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ABSTRACT 
 

In this paper, phoneme sequences are used as language information to perform code-switched language 

identification (LID). With the one-pass recognition system, the spoken sounds are converted into 

phonetically arranged sequences of sounds. The acoustic models are robust enough to handle multiple 

languages when emulating multiple hidden Markov models (HMMs). To determine the phoneme similarity 

among our target languages, we reported two methods of phoneme mapping. Statistical phoneme-based 

bigram language models (LM) are integrated into speech decoding to eliminate possible phone 

mismatches. The supervised support vector machine (SVM) is used to learn to recognize the phonetic 

information of mixed-language speech based on recognized phone sequences. As the back-end decision is 

taken by an SVM, the likelihood scores of segments with monolingual phone occurrence are used to 

classify language identity. The speech corpus was tested on Sepedi and English languages that are often 

mixed. Our system is evaluated by measuring both the ASR performance and the LID performance 

separately. The systems have obtained a promising ASR accuracy with data-driven phone merging 

approach modelled using 16 Gaussian mixtures per state. In code-switched speech and monolingual 

speech segments respectively, the proposed systems achieved an acceptable ASR and LID accuracy. 
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1. INTRODUCTION 
 

It is common for multilingual speakers to engage in code-switching or switching between more 

than one language in an utterance, a phenomenon known as mixed-language usage [1]. In 

multilingual societies, it seems to be commonly preferred. According to the constitution 

established by the national legislation of South Africa, chapter 1 - of the Bill of Rights - section 

6, it states that: “Pan South African Language Board (PanSALB) has the right to promote the use 

all eleven official languages.” The result is that South Africa is a multilingual nation, with eleven 

official languages. Most native speakers are likely to speak more than one official language in 

their daily, everyday conversation. In general, South African languages are represented by a 

mixed mode of usage (e.g., in radio and television dramas, news broadcasts, religious worship 

services, and interviews and presentations). Ethnologue's database notes that of over 6909 natural 

languages spoken worldwide, English is traditionally used for global communication [2]. English 

is often mingled with indigenous languages that are under- resourced in many African 

communication episodes. Native speakers of African languages utilize the English language to 

express numerical digits, times, and codes. In South Africa, it is common to hear more than one 

language being spoken in the same area. This research was therefore relevant. 
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Normally code-switched speech consists of two or more words or sentences from another 

language. The embedded language is also known as the primary language. There is no formal 

  

written form of code-switched speech. In this sense, code-switched speech falls into the same 

category as under-resourced languages [1]. Modern style of communication, characterized by the 

mixing of two or more official languages, presents greater challenges for speech-enabled 

technologies. As the state of the art of human language technology (HLT) advances, it is now 

focusing on automating systems that allow multilingual individuals to interact easily with smart 

computers. As a result, the HLT sector benefits a wide range of multicultural societies - from the 

less-literate ruralites in remote regions who need help obtaining relevant medical information 

over a cell-phone line, to the sophisticated industry researchers who need assistance solving 

commercial problems with computer equipment [3]. 

 

In recent years, much research has been done on proven systems for spoken language processing 

which are based on pattern recognition, one of the most challenging computational problems. An 

artificial intelligence system is defined as a system that is capable of recognizing, identifying, or 

classifying speech patterns [4, 6]. Known as spoken language identification (LID), spoken 

language identification refers to an automatic process that can accurately determine the language 

spoken in every sampled speech utterance. There are many multilingual speech processing 

applications that can be enabled by LID systems, including multilingual information retrieval [5], 

spoken language translation [4] and telephone call routing systems [6]. A major trend in today's 

speech technologies is the ability to support multiple input and output languages, especially when 

the applications are targeted at global markets and linguistically diverse communities [4]. 

 

 
 

Figure 1. Example of an LID based call routing system. 

 

To ascertain the language of code-switched utterances, we propose integrating a multilingual 

One-Pass ASR system followed by a language identification system. Using a multilingual One- 

Pass ASR system, we would be able to decode multiple languages simultaneously within the 

same utterance [1, 7]. Our experimental methods employed context dependent HMMs based on 

multilingual acoustic models and phone LMs. For language identification on code-switched 

speech, we used nearly the same technique as parallel phoneme recognition followed by language 

modelling (PPRLM). Even though we report only on experiments that were conducted in South 

Africa in two official languages, we believe that the same process can be applied to other under-

resourced languages as well [23]. However, the question then is does ASR performance influence 
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the performance of the LID system? We perform experiments to show the answer is possible and 

positive. 

Our main contributions can be summarized as follows: 

 

• We formalise the framework of multilingual One-Pass ASR-LID system built with different 

open-source tools. 

• We show that a significant improvement in the performance of the ASR system directly 

affect the performance of the LID system. We provide a detailed analysis of ASR-LID 

improvements. 

• We show that integration of phone merging strategies and the use of mixed corpora’s within 

the ASR system can handle code-mixed or code-switched utterances. 

• We evaluate the ASR-LID task on TCoE4ST-LWAZI corpus and create acoustic models 

and LMs which capture sufficient phonotactic information which we leverage to show 

improvements on phone error rates and LID accuracy. 

 

This paper is organized as follows: Section 2 discusses the related works of ASR and LID on 

code-switched speech and/or multilingual setting. Section 3 provide an explanation of the system 

architecture. Section 4 describes the mixed speech corpus used for the experiments. Section 5 

discusses the experimental setup and results. Lastly, the conclusion and future directions are 

provided. 

 

2. RELATED WORK 
 

In Singapore, Mandarin and English are often mixed in spoken conversations [1], in Hong Kong 

a code-switching between Cantonese and English is used on many occasions [8] and in Taiwan, a 

Mandarin-Taiwanese code-switching speech was reported [9]. Others reported a mixed- language 

speech found in India between Hindi and English [10]. Similarly, code-switching is observed in 

South Africa, where code-switching between two indigenous South African languages such as 

Xhosa and Zulu has been studied for multilingual speech recognition [11]. Recently, Modipa et 

al. [12] reported a context-dependent modelling technique of English vowels in Sepedi code-

switched speech where the process of obtaining a phone mapping from embedded language to the 

matrix language was investigated. 

 

In the repertoire of code-switched speech, only a few approaches have been reported. In order to 

detect different languages in code-switch speech utterances, multiple cues such as acoustics, 

prosody, and phonetics are integrated [8]. In order to detect more than one language within an 

utterance, a Language Boundary Detection (LBD) method is used [9]. In code-switched 

utterances, the other method is used to separate languages like English, Mandarin and Taiwanese 

using Delta-Bayesian information criteria (Delta-BIC) and Latent semantic analysis (LSA) [9]. 

To jointly segment and identify utterances of a mixed language, an estimation approach that 

utilizes maximum posteriori estimation was used [13]. LID modules that incorporate LBD 

modules are used in the above-mentioned approaches. It is generally not preferred to use LID 

systems incorporating the LBD module because the incorrect assumption is that the code-

switched speech segments are independent and as a result, errors in the LID module cannot be 

recovered [1]. As a result, in this case, if the LBD module cannot reach 100%, the LID module 

will also experience limitations, thereby limiting the performance of the speech recognition 

module [1, 10]. 

 

An alternative multilingual approach could handle code-switched speech that incorporates 

multilingual acoustic models and multilingual pronunciation dictionaries, as well as multilingual 

language models that share models across multiple language units [1, 10]. However, a 

multilingual ASR approach does not require an additional language identification module 
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because language information becomes part of the system directly [1, 24]. The first technique 

involves using linguistic knowledge to establish a multilingual map of phonetic features or 

clustering of them that is based on the same training data [7]. The International Phonetic 

Alphabet (IPA), the Assessment Methods Phonetic Alphabet (SAMPA), and the Wordbet are 

three common examples [15]. Using a data- driven approach, such as clustering specific phones 

according to the distance between similar acoustic models, is another technique for mapping 

language-dependent phones. These methods take into account spectral characteristics and include 

Confusion Matrix, Bhattacharyya Distances, and Kullback-Leibler Divergent [15]. 

 

According to Lyu et al. [16], code-switching speech within an utterance could be distinguished 

by a word-based lexical model LID system. With the help of a large vocabulary continuous 

speech recognition (LVCSR) system, a two-stage scheme system is employed. Using recognized 

word sequences, a trained word-based lexical model is applied to identify languages. There are 

several approaches to the LID system, including PPRLM, phoneme recognition followed by 

language modelling (PRLM), and parallel phoneme recognition vector space modelling (PPR-

VSM). Several phoneme recognizers are used to tokenize the speech waveform into sequences of 

phonemes in the PPRLM approach. After determining the most probable language from the target 

languages, the resulting sequence of phonemes is fed into an n-gram LM [6, 18]. Supervised 

SVMs are the most effective classifiers [16]. Using a similar model, South Africa distinguishes 

the eleven official languages [17]. Using a PPRLM architecture and phoneme frequency filtering 

technique, SVM-based classifiers are used to classify languages at the back end. In test samples 

with a length of 3-10 seconds, the SVM classifier achieved an average LID rate of 71.78%; and 

when clustering similar language families was considered, the LID rate reached 82.39%. 

 

3. SYSTEM ARCHITECTURE 
 

This section explains the proposed approach for integrating the phonotactic features in the LID 

systems. The approach is an integrated system targeted to identify multiple languages, namely, 

Sepedi and English on code-switched speech utterances. 

 

Recognition. Figure 2 shows the front-end of the phone recognition system designed to decode 

mixed-language speech utterances. A phone recognition system takes speech waveform and 

output the corresponding phone sequences. This is done when a phone recognition system 

estimates the likelihood score of the optimal phone sequences given the acoustic features 

extracted from the speech utterance waveform. Assume the speech waveform is segmented into a 

sequence of phones. To achieve this, a phone n-gram LM is employed to estimate the likelihood 

score of the nth phone given the (n-1) 
th
 of the preceding phones.. 
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Figure 2. A multilingual One-Pass ASR-LID for code-switched speech. 

 

A Baum-Welch iteration algorithm is used during training of acoustic models to perform HMM- 

based parameter re-estimation. For the recognition purpose, the acoustic features are compared 

with the HMM-based acoustic models as well as the phone LM The sequences of phone strings 

are decoded by the Viterbi decoding algorithm which searches the optimal sequence of the 

phones using the combined likelihood scores from the acoustic model and phone LM. 

 

Identification/classification. The SVM-based classifier is used to identify two class feature 

samples; languages outside the targeted range will not be classified. For each phone sequence 

generated from the phone recognition, the bi-phone occurrences are extracted from the phone 

sequences and converted into a suitable SVM format with a unique numerical representation. 

This approach is like vector space modeling [16]. Each word has its unique pronunciation 

representation. For example, the word [ABILITY] in the dictionary is phonetically represented 

as: [a p_> i l i t_h i]. The possible n-gram feature vectors from the given phoneme string are 

generated. Then LID is performed by using SVM classifier to score the phoneme sequence of a 

test utterance. The most likely sample for classification is chosen from the LM with the highest 

log-likelihood score. 

 

The bi-phone frequencies are then used as an input to the backend SVM-based classifier. The 

numerical attributes of the bi-phone feature vectors are as follows: A label represents a class 

name in numerical representation, a feature index represents a specific location for that bi-phone 

feature - normally, an integer representation, and a feature value represents the frequency count 

of each bi-phone feature attribute. In binary classification, the SVM classification model is used 

to separate the vectors and to hypothesize the maximum likelihood scores of the bi-phone 

frequencies for each language [17]. 
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4. SPEECH CORPUS 
 

Research has shown that the amount of training data strongly influences the accuracy and 

robustness of ASR systems [8–12]. The multilingual ASR system requires a large amount of 

training speech data. Under these conditions, most of the mixed speech corpus was derived from 

the combination of two monolingual data sets [10, 12]. The training and testing parts of a speech 

corpus were separated. Although, a code-switched speech dataset is difficult to collect and 

annotate, this process is often time-consuming and requires more sophisticated linguistic experts 

[22, 25]. This section describes the speech corpus used for training of multilingual acoustic 

model. Furthermore, we discuss how the mapping of the phone set, and creation of multilingual 

pronunciation dictionary was achieved. 

 

4.1. Data Description 

 
Data pre-processing. A speech corpus used to train the model included recordings and 

transcriptions of Sepedi from the Telkom Centre of Excellence for Speech Technology 

(TCoE4ST) and LWAZI South African English. These data are often used for experiments of 

speech technology [18, 24, 25]. Apart from the mixed-language speech data, TCoE4ST-LWAZI 

corpus consists of foreign words from local languages other than Sepedi and English. We have 

also found misspelled words and borrowed words such as dlala (i.e., play), gymnasium, television, 

and ambulance. Such words are labelled correctly in the Sepedi version of pronunciation. A few 

utterances contained non-speech sounds like laughing, breathing, etc. Since our focus in this 

work is to investigate acoustic models and LMs for code-switched speech in a multilingual 

setting, we excluded low-quality utterances. 

 

Data distribution. We construct training and testing sets from the pre-processed TCoE4ST- 

LWAZI corpus. It was obtained by using the TCoE4ST locally produced Sepedi speech data 

contains an amount of 3749 utterances together with the LWAZI English speech data, we 

selected 1556 clean speech data and their respective sentential transcriptions that were used as 

training speech data set in these experiments. The two speech corpora were combined to form a 

large vocabulary of sizable mixed-language speech corpus for model training. Table 1 shows 

detailed statistics of each split. The out-of-vocabulary (OOV) rates on the test sets are 3.4%. The 

speech data which was used for system testing was not part of training data set. 

 
Table 1: The statistics of the mixed corpus 

 

 Train set Test set Total 

# Speakers 143 6 149 

Duration (hours) 5.5 1.2 6.7 

# Utterances 5305 715 6020 

 

Additional data. As code-switched speech is generally spoken but not formally written, it is not 

easy to find code-switched speech data [1, 25]. It is for this reason that a simple finite loop 

grammar was used to generate 60 artificially code-switched sentences that are semantically and 

syntactically correct. The sentences that were not syntactically and semantically were fewer 

which some were marked for either correction or deletion. The generated sentences were verified 

by linguistic experts and then recorded by selected native speakers under strict protocols. The 

total number of code-switched speech utterance which was recorded were 300 after cleaning and 

pre-processing. These additional speech data was included as part of the test set. Furthermore, we 

manually reassured the quality of the utterances by removing disfluencies such as long pauses, 

laughs and hiccups. Within code-switched speech data, the percentage of Sepedi words is 74.2% 
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and English words are 25.8% excluding silences. We estimated an average ratio of code-switches 

within each utterance to be between 0.4-0.5 when counting only switches that exists within the 

target languages. We extended the test set by adding 415 randomly selected monolingual 

utterances from both Sepedi and English corpus making the total test set of 715 utterances. 

 

4.2. Dictionary and Phone Set 
 

To obtain the pronunciation dictionary, the dictionaries for Sepedi and English are modified 

using the phone set. The multilingual pronunciation dictionary used in this study was created by 

combining several monolingual pronunciation lexicons without keeping duplicate words. To 

create the Sepedi pronunciation dictionary, we used both TCoE4ST and LWAZI, a freely 

available dictionary of Sepedi. For the English language, we used freely available LWAZI 

English pronunciation dictionary often used for speech technology research tasks [18]. It is 

checked manually to ensure that each word has been translated accurately and there are no 

redundant phonetic entries in the pronunciation dictionary. There were 85.9k unique words in the 

combined bilingual dictionary. A bilingual pronunciation dictionary based on the Speech 

Assessment Method Phonetic Alphabet (SAMPA) notation used by the International Phonetic 

Association (IPA) and taking into account pronunciation rules [7, 10, 25]. In this case, phones 

with similar phonetic features were mapped into a single best phone candidate representation to 

reduce confusion within the combined phone set. Several English vowel phones were left 

unmapped since they did not match any Sepedi vowel phone. 

 

5. PHONE MERGING METHODS 
 

In this paper, we adopted two different phone mapping strategies to determine the phone 

similarities among the target languages. The first mapping technique is linguistically motivated 

phoneme mapping which requires a linguistic expert while the other technique is a data-driven 

phoneme mapping. 

  

5.1. Manually merging similar phones 
 

We employ a manually merging similar phones (MMSP) method. We adopted this method to 

build the merged phone set for the matrix and embedded languages using linguistic knowledge [7, 

9, 25]. To achieve this, the language-dependent speech units are defined based on the 

characteristics of their phonemic properties as represented on the IPA-based scheme [7]. By 

merging pairwise phonetic phonetics using IPA, we were able to create linguistically justified 

phonetic pairwise merges. Initially, we merged English and Sepedi phones to see if merging had 

an impact. To build this multilingual acoustic model, the English phonemes are combined with 

the Sepedi phonemes. Our goal is to reduce as many phonemes as possible by following the 

occurrence of similar phonemes in our target languages. 

 

The criteria for constructing linguistically motivated mappings are as follows [7]: (i) If the IPA 

classification resembles one of the Sepedi phones, the English phones are directly merged. (ii) 

The IPA is used to calculate the matching phone between each English phone and its closest 

Sepedi match. (iii) The phone inventory is expanded with the most frequently occurring English 

phone if no close match matches are found. (iv) Those phones that do not meet the above criteria 

are mapped to the Sepedi phone that is most often confused with according to the confusion 

matrix. 

 

When using an IPA-based method, the diphthongs of English were separated into vowels. Next, 

the phone vowels were merged to their equivalents in the target language. 
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5.2. Data-driven phone merging 
 

Another potential method to merge similar phone pairs is a data-driven phone merging (DDPM). 

In the ASR decoder, the errors made in the alignment can be used to identify the phone pairs to 

merge. The phone merging of English to Sepedi was defined by using the confusion matrix that 

was derived when the ASR system was trained by directly merging the phonemes of the target 

languages. With the help of the confusion matrix, data-driven merging is built by recognizing 

speech utterances from the target language with the aid of language source models [7, 10]. This 

merging technique consists of calculating the number of confusion pairs that exist between the 

speech recognition outputs and transcriptions. In addition to being fully data-driven, this 

approach does not require linguistic expertise [14]. We then determine the phoneme sequences by 

parsing the decoded lattice in the best possible way. Using the same acoustic model, we align the 

evaluation data and calculate the true phone sequences and durations corresponding to those 

sequences. 

 

In this study, we choose pairs of expressed utterances with 80% or more overlap in duration in 

terms of aligned and decoded speech. The alignments are used to identify the English phone 

numbers that were mistakenly classified as Sepedi. Exchanges between languages are often 

referred to as cross-language swaps. Switching between the English and Sepedi phone pairs 

frequently indicates that the pairs should be merged. By observing this method, we see several 

merges that were missed in the manual merge. Whenever the same number of confusions occurs 

on more than one source candidate phoneme, a linguistic expert makes the decision on which 

phone to use as the target. Even when there is no confusion between target and source candidate 

phonemes, the same procedure is followed. More examples of phones are described in [23, 24]. 

 

6. EXPERIMENTS AND RESULTS 
 

This section describes the experimental setup, the tools used to develop the system and the 

speech data used for testing of phone recognition system. Lastly, the experimental results are 

presented and discussed. 

 

6.1. Acoustic Models 
 

We used HTK toolkit to build all baseline ASR systems. To build a baseline ASR system, we 

applied a Hamming window of 25 ms length with an overlapping window frame length of 10 ms 

and the pre-emphasis coefficient. Acoustic features are obtained using 39-dimensional static Mel-

frequency Cepstral Coefficients (MFCCs) with 13 deltas and 13 acceleration coefficients. 

  

The Cepstral Mean and Variance Normalization (CMVN) pre-processing and semi-tied 

transformations are applied to the HMMs. The CMVN is used to overcome the undesired 

variations across the channels and distortion [9]. The acoustic model uses a three state left-to- 

right HMM. The HMM-based consist of the tied-state triphones clustered by a decision tree 

technique. Each HMM state distribution is modelled by 8-Gaussian mixture models (GMM) with 

a diagonal covariance matrix. Furthermore, the optimal phone insertion penalties and language 

scaling factors are properly tuned to balance the number of inserted and deleted phone during 

speech decoding. 

 

6.2. LMs and Perplexity Experiments 
 

We used the SRILM toolkit [20] to build all our LMs. The baseline LM used for PPRLM system 

is a smoothed bigram LM estimated using the English and Sepedi monolingual texts. These LMs 
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are trained separately. Our proposed multilingual LM is a smoothed bigram LM estimated using 

the mixed-language texts which are referred to as mixed LM. We used a n-gram-count tool to 

compute language probabilities of the phone transcriptions. The training transcriptions together 

with the generated code-switched texts were formatted into phone transcriptions and were used to 

develop the phone LM. We train model bigram using the discounting. We enabled interpolated 

discount of order 2 by setting interpolation weights to the mid-point of [0, 1] range. The phone 

transcriptions were not part of the training data set. To evaluate the trained phone- based LM the 

was used where <-ppl> is an option for the determining the perplexity overall trained phone LM 

in given the test data set. A phone LM was incorporated in the phone recognizer for the purpose 

of speech decoding. The resultant best bigram phone LM had a perplexity value of 13.795 

without reporting OOV rate. Below is a sample of an extract from the trained mixed LM file. 

 
\data\    

ngram 1=70 
ngram 2=1838 
\1-grams:    

-0.8925686 </s>  

-99 <s> -4.006862 
-2.198572  @: -2.992164 
-1.986697  @u -3.171212 

….    

\2-grams:    

-2.101489  <s> @u  

-2.138814  <s> B  

-3.502635  <s> BZ  

….    

-2.036361  {z  

 \end     

 

6.3.  Implementation Details 
 

All the ASR systems were built using widely used Hidden Markov Model Toolkit (HTK) [19]. 

The supervised SVM classifier was implemented using a freely downloadable library for SVM 

(LIBSVM) toolkit - an integrated package for training SVM classifier [21]. This SVM program is 

a suitable package for classifying numerical attributes. A suitable bigram phone LM with 

discount interpolation was trained using a freely available Stanford Research Institute LM 

(SRILM) toolkit [20]. All these toolkits are integrated to develop the multilingual ASR-LID 

systems. 

  

6.4. Evaluation Metrics 
 

Classification is then performed on the testing data to compute the error rate. The quality of the 

correct phone recognition output is typically captured by the phone error rate (PER) metric. The 

accuracy and error rate are defined as: 

 

PER = *100        .......... (1.1) 

 

where (N) is the total number of labels, (D) is the number of phone deletion errors, (S) is the 

number of phone substitution errors, and (I) is the number of phone insertion errors. The 

language identification was done on per-utterance basis by estimating the sequence of phone 

strings that have the maximum likelihood of being selected. We defined accuracy of the LID as 

follows: 

 

 

 



International Journal on Natural Language Computing (IJNLC) Vol.11, No.1, February 2022 

24 

Accuracy = *100    ........... (1.2) 

 

Where Pcorrect is the number of utterances in the test data set that are accurately identified and 

while Pall the represents the total number of samples classified. 

 

6.5. Results and Discussion 

 
We first evaluated the experimental results of the baseline systems and compared them with the 

results of the integrated LID system applied with two phone merging techniques for mapping the 

phones of the target languages. The baseline ASR-LID system was developed using directly 

combined phone set with no merging any phones in the set. The phone set size consist of 67 

phones. The baseline system is then compared to PPRLM developed for English and Sepedi. The 

PPRLM system was developed using monolingual acoustic models and LMs from the respective 

speech corpus (i.e., described in section 3). We have built the PPRLM system following the 

approach described in [18]. However, we have used robust bigram LMs for each language to 

obtain comparable results on the monolingual corpus. The results obtained from the monolingual 

speech corpora and mixed speech test set are shown in Table 2 and Table 3. The phoneme 

recognition accuracies that were obtained from the respective phone recognizers were as follows; 

for Sepedi with a recognition accuracy of 53.13% and English with a recognition accuracy of 

63.93%. 

 
Table 2: The experimental results the of PPRLM and No Merge ASR-LID systems. 

 
System PPRLM No Merge 

Accuracies (Mixed English & 

 Sepedi English Sepedi) 

(%) Word correctness 78.66 73.18 89.22 

(%) Phone accuracy 53.13 63.93 66.79 

(%) LID accuracy 81.67 81.37 85.01 

 

The baseline ASR experiment employs acoustic models based on HMMs, with probability 

density functions of 8 Gaussians per state. The HMM-based acoustic models of the target 

languages can use these models to share parameters. We evaluated the systems based on the 

phone error rate (PER) and LID accuracy. Table 2 and Table 3 show experimental results for the 

ASR-LID system, the PPRLM system, and the phone set size. Based on the results, the combined 

phone merging strategies improve PER and LID accuracy. Due to the high number of confusable 

phones, it is clear from Table 2 that the No Merge ASR-LID system accuracy is low. On the 

other hand, there are promising results for the LID classification module. An average of 81.4% of 

monolingual utterances had language identification accuracy. 

 
Table 3: The experimental results the of PPRLM and three (3) ASR-LID systems with standard 8-Gaussian 

mixtures per state. 

 

Systems Phone set size PER (%) LID (%) 

PPRLM 81 44.47 82.48 

No Merge 67 33.21 85.01 

MMSP 38 28.65 85.79 

DDPM 38 19.22 87.33 
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We trained a baseline SVM-based classifier using 5-fold cross validation which yielded an 

estimated accuracy of 97.5% on the trained classification models, and this method predicted a C 

value of 0.5 and an γ value of 0.5.0. Using Radial Basis Function (RBF) kernels, we have also 

obtained experimental results for the SVM-based LID classifier. The experimental results of the 

LID classifier were obtained using RBF kernel with log2 (C) = -1 and log2 (gamma) = -1 on the 

training dataset. Both phone merging approaches achieve a significant improvement over the 

baseline results. The DDPM system was able to outperform the baseline system and the MMSP 

system. The MMSP system was able to perform better with the PER of 5% and LID accuracy of 

0.8%. The DDPM system was able to better the performance with the PER of 14.5% as well as 

the LID accuracy of 2.3%. A 10-fold cross-validation was used to further train the SVM-based 

classifier, and a RBF kernel was used to yield an accuracy of 99.75 percent on the trained 

classification models. The SVM-based classifier predicted C =2 and γ=0.5. The monolingual LID 

accuracy measured for Sepedi and English was 83.7% and 83.1%, respectively. 

 

6.6. Error rates vs Gaussian mixtures 
 

Figure 3 (a) and (b) represents the behaviour of the PER with an increasing Gaussian mixture per 

HMM state from 8 mixtures up to 64 Gaussian mixtures on each ASR system as well the LID 

performance. The triphone models were then improved by gradually increasing the number of 

Gaussian mixtures and performing four iterations of embedded re-estimation after each increase. 

After performing this procedure continuously until the models had 32 mixtures per state, the 

results of phoneme recognition on the test data set stopped improving significantly. In addition, it 

was further noticed that our context-dependent acoustic models with 16 - 64 Gaussian mixtures 

within a state tend to significantly improve the performance. 

 

 
 

Figure 3 (a). The PER of the NoMerge, MMSP and DDPM ASR-LID system using 8, 16, 32, 64 Gaussian 

mixtures per HMM state. 
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Figure 3 (b). The LID accuracies of the NoMerge, MMSP and DDPM ASR- LID system using 8, 16, 32, 

64 Gaussian mixtures per HMM state. 

 

The results show that PER improves when context-dependent HMM-based acoustic models with 

16 and 32 Gaussian probability density functions per state are engaged. As expected, the DDPM 

system performed better even when the mixtures were increased. Both phone merging approaches 

give better results as compared to the baseline results. The most accurate results 

  

were obtained when context-dependent acoustic models with 32 Gaussian mixture probability 

distributions were used unlike with the 64 mixtures. The DDPM system was able to achieve the 

PER of 7.7% outperforming even the MMSP system. Our analysis showed that there were quite 

few significant differences between our three systems and the SVM-based LID classifier since 

the accuracies of all three approaches ranged between 83.7% and 89.6% when 16 mixtures per 

HMM state were employed. The better LID accuracy was achieved by DDPM system. Based 

upon 32 Gaussian mixtures, three of the proposed systems achieved an acceptable LID accuracy 

ranging from 83.8% to 96.7%. The DDPM system was able to achieve the best LID accuracy of 

96.7%. We have also observed that more speech data from the primary language also increase the 

chances better ASR-LID accuracies. Additionally, since we used the recorded code-switched 

speech data for testing of the systems, our systems will be able to perform significantly well for 

real multilingual annotated data. For instant the results show that ability of the multilingual 

acoustic model to recognise the testing set would have perform more or less the same on real 

multilingual annotated data and this is also demonstrated by the study in [12, 25] 

 

7. CONCLUSIONS 
 

This paper presents an incorporation of phonotactic information to perform multilingual ASR- 

LID on mixed-language speech. We proposed two phone mapping techniques to deal with code- 

switched or multiple language utterances. The MMSP approach is derived by manually merging 

the similar sounding phones while the DDPM system built by merging phones using ASR 

confusion matrix. Moreover, we investigated the behaviour of the PER using different number of 

Gaussian mixtures per state, which seem to show promising results. Our proposed MMSP and 
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DDPM systems have shown a significant improvement on both PER and LID accuracies. We 

observed that the DDPM system outperforms the MMSP system with an increase in the Gaussian 

mixtures per. We achieved a better PER of 7.7% with a DDPM system when the context-

dependent acoustic models with 32 Gaussian mixtures per state were engaged. The increase of 

the GMM further lead to a decline of the LID classification accuracy. In future, we hope to train 

our systems with more real code-switched speech data to build even more robust acoustic models 

and LMs for further evaluation and performance analysis. This will be a clear proof to see if our 

model can handle a large amount of data. We plan to use other data- driven methods to perform 

phone similarity merging. 
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