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ABSTRACT 
 
Phonetic typing using the English alphabet has become widely popular nowadays for social media and chat 

services. As a result, a text containing various English and Bangla words and phrases has become 

increasingly common. Existing transliteration tools display poor performance for such texts. This paper 

proposes a robust Three-stage Hybrid Transliteration (THT) framework that can transliterate both English 

words and phonetic typed Bangla words satisfactorily. This is achieved by adopting a hybrid approach of 

dictionary-based and rule-based techniques. Experimental results confirm superiority of THT as it 

significantly outperforms the benchmark transliteration tool. 
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1. INTRODUCTION 
 

In this era of globalization, people are unprecedentedly exposed to information from global 

sources. Especially with the advent of the internet and smartphones, access to information in a 

foreign language has become increasingly common. Machine Translation (MT) can play a crucial 

role in this aspect [1] as it assists information exchange by converting foreign language texts into a 

person’s native language. One particular challenge of MT is to named entities (NE), where 

transliteration is often preferable. 

 

Transliteration refers to the phonetic conversion of words across different pairs of languages [2]– 

[4]. However, it is a challenging task since pronunciation rules vary across languages and there 

are times when exact/similar sounding phonemes are not available in the target language. An 

example of this would be to transliterate the proper noun Parvez/Parves (a Persian name) in Arabic 

which has no letter in the alphabet that sounds similar to both ‘P’ and ‘V’ sounds. 

 

Another challenge is to transliterate phonetic typed text where native language words are written 

using primarily English alphabet. Due to the widespread use of social media and internet-based 

chat applications, encountering various mixture of English and phonetic typed text has become 

frequent. Translating such texts adds to the challenge since such phonetic typed words need to be 

reverse-transliterated. 

 

This paper focuses on the transliteration of words from English to Bangla. Bangla (also known as 

Bengali) is the 6th largest language with over 268 million users
1
. Despite that there is no advanced 

MT or transliteration tools available that addresses the aforementioned challenges satisfactorily. 

The most known literature and system which have addressed Bangla transliteration problem are 

[5]–[7]. Among them, Avro [7] is an open source implementation which also is one of the most 
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widely used Bangla phonetic typing tool [8], [9]. However, it fails miserably to perform 

transliteration for most common and simple words. For instance, the English words ‘what’, 

‘nation’, and ‘fight’, Avro respectively produces ‘ওহা ত’, ‘না ততন’ and ‘তিাঘত’ which are far from 

being acceptable transliterations. 

 

In this paper, we propose a novel robust Three-stage Hybrid Transliteration (THT) framework 

that converts English words into Bangla. Additionally, it can also transliterate phonetic typed 

words satisfactorily. The proposed framework consists of a three-tier approach where an English 

word is converted into an intermediate phonetic form before converting it into Bangla. It also 

revises and improves the spelling of the converted word to produce a more desirable outcome. 

The THT framework is developed as a part of a broader MT system, hence, it produces a list of 

candidate transliterations from which the MT system can choose the best one according to its 

context. This is also suitable for spell-checker applications. 

 

The rest of the paper will critically review the related literature in Section 2 describe the scope 

and challenges in Section 3, a detailed description of the THT framework in Section 4, evaluate 

its performance in Section 5 and provide some concluding remarks in Section 6. 

 

2. RELATED WORKS 
 

A foreign language text can be converted to a person’s native language by MT to enable efficient 

and affordable information exchange. Recent MT solutions are often based on Neural Machine 

Translation (NMT) which utilises advanced machine learning and artificial intelligence 

techniques [1], [10]–[12]. These NMT solutions require large bilingual corpus of original and 

translated texts for training and generally produces better output than classic rule-based solutions. 

However, they are difficult to implement for low-resource languages where a good corpus is yet to 

be made. 

 

Transliteration is often employed in MT solutions for conversion of NE from the original 

language to the target language. In the case of English to Bangla transliteration being considered 

in this paper, original language is English and target language is Bangla. Another application of 

transliteration is to convert a phonetic typed text. Since both original and target language in this 

case is Bangla, it often does not follow standard English pronunciation rules and requires careful 

processing. 

 

While transliteration problem has been addressed by many literature for other language pairs 

[13]–[16], these solutions cannot be used readily for English to Bangla transliteration. Firstly, 

each language has its own pronunciation rules and Bangla pronunciation rules and transliteration 

conventions are different from others. Therefore, rule-based solutions require new sets of 

transliteration rules for Bangla. Secondly, there are no large dataset available for English to 

Bangla transliterations, therefore neural network architecture-based solutions will be difficult to 

implement as well. Lastly, existing solutions mostly address transliteration of NE and are not 

effective for phonetic typed texts. Therefore, a novel solution is necessary for English to Bangla 

transliteration problem. 

 

3. SCOPE AND CHALLENGES 
 

The scope of this paper has been set to the problem of transliterating English words to Bangla for 

this paper. Particularly, English names and terms as well as phonetic typed Bangla words are 

considered. A possible extension to other language pairs is briefly discussed in Section 4.4. 

 



International Journal on Natural Language Computing (IJNLC) Vol.11, No.1, February 2022 

49 

3.1. Input Types 
 

The input word, 𝐸, can belong to either English or Bangla language. In both cases, the THT 

framework expects 𝐸 to be written using the 26 letters form the English alphabet. 

 

3.1.1. English Words (𝑬𝑬𝒏) 
 

This category consists of English words including names, which are generally found in English 

literature. The expected output of the framework is a transliterated Bangla word,  , written using 

Bangla alphabet whose pronunciation matches exactly or closely to the original English word, 

𝐸𝐸𝑛. For instance, if 𝐸𝐸𝑛 = consciousness then output, 𝐵, is expected to be ‘কনল সননস’ or 

‘কনস সননস’ based on its pronunciation and Bangla accent [17]. 

 

3.1.2. Phonetic Typed Bangla Words (𝑬𝑩𝒏 ) 

 

Phonetic typing has become widely popular especially in social media and internet-based chat 

applications due to a faster and easier typing experience [18]. Such texts consist of native Bangla 

words transliterated into English. For example, a Bangla sentence ‘আিত ভ ত খ ই’ might be written 

as ‘Ami bhaat 

khai’ in phonetic typing. In this case, the framework is expected to produce ‘আিত’, ‘ভ ত’ and ‘খ ই’ 

for the inputs ‘Ami’, ‘bhaat’ and ‘khai’ respectively. 

 

3.2. Challenges in Transliteration 
 

There are some crucial properties to consider while performing transliteration which make the 

task more challenging. A good transliteration framework should address these challenges to 

produce a satisfactory outcome. 

 

3.2.1. Lack of a Comprehensive Dictionary 
 

There is no parallel English to Bangla dictionary that comprehensively lists transliteration of every 

words. Building such a dictionary is also impractical since the language's vocabulary is huge and 

ever expanding. 

 

3.2.2. Pronunciation Variation in 𝑬𝑬𝒏 

 

Same set of letters make different sounds based on their context across words. For example, in the 

word ‘come’ (kʌm) ‘o’ is pronounced as ʌ according to International Phonetic Alphabets (IPA) 

whereas in the word ‘comet’, ‘o’ is pronounced as ɒ [19]. Besides, many words have some silent 

letters which do not contribute to the overall sound, thus compounding the difficulty of 

transliteration. 

 

3.2.3. Irregularity of 𝑬𝑩𝒏 

 

Since phonetic typing is mostly used in informal communications, there is no hard and fast rule 

that everyone follows. A Bangla word can have different transliterated forms, for instance, the 

word ‘আিত’ (meaning, ‘I’), can be written phonetically as ‘Ami’ or ‘Ame’. Moreover, different 

Bangla words can produce the same transliterated form.  A  transliterated  form  ‘Amar’  can 

represent  both  ‘আিাা র’  (meaning, ‘my’) or ‘িির’ (meaning, ‘immortal’), for example. This 

irregularity adds to the challenge of transliteration. 
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3.2.4. Coincidence of 𝑬𝑬𝒏  and 𝑬𝑩𝒏 

 

Another critical issue is that some 𝐸𝐸𝑛 and 𝐸𝐵𝑛 can have the exact same spelling, but different 

pronunciation due to phonetic typing issue discussed above. This is more obvious in names where 

native Bangla pronunciation is often different than typical English pronunciation of the 

transliterated word. For example, ‘Bangladesh’ is pronounced in English as ‘bæŋglədɛʃ’ 

producing a transliterated form ‘ব্া া া া ননল’.  However,  a  better  transliteration  would  be  

‘ব া া  ননাল’  since  that's  how  it  is spelled and pronounced in Bangla. 

 

Due to the aforementioned issues, a dictionary of English to Bangla transliteration mapping-based 

solution is not feasible. Moreover, there can be several possible mappings due to the reasons 

discussed above which will cause the dictionary-based solution to fail. On the other hand, 𝐸𝐸𝑛 

and 𝐸𝐵𝑛 follows different pronunciation rules, therefore it is challenging to device a set of rules 

that works on both input types. The situation is further complicated in the cases of non-standard 

and accented spellings of words. The proposed framework adopts a hybrid of robust rule-based 

and dictionary-based approach to address these challenges. 

 

4. PROPOSED THT FRAMEWORK 

 

The THT framework primarily consists of three independent modules. The first is a Phonetic 

Transliteration (PT) module which takes an input word, 𝐸, and produces an intermediate phonetic 

representation, 𝑃𝑇. The second is a Bangla Transliteration (BT) module which analyses 𝑃𝑇 and 

produces a list of candidate Bangla transliterations 𝐵𝑇 = {𝑏𝑡1, 𝑏𝑡2, 𝑏𝑡3, … , 𝑏𝑡𝑚} ordered 

according to their likelihood. Finally, a Spelling Improvement (SI) module performs a heuristic 

revision of spellings of the elements of 𝐵𝑇 and produces a set of possible transliterated forms, 

 
𝐵 = {𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛} along with their corresponding likelihood in the language’s context. A 
high level block diagram of the THT framework is presented in Figure 1. 
 

 
 

Figure 1. Overview of the THT framework 
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4.1. Phonetic transliteration 
 

The function of this module is to convert input word, 𝐸, to its phonetic equivalent, 𝑃𝑇. A third 

party transliteration tool Epitran has been used for this purpose [20], however, other tools can be 

used as well. To expedite the conversion process and avoid unintended outcomes, a basic 

phoneme set is chosen to construct the transliteration graph. This may decrease accuracy of the 

conversion in some cases, which will be compensated in the SI block. The basic phoneme set 

along with corresponding Bangla transliteration are shown in Figure 2. The 𝐵𝑛𝑏 column holds the 

base transliteration group whereas possible miscellaneous variations are shown in the column 

𝐵𝑛𝑚. 

 

 
 

Figure 2. Transliteration Graph from IPA phonemes to Bangla Characters for Epitran. Column T denotes 

the type of phoneme, vowel (v) or consonant (c). 

 

4.2. Bangla Transliteration  

This module produces a list of candidate transliterations, 𝐵𝑇 from the phonetic representation, 

𝑃𝑇. To appreciate the complete process, knowledge of Bangla alphabet and some spelling rules 

and word formation process is required. 

 

 
 

Figure 3. Bangla vowels, consonants and kars 

 

4.2.1. Bangla Alphabet and Spelling Rules 

 

There are 11 vowels and 39 consonants in Bangla alphabet comprising a total of 50 letters. Among 

the 11 vowels, 10 of them have short forms known as kar (ক র). The list of Bangla vowels, 
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consonants and kars are shown in Figure 3 where kars are written beside  corresponding vowels 

within brackets. The first vowel ‘ি’ does not have a short form and is implied after each 

consonant. 

 

Bangla words may also contain compound letters (যাুক্তবর্ণ or jukto-borno) which are comprised 

of multiple consonants connected through a hasant (U+09CD) [21]. 

 

Some of these letters sound very similar to each other and can be represented by a single IPA 

phoneme. Some other letters and letter combinations do not have an exact equivalent in English. 

There are some other spelling rules as well dictating which letters can and cannot be put next to 

each other. The Bangla Transliteration module considers these nuances while producing each 

candidate transliteration. 

 

4.2.2. Candidate generation 
 

To produce 𝑏𝑡𝑖, a list of IPA phonemes, 𝑃 is generated from 𝑃𝑇. This is done by performing a 

maximum string matching using the Ph column of Figure 2. For example, let 𝐸 = Bangladesh. 

Then 𝑃𝑇 = bæŋgləd𝖼ʃ and corresponding phoneme list would be 𝑃 = {b, æ, ŋ, g, l, ə, d, 𝖼, ʃ}. 

For each 𝑝 ∈ 𝑃, a substitution operation 𝑝 → 𝐵(𝑝) is performed using the last two columns 

of Figure 2. Since there are often multiple options for substitution, each option produces a new 

candidate transliteration 𝑏𝑡𝑖. 

 

Some additional processing is done to form kars, and compound letters by sequentially 

manipulating the list of phonemes 𝑃 . Let us assume that 𝑃𝑟𝑒 denotes a temporary string 

containing already substituted Bangla letters, and a list 𝑠 contains the remaining items from 𝑃. 

 

1. If the last letter of 𝑃𝑟𝑒 is consonant and the first item [0] is vowel, then 𝑃𝑟𝑒 ← 𝑃𝑟𝑒 + 
kar(𝑠[0]) and 𝑠[0] is removed before the next iteration. 

2. Some special substitutions are also considered for vowels for example, kar(আ) → া া  
→ য়  and kar(এ) → নাা  → নায় etc. 

3. If both the last letter of 𝑃𝑟𝑒 and the first item [0] are consonant. Then compound letter 

substitution is checked for 𝑃𝑟𝑒 ← 𝑃𝑟𝑒 + 𝑎𝑠𝑎𝑛𝑡 + [0], and applied if possible. [0] is 

removed. 

 

After all phonemes in 𝑃 is processed, 𝑃𝑟𝑒 becomes a candidate transliteration 𝑏 . Each 

candidate is then scored based on their likelihood and arranged in a list 𝐵𝑇 accordingly. 
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Figure 4. Reverse transliteration graph to process vowel sounds 

 

4.2.3. Scoring Mechanism 
 

The score of each candidate 𝑏𝑡𝑖 indicates how likely its letters are to appear together and is 

composed of two metrics. The first metric is called Word Level Language Model Score. The idea 

of Language Model (LM) is originally developed at the sentence level by calculating the 

contextual probability of the words occurring together [22]. THT designs a modified version of it 

at the word level, by considering each letter's contextual occurring tendency. Primary feature of 

this metric is its ability to calculate score for a new word which did not occur in the training 

dataset of LM as it works through alphabet context. 

 

For each 𝑏𝑡 , LM(𝑏𝑡𝑖) is calculated, negated and normalized between [0 − 1] . LM(𝑏𝑡𝑎) > 

LM(𝑏𝑡𝑏) where 𝑎 ≠ 𝑏 means 𝑏𝑡𝑎's letter sequence is more likely to occur than 𝑏𝑡𝑏's. For 

example, it is observed that LM(ব া া  ) = 0.7 and LM(ব্া া া  ) = 0.3 rightly indicating that, 

‘ব া া  ’ is more likely than ‘ব্া া া া ’. 
 

The second metric considers the vowels particularly since they usually have more substitution 

options and thus difficult to process as can be seen form the transliteration graph. Besides, 

variations of some consonants may also produce additional vowel sounds (e.g., row 26 in Figure 

2). To properly handle this, a heuristic metric is designed to measure the correspondence between 

the output Bangla vowel phonemes with the letters of the input word. A reverse transliteration 

graph is used for this purpose which is presented in Figure 4. It is important to note that the 

reverse-transliteration graph here contains significantly less phonemes than its counterpart in 

Figure 2. 
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Formal definition of Vowel Mapping (VM) score is as follows. Let 𝑏𝑡 be a candidate Bangla 

transliteration of original input word 𝐸 and 𝑉 be a list of phonemes in 𝑏𝑡 that appears in Figure 4. 

Also let 𝑀𝑏𝑡↔𝐸 be a mapping between phonemes in 𝑉 and phonemes of 𝐸. If 𝑥 is the number of 

phonemes in 𝑉 and 𝑦 is the number of sequential mappings in 𝑀, then the VM score is given by 

 

 
The score of a transliterated word, 𝑏𝑡, is then defined as weighted average of LM and VM: 

 

SC = 𝑧LM + (1 − 𝑧)VM,                         where 0 ≤ 𝑧 ≤ 1                                            (2) 

 

𝑧 is the weight factor denoting the weight distribution between the two metrics. 

 

A high SC indicates that the word 𝑏𝑡 is more likely to be a better transliteration. Each candidate 

Bangla transliteration 𝑏𝑡𝑖 is then sorted according to their score from the highest to the lowest and a 

candidate list 𝐵𝑇 is formed. Hence 𝑏𝑡1 will be the best transliteration as determined by its score. 

𝐵𝑇 is sent to the next module for spelling improvement. 

 

4.3. Spelling Improvement 
 

The performance of the BT module depends on the performance of the PT module. The 

underlying transliteration tool Epitran does not handle 𝐸𝐵𝑛 well since they follow different 

pronunciation rules. Consequently, 𝑏𝑡1 may not be the desirable one. A heuristic runtime dynamic 

programming (HRDP) algorithm has been developed in the SI module to resolve this issue. 

 

4.3.1. Preprocessing 

 
A one-time preprocessing step is required to generate a prefix trie, 𝑇𝑟 [23], from a Bangla word 
database on which the HRDP algorithm operates. Each node of 𝑇𝑟 is assigned an id 𝑁. The HRDP 
algorithm scans a candidate transliteration 𝑏𝑡𝑖 from left to right and traverses 𝑇𝑟 accordingly to 

find valid words. 
 

4.3.2.  The HRDP Algorithm 

 

The HRDP algorithm is a modified version of Edit Distance Dynamic Programming algorithm 

[5], [24] which is often used in spell checkers and string manipulation problems. It takes 𝑏𝑡𝑖 as 

input, creates a mapping between phonemes of 𝑏𝑡𝑖 and , and attempts to manipulate the phonemes 

in order to create valid words from 𝑇𝑟. Four operations have been defined for string 

manipulation: copy, replace, delete and insert. Each operation incurs a predefined penalty. The 

HRDP algorithm will now be formally presented. 

 

Let 𝐸 and 𝑏𝑡 denote the original input word and a candidate transliteration respectively. Let 

𝑃𝐸 = {𝑝𝑒1, 𝑝𝑒2, … , 𝑝𝑒𝑘 } be the phonemes of 𝐸 and 𝑃𝑏𝑡 = {𝑝𝑏1, 𝑝𝑏2, … , 𝑝𝑏𝑙} be the 

phonemes of 𝑏𝑡 . 𝑘 and 𝑙 denotes the total number of phonemes in 𝑃𝐸 and 𝑃𝑏𝑡 respectively. 

Additionally, let 𝑀𝑏𝑡↔𝐸 be a sequential mapping between 𝑃𝑏𝑡 and 𝑃 . Valid mappings 

between 𝑝𝑏𝑗 and 𝑝𝑒𝑖 are given in Figure 5. 
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Figure 5. Common character maps between Bangla and English alphabets/phonemes, 𝑀𝑏𝑡↔𝐸. 

 

The HRDP algorithm will scan each phoneme in 𝑃 𝑏𝑡 from left to right and construct a string 𝑏 

accordingly. For each phoneme, it tries the copy, replace, delete and insert operations in that order 

using 𝑀𝑏𝑡↔𝐸 and traverse 𝑇𝑟 accordingly, ensuring that only valid words are produced as 

output. 

 

The main recursive function of HRDP operates on four parameters, namely, current prefix 𝑏, 

current penalty 𝑝, index 𝑗 of the phoneme 𝑝𝑏𝑗, and index 𝑖 of phoneme 𝑝𝑒𝑖. It also has access 

to two additional global variables, namely, minimum penalty 𝑝𝑚𝑖𝑛 and penalty offset 𝑓. These 

two variables help prune inconsequential recursion branches preemptively. The HRDP function is 

presented in Algorithm 1. 
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The recursive function first checks pruning conditions to eliminate unnecessary branching. It First 

checks whether 𝑏 is a valid prefix in 𝑇𝑟 and returns immediately if invalid (Step 1). In the next 

step, it checks the penalty 𝑝 and returns immediately if it is too high. It then checks whether end 

of both 𝐸 and 𝑏𝑡 is reached, updates 𝑝𝑚𝑖𝑛 and 𝑏 accordingly and returns in Steps 3–6. 

 

The HRDP algorithm uses dynamic programming techniques to avoid unnecessary computations. 

For each function call, it first checks whether the same parameters have appeared before. It 

achieves this by using a 𝐹𝑙𝑎𝑔 variable which keeps track of each parameter combinations (Steps 

7–8). 

 

Finally, the HRDP algorithm manipulates the current string 𝑏 with the following 4 operations: 

 

1. Copy: 𝑝𝑏𝑗 is copied as is. Incurs 0 penalty (Step 11). 

2. Replace: 𝑝𝑏𝑗 is replaced with another phoneme 𝑝𝑟. Possible replacement options are 

given in Figure 6. Mapping validity is checked afterwards using Figure 5. Incurs a penalty 

of 1 (Step 12). 

3. Delete: 𝑝𝑏𝑗 is deleted. Incurs a penalty of 1 (Step 13). 

4. Insert: Transliteration of 𝑝𝑒𝑖 is inserted. Incurs a penalty of 1 (Step 14). 

 

For copy, replace and insert operations, an additional check is performed to construct possible 

kar and jukto-borno. For a phoneme starting with a vowel sound, two branches are created, one 

with base form and another with short form. Similarly, for a phoneme starting with a consonant 

sound, two branches are created, one with the consonant as is, another with a hasant prepended to 

allow formation of combined letters. 

 

Thus each operation can create multiple branches in the recursion tree. Moreover, the replace and 

insert operations may create additional branches if more than one 𝑝𝑟 are available for 𝑝𝑏𝑗 or 

multiple transliterations are possible for 𝑝𝑒 . To make the process more efficient, a branch is 

pruned whenever possible as shown in Steps 2–8 of Algorithm 1. After the HRDP algorithm 

finishes, the output list of transliterations 𝐵 is produced. 

 

 
 

Figure 6. Search prefixes used in Replace operation of the HRDP algorithm 
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4.3.3. Candidate Ranking 

 

The list of candidate transliterations 𝐵 is ordered in a certain way to make more probable 

transliterations appear towards the beginning of the list. The SI module considers three different 

metrics for this purpose. 

 

1. Segment Mapping Score (SMS): Since Avro is the most popular Bangla phonetic typing 

tool, encountering phonetic text written using its typing rules and conventions has become 

commonplace. Therefore, SI module considers which segments of 𝑏𝑡 can be obtained 

from 𝐸 following Avro’s phonetic typing rules [25] and favours the candidate which 

better conforms the aforesaid rules and typing conventions. 

2. Word Popularity Score (WPS): Popularity of 𝑏𝑡 is also considered and is defined as the 

number of times 𝑏𝑡 appeared in a large MT dataset [26]. More popular words are favoured 

against less popular ones. For example, for an input 𝐸 = vi, 𝑏𝑡 = ভ ই is ranked before 

𝑏𝑡 = ভভ despite the latter being a more accurate transliteration phonetically since the 

former is more common in Bangla text. 

3. Edit Distance Penalty (EDP): The penalty incurred during HRDP algorithm by 𝑏𝑡 is also 

considered and candidates with less penalty are advanced in the final ordering. 

 

EDP depends on the performance of the PT module. The underlying phonetic transliteration 

engine Epitran shows poor performance for 𝐸𝐵𝑛 because they often do not follow English 

pronunciation rules. Consequently, SMS is given a higher priority than EDP to favour phonetic 

typing rules over usual English pronunciation rules. The final ordering is determined by a linear 

combination of the three metrics whose coefficients have been set empirically as follows: 

 

rank(𝑏𝑡) = 1.0 × SMS + 0.3 × WPS − 0.2 × EDP                                                         (3) 

 

where, each metric has been normalized between [0,1] for all candidates in 𝐵. This ensures that 

the most probable candidates are included in the output if number of candidates is restricted by 

the application. This also makes the framework suitable for independent transliteration tasks. 

 

4.4. Flexibility of the Framework 
 

The PT and BT modules of the THT framework corresponds to the rule-based transliteration 

approach whose output is refined at the SI module by integrating a dictionary search. The HRDP 

algorithm enables the framework to smartly manipulate transliterations and produce improved 

candidate transliterations. 

 

The THT framework is flexible and allows various configurations to suit its application needs. 

Firstly, the PT module uses a 3rd party transliteration tool named Epitran. However, other more 

sophisticated or simpler ones can be used. Secondly, both BT and SI modules can be configured to 

limit the number of outputs. Reducing the number of candidate transliterations will make the 

conversion faster, but may miss some desirable outcomes. Finally, the dictionaries used for LM 

score as well as 𝑇𝑟 can be modified to include terminologies of a particular discipline or spellings 

of different accents and dialects. 

 

Additionally, the THT framework outputs a list of words 𝐵 with corresponding penalties. Though 

the word with lowest penalty is usually desirable, sometimes the intended transliteration may have a 

higher penalty. This is especially frequent for cases discussed in Section 3.2. The MT system uses 

additional tools like language models to choose the most suitable one according to its context. The 



International Journal on Natural Language Computing (IJNLC) Vol.11, No.1, February 2022 

58 

penalty itself can be configured to so that each one of the copy, replace, delete and insert 

operations incurs different penalty. 

 

Though the THT framework is designed for English to Bangla transliteration, it can be extended 

for other language pairs by providing corresponding transliteration graphs and other mappings in 

Figures 2, 4, 5 and 6. 

 

5. PERFORMANCE ANALYSIS 
 

The proposed THT framework has been implemented and tested to measure its performance. This 

section provides a critical analysis of performance results. 
 

5.1. Hyperparameters 
 

Python language has been used for implementing the THT framework. It was then tested on a 

machine having Intel® Core™ i7-8700 CPU @ 3.20GHz × 12, 16 GB ram and ubuntu 18.04 LTS 

OS. 

 

For LM score, a 5-gram Bangla word level corpus over 3703012 unique words was built and 

kenlm was used to calculate the LM probability score [22]. A weight of 𝑧 = 0.5 was used in (2) to 

assign equal weight to LM and VM. A Bangla word dictionary containing 1654953 unique and 

clean words was used to construct 𝑇𝑟 [27], [28]. A value of 𝑓 = 5 has been used for Spelling 

Improvement module. 

 

5.2. Experimental design 
 

The THT framework has been tested in two scenarios. Firstly, as a component of a MT system 

where a suitable transliteration is chosen from the list of candidate transliterations by the MT 

system. Therefore, performance of THT depends on whether the desired transliteration appears in 

the candidate list 𝐵. Additionally, the index of the desired transliteration in 𝐵 is also noted. 

 

The second experiment assess the performance of THT as a standalone transliteration tool. Only 

the first candidate 𝑏1 is considered in this case and checked how closely it matches with the 

desirable transliteration. 

 

One notable issue here is that there is no well-known Bangla transliteration dataset available in 

the literature. As a result, a small transliteration dataset has been prepared for these experiments 

with help from independent volunteers. A total of fifteen volunteers participated in the study. All 

of them are Bangladeshi individuals who use various social media and chat applications on a 

daily basis. The participants are aged from 18 to 35 and have at least twelve years of formal 

education. 

 

5.3. Experimental results analysis 
 

5.3.1. THT as a component of MT 

 

For the first experiment, the participants contributed one or more sentences from their everyday 

communication over a period of one month. Each sentence is written using English alphabets and  

includes both English and phonetic typed Bangla words. They also provided desired 

transliterations of respective sentences. The dataset is then cleaned up to remove punctuations, 

unnecessary spaces and some obvious spelling mistakes. 
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A total of 3537 unique words is then chosen from the sentence database for the experiment. These 

words are then provided to the THT framework as input and index of corresponding 

transliteration in the candidate list 𝐵 is noted which has been presented in Table I. It can be seen 

that THT successfully produced desired transliterations for over 98% of the input words. 

Moreover, more than 90% of the transliterations appeared within the first 10 candidates. 

 
Table 1. Performance of THT at producing desired transliterations 

 

Index Count % 

Top 1 1852 52.36% 

Top 5 2915 82.41% 

Top 10 3209 90.73% 

Top 20 3374 95.39% 

Not found 49 1.39% 

 
It is evident form Table I that THT was able to produce the desired transliterations for almost all 
input words. It should be noted that the input contains both English and Phonetic typed Bangla 
words and THT has no information regarding a word’s context. 

THT did fail to produce desired transliteration for a small portion of the input. Upon further 
inspection, these words can be primarily categorized into two groups: 
 

 Abbreviation and shorthand: Some abbreviation and shorthand popular in chat 

applications were included in input. For example, ‘w8’ as a shorthand for the word ‘wait’. 

 Non-standard spelling: Some inputs were found to be composed of multiple words where 

standard practice is to write them separately. For example, an input ‘manayna’ should be 

‘manay na’  

 

The primary reason that THT could not produce desired output is because these words have non- 

standard spellings and do not belong to the dictionary used for LM training and building 𝑇𝑟 in the 

SI module. Including such words in the respective dictionaries will compensate for this and 

improve THT performance. 

 

5.3.2. THT as a standalone transliteration tool 

 

For the second experiment, the participants were asked to provide some English and phonetic 

typed Bangla words they would like to see transliterated. The provided words were divided into 

four categories, namely, English word, English name, Bangla word and Bangla name. From each 

category, 50 words have been randomly selected to create the test dataset. 

 

Next the 50 chosen words from each category, totalling 200 words, are transliterated using the 

THT framework as well as Avro for comparison. Afterwards, the participants were asked to 

evaluate each transliteration. The source of a transliterated word was kept hidden from them for 

unbiased evaluation. 

 

The survey participants evaluated each transliteration into three categories based on their 

preferences: 

 

1. Expected spelling (ES): If the spelling matches participants' expectation. 

2. Close spelling (CS) If the spelling is not an exact match, but close to 

participants' expectation. 

3. Wrong spelling (WS) If the spelling is wrong in participants' opinion. 
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Table 2. Performance of THT as a standalone transliteration tool 

 

  ES (%) CS (%) WS (%) 

English word 
THT 78 22 0 

Avro 18 2 80 

English Name 
THT 96 4 0 

Avro 10 10 80 

Bangla Word 
THT 88 10 2 

Avro 84 2 14 

Bangla Name 
THT 96 4 0 

Avro 64 20 16 

 

The survey responses was then aggregated and summarised to obtain critical insights regarding 

transliteration performance which has been presented in Table II. It is evident that the THT 

framework significantly outperforms the competition, especially for English words and Names 

where Avro performed poorly. 

 

Avro is designed as a phonetic typing tool and does not handle English words well, which has 

been a major motivation of this study. By employing a hybrid of dictionary and rule-based 

approach, THT was able to produce desired transliteration for most input words. The English 

words were transliterated correctly by employing the intermediate PT module whereas Bangla 

words were processed through the SI module to produce better outcomes. 

 

5.3.3. Potential for Dataset Generation 

 

Another potential application of THT can be producing transliteration dataset. The integrated 

dictionary at the SI module ensures that only valid words are produced as candidate 

transliterations. Therefore, it can be used to produce large transliteration datasets in a similar 

manner to [13], [29] where manually creating one would be impractical due to its scale. The 

produced dataset can then be used for training machine learning models which can eliminate the 

need for manually creating transliteration graphs and mappings of Figures 2, 4, 5 and 6 [13], [16]. 
 

6. CONCLUSION 
 

The proposed Three-stage Hybrid Transliteration (THT) framework is a combination of both rule-

based and dictionary-based solution which provides robust transliteration of both English and 

phonetic typed Bangla words. It addresses the limitations of existing tools by adopting a three- layer 

approach. The input words are first converted into phonetic form before obtaining a Bangla 

transliteration. Its spelling is later improved using a heuristic runtime dynamic programming 

algorithm. The design also allows sufficient flexibility to customise various aspects to suit 

application needs. Experimental results confirm significantly superior performance of the THT 

framework compared to existing transliteration tool. 
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