the next stage

of document retrieval. For the objective of single phrase tagging, this named entity model was

trained using a variation of BERT cite5. This model’s construction is depicted in 8. After

extracting the entities from the user query, the metadata information is used to enhance the
retrieval by pulling information only from documents that have relevant metadata.

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

10

Fig. 8. Architecture for Named entity model fine Tuning

Fig. 9. Training data preparation for Question Answering

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

11

Tf-idf based retriever and collator The pre-processed query is then run through a Lucene-based
indexed Query processor, which converts the query into a Lucene index-specific format and

returns the n most relevant documents, along with their IDs, Tf-Idf relevance scores, and

metadata. As shown in 7, the user query is delivered in parallel to all object classes.

The gathered document results are then sent into our BM25-based similarity scorer, which re-

prioritizes the retrieved results as follows:

where

2.4. Document Reader

The document reader is responsible for producing the final consumable user results using the

following models once the results have been retrieved and aggregated:

Fine tuned textual and Image question answering model Despite the widespread availability

of pre-trained question-answering models that can answer generic queries, real-world questions

typically provide less than satisfactory results. For this use case, we constructed an unsupervised
question answering training dataset (similar to Cloze translation [16]), which was then utilised to

fine-tune pre-trained BERT [5] models, as shown in 9.

One difference between the usual SQuAD scenario and our commercial use case is that the

questions we might be asked require more detailed responses. It’s possible that the questions

related to our business case are What or Why or How inquiries, such as How shall I switch my
phone off? or What is the meaning of error X?. In the first situation, a paragraph may be required

as an answer, whereas in the second, only a small portion of the paragraph may be required. To

categorise incoming questions into one of these classes, a conventional Naive Bayes based

classifier is employed, and a decision is made based on whether the answer to the question should
be a short answer or a long one.

This approach is also applied to photographs that have text captions. The OCR parser in the
image-based question-answering model extracts textual information from the document’s picture

segments. The fine-tuned question-answering model is then used to extract relevant answer

segments.

Tabular question answering model The Data Reader’s second section uses fine-tuned models

based on the BERT architecture to answer table questions. This method is based on K.

Chakrabarti et al TableQnA’s [2]. This module contains finding the correct table from a list of
tables and utilising the TableQnA model to get the cell that could be the answer. The model also

includes a collection of table handling and parsing algorithms that convert multiple tabular forms

to the TableQnA format, as well as a post processor that returns the answer in a userfriendly
format.

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

12

3. EXPERIMENTS AND DATA

We evaluated a comparison between two widely used standard approaches and our pipeline for

the purposes of comparison.

3.1. Standard Tf-Idf based Retrieval Based Approach

As a domain, information retrieval has been thought of as a search engine-based task in which
retrieval from indexed databases leads to the final solution. For many question types, a basic

inverted index lookup followed by term vector model scoring works fairly well. With minimum

contextualisation, we indexed all of the manuals’ subsections into a Lucene-based indexed

database. The test queries were then passed to the database as database queries, and the top
relevant section of the manual was extracted as the answer.

3.2. SQuAD Based Retrieval Approaches

Traditional SQuAD-based models [4] were the second option we wanted to test to see how they

performed in real-world use cases. Because the SQuAD model has only ever been evaluated on
extremely small text blocks, when we apply it for larger chunks of text like Wikipedia or

documents, it frequently fails in terms of both run time and performance by failing to capture the

correct area of the product manual.

3.3. Comparison of Average Run Time

On a test size of 50 user questions, the methods’ average execution time is as follows:

Table 1. Average run time (ms)

Tf-Idf based SQuAD based Our approach

100 300000 150

Because the objective is to return the response in real-time, the SQuAD approach makes it

infeasible for the user to wait approximately 5 minutes for each question to arrive at the
corresponding answer.

3.4. Comparison of Performance metrics

We chose measures for this experiment that would demonstrate the predicted answer’s lexical and

semantic similarity to the actual answer. The Rouge score was the first metric used, and it was
defined as

where

countmatch(ngram) = n(A ∩ B)

A token t is considered to be common between A and B if the semantic similarity between t and
at least one token in sequence B is greater than a pre-defined threshold. We use ROUGE1 and

ROUGE2.

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

13

The Overlap similarity metric, on the other hand, seeks to capture the similarity between the
expected and predicted answer. We define it as:

This metric denotes the percentage of tokens in the expected answer S1, which is semantically

equivalent to S2. Semantic similarity between two vectors A and B is measured as

The performance numbers are as below:

Table 2. Performance comparison

Approach Metric Performance

Tf-Idf based approach

Rouge1 - F score
Rouge2 - F score

0.0838
0.0514

 Overlap measure 0.2245

SQuAD based approach

Rouge1 - F score

Rouge2 - F score

0.0609

0.0224

 Overlap measure 0.2041

Intelligent QnA Pipeline

Rouge1 - F score

Rouge2 - F score

0.2463

0.2094

 Overlap measure 0.5918

The figures shown here are for when only the first prediction was taken into account for

comparison. When even the top three results are accounted for comparison the numbers increase

SIGNIFICANTLY AND WAS ACCEPTED FOR THE BUSINESS USE-CASE

3.5. Inference

The Tf-IDF approach worked well for simple scenarios, but the returned responses were too long

for the end user to absorb. In majority of these cases, the solutions were only available in a

subsection of the manuals, making it impractical in a business scenario to trawl through extensive

passages to find the answer. Furthermore, because there were other sections with the same
keywords, the answer was frequently not found in the first returned result, but rather somewhere

further down. The SQuAD-based results had two major drawbacks: run time and result quality.

For both simple and complicated problems, the model frequently failed to return the correct
answer. This demonstrates that, while traditional methods can perform well in some situations,

the smaller domain specific complexities provided into our pipeline have shown to be helpful in

obtaining the right response in the least amount of time.

4. CONCLUSION

In this paper, we suggested a novel question-answering pipeline based on structured and

unstructured data sources such as manuals, images, and product user guides in this paper. We
have our main focus on extracting information from heterogeneous data sources which usually

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

14

pose several practical challenges to parse and understand. We’ve also shown, with concrete data,
how to layer bespoke domain knowledge on top of existing and traditional systems to produce

contextualised outputs for a certain business domain. Our method has also been used in a variety

of domain use-cases to help users find relevant answers to their problems fast.

This paper extends the work done on question answering on product manuals as studied in [24].

We apply several fine tuned models to handle heterogeneous data with significant effort and

performance. One limitation of the existing approach is that the current pipeline does not allow
the incorporation of human feedback for various sub modules. As described in Future Work, we

expect to undertake that as part of our pipeline enhancement initiatives.

5. FUTURE WORK

In the current system, there is a simple layer of user feedback and named entities as mentioned in

[25] that is used to improve the final answer generated by the automated pipeline. User signals

such as feedback and more annotated data for new labels will be incorporated into our future
work. Individual components of the current pipeline will perform better as a result of these

signals being plugged into various pipeline sub-modules. One area of improvement, as proposed

by G. Abinaya et al. [22], is designing a system capable of ingesting such feedback. The
aforementioned structure will include dedicated modules that determine which section of the

pipeline feedback should flow into, the cadence at which feedback should be reflected in the

module, and the weights that should be assigned to feedback based on its importance, user

preferences, and other factors.

For the scope of this paper, we prioritised the question answering module, which was trained for

the Hi-Tech domain. Another area of consideration in the named entity recognizer module will be
the incorporation of domain knowledge and domain specific jargons, starting with the generation

of domain specific data using unstructured methodologies and then developing named entity

classifiers utilising this data.

REFERENCES

[1] K. Jiang,D. Wu, and H. Jiang, “FreebaseQA: A New Factoid QA Data Set Matching TriviaStyle

Question-Answer Pairs with Freebase,” Proceedings of NAACL-HLT 2019 pages 318–323

Minneapolis, Minnesota, June 2 - June 7, 2019.

[2] K. Chakrabarti,Z. Chen, S. Shakeri, G. Cao, and S. Chaudhuri “TableQnA: Answering ListIntent

Queries With Web Tables,” Proceedings of the VLDB Endowment, Vol. 12, 2020.

[3] C. Deng, G. Zeng, Z. Cai, and X. Xiao, “ A Survey of Knowledge Based Question Answering with

Deep Learning,” Journal on Artificial Intelligence 2020, No. 4 , pages 157-166

[4] S. Schwager and J. Solitario, “Question and Answering on SQuAD 2.0: BERT Is All You Need,”

ArXiv e-prints of 2019.

[5] J. Devlin , M.W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding,” ArXiv e-prints of 2018.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, and I. Polosukhin

“Attention Is All You Need,” 31st Conference on Neural Information Processing Systems (NIPS

2017), Long Beach, CA, USA.

[7] C. Raffel , N. Shazeer, A. Roberts, K. Lee , S. Narang , M. Matena , Y. Zhou, W. Li and P. J. Liu,

“Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer,” ArXiv e-prints

of 2020

[8] Y. Sasaki, Y.Chen, K. Chen and C.J. Lin, “Overview of the NTCIR-5 Cross-Lingual Question

Answering Task,” Proceedings of NTCIR-5 Workshop Meeting, 2005, Tokyo, Japan

International Journal on Natural Language Computing (IJNLC) Vol.10, No.6, December 2021

15

[9] D. A. Chen, J. W. Fisch, and A. Bordes. “ Reading Wikipedia to Answer Open-Domain Questions”

ArXiv e-prints, 2017.

[10] P. Rajpurkar, R. Jia, P. Liang. “Know What You Don’t Know: Unanswerable Questions for SQuAD.”

ArXiv:1806.038221v1, 2018.

[11] P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang. “ SQuAD: 100,000+ Questions for Machine

Comprehension of Text,” arXiv:1606.05250v3, 2016.

[12] W. T. Yih, X. D. He and C. Meek, “Semantic parsing for single-relation question answering,” in Proc.

of the 52nd Annual MTG of the Association for Computational Linguistics, Baltimore, Maryland,

USA, pp. 643–648, 2014.

[13] H. Sun, H. Ma, W. Yih, C. Tsai, J. Liu, and M.i Chang. “Open domain question answering via

semantic enrichment,” Proceedings of the 24th International Conference on World Wide Web. ACM

2015, pages 1045–1055.

[14] E. Brill, S. Dumais, and M. Banko. “An analysis of the AskMSR question-answering system,”

Empirical Methods in Natural Language Processing (EMNLP). pages 257–264.’

[15] P. Baudi s and J. Sediv‘y. “Modeling of the question answering task in the YodaQA system,”

International Conference of the Cross- Language Evaluation Forum for European Languages.

Springer 2015, pages 222–228.

[16] P. Lewis, L. Denoyer and S. Riedel. “Unsupervised Question Answering by Cloze Translation,”

ArXiv e-prints of 2019

[17] R. Girshick. “Fast R-CNN,” ArXiv e-prints of 2015

[18] K. He, G. Gkioxari , P. Doll‘ar and R. Girshick. “Mask R-CNN,” ArXiv e-prints of 2018 19. B.

[19] Magnini, D. Giampiccolo, L. Aunimo, C. Ayache, P. Osenova, A. Pen˜as, M. Rijke, B. Sacaleanu, D.

Santos and R. Sutcliffe “The Multilingual Question Answering Track at CLEF ,” The Multilingual

Question Answering Track at CLEF , 2006

[20] Ferrucci, David and Brown, Eric and Chu-Carroll, Jennifer and Fan, James and Gondek, David and

Kalyanpur, Aditya and Lally, Adam and Murdock, J William and Nyberg, Eric and Prager, John and

Schlaefer, Nico and Welty, Christopher “Building Watson: An Overview of the DeepQA Project,”. AI

Magazine, 2010. pages 59-79

[21] J. Pennington , R. Socher and C. Manning “GloVe: Global Vectors for Word Representation,”

Empirical Methods in Natural Language Processing, 2014

[22] G. Abinaya, G. Ranjan and P. Aswin Karthik, “Continuous learning mechanism of NLU-ML models

boosted by human feedback,” International Conference on Computational Intelligence in Data

Science (ICCIDS), 2019, pages 1-6

[23] C-S Wu, A. Madotto, W. Liu, P. Fung, C. Xiong, “QAConv: Question Answering on Informative

Conversations,” CoRR 2021

[24] A. Govindan, G. Ranjan, A. Verma, “Intelligent Question Answering Module for Product Manuals,”

NATL - Nov, 2021

[25] A. Govindan, G. Ranjan, A. Verma, “Unsupervised Named Entity Recognition for Hi-Tech Domain,”

CNDC - Nov, 2021

[26] W. Yin, J. Hay and D. Roth, “Benchmarking Zero-shot Text Classification: Datasets, Evaluation and

Entailment Approach,” CORR 2019

[27] C. Raffel, N. Shazeer, A. Roberts, K. Lee , S. Narang, M. Matena , Y. Zhou , W.Li and P. J. Liu ,

‘Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer,” CORR 2019.

	1. Introduction
	1.1. Related work

	2. Our Proposal
	2.1. Document parser
	2.2. Document indexer
	2.3. Document retriever
	2.4. Document Reader

	3. Experiments and data
	3.1. Standard Tf-Idf based Retrieval Based Approach
	3.2. SQuAD Based Retrieval Approaches
	3.3. Comparison of Average Run Time
	3.4. Comparison of Performance metrics
	3.5. Inference

	4. Conclusion
	5. Future Work
	References

