
LEARNING CHESS AND NIM WITH TRANSFORMERS

Michael DeLeo and Erhan Guven

Whiting School of Engineering, Johns Hopkins University, Baltimore, USA

ABSTRACT
Representing a board game’s state space, actions, and transition model by text-based notation enables a
wide variety of NLP applications suited to the strengths of language models. These few shot language
models can help gain insight into a variety of interesting problems such as learning the rules of a game,
detecting player behavior patterns, player attribution, and ultimately learning the game in an unsupervised
manner. In this study, we firstly applied the BERT model to the simple combinatorial Nim game to analyze
BERT’s performance in the varying presence of noise. We analyzed the model’s performance versus three
agents, namely Nim Guru, a Random player, and a Q-learner. Secondly, we applied the BERT model to the
game of chess through a large set of high ELO stockfish games with exhaustive encyclopedia openings.
Finally, we have shown that model practically learns the rules of the Nim and chess, and have shown that
it can competently play against its opponent and in some interesting conditions win.

KEYWORDS
Natural Language Processing, Chess, BERT, Sequence Learning

1. INTRODUCTION
Chess is one of the oldest board games and also one of the most researched computational
problems in artificial intelligence. The number of combinational positions is around 10^43 with
a branching factor of 35 and this makes the problem ultimately very challenging for even today’s
computational resources [1]. Current state of the art solutions to exploring chess are typically
done by generating valid board positions and evaluating their advantage to win the game. Like an
optimization problem, generating possible and promising positions is analogous to a feasible
optimization surface and is built by a tree data structure representing each position reached from
a previous position. Evaluating a position with a heuristic involves some knowledge of how a
piece moves, their values, the position of the king, piece positions, pawn structures, the existence
of a combination of moves that can lead to a forced mate and numerous other calculations to find
the winning move or a combination of moves.

Stockfish, one of the best chess engines today, uses the minimax search with alpha-beta pruning
to efficiently search through chess positions in order to identify the strongest branches of moves
[2, 3]. By avoiding variations that will never be reached in optimal play, Stockfish is able to
consider higher depths than an ordinary brute force state space search. This is essential to the
engine’s success as the game of chess has a large branching factor of 35 [1]. In other chess
solutions this computationally search is avoided where it is possible to infer the outcome of the
game, such as in a deterministic mating attack discovered by the search tree. IBM Deep Blue
chess computer [4] used dedicated processors conducting tree searches faster on hardware to beat
the world champion Garry Kasparov who is considered as one of the best human chess players
ever. Alpha Zero [5] uses plain randomly played games without any chess knowledge but learns
the moves from the game. A general-purpose reinforcement learning algorithm, and a general-
purpose tree search algorithm are used to conduct combination of moves. The deep learning

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

1DOI: 10.5121/ijnlc.2022.11501

https://doi.org/10.5121/ijnlc.2022.11501
https://airccse.org/journal/ijnlc/vol11.html

engine learns the game as much as the hand-crafted knowledge injected in the Stockfish
evaluation engine.

In this study, we evaluated and analyzed a different approach to learning chess, specifically using
BERT transformer to learn the language of chess by observing the moves between players. We
believe there is great potential in building a chess text corpus because of the unique advancements
in few shot transformers where large networks and large amounts of data yield interesting results
[14]. Language models extracted by the state-of-the-art models such as GPT-3 [6] are considered
as few-shot learners. Among many other statistical information, a language model can involve
rare patterns represented by only a few counts in a histogram which can be extracted by BERT
transformers.

Our study evaluates the BERT language model starting from the initial board state 𝑠!, and tests
its understanding of a game’s state space as the game tree increases in depth. In our study, we
evaluate the BERT on two games, namely Chess and Nim. First, we analyzed the application of
a language model to the simpler game of Nim due to its smaller state space, branching factor and
action space allowing a complete analysis. We conducted experiments of Nim games with a series
of agents such as a Guru player which plays through a mathematical approach, a random player
blindly making valid Nim moves, as well as a Q-Learner model trained from Guru and random
exploration. We save the results of each game, to be learned by the model. We then analyzed the
model between a random, a Guru, and a Q-learner player with a controlled number of random
games. And finally, we applied the model to the chess game by grandmaster games covering all
possible openings from the chess opening encyclopedia [7].

A literature survey shows only a few very recent papers [8, 9] have applied NLP methods to chess
but none of them used board/move text based on a grammar pattern to encode the game. As a
novelty, the method in this paper encodes the game positions and moves in a specific text pattern
based on Forsyth-Edwards Notation which is possibly easier to be learned than a full game in
Portable Game Notation format [10]. Starting from the opening position, PGN conveys a position
virtually between the moves without explicitly encoding. In a board game each position and move
pair can be thought of a sentence passed to the other party. Thus, these sentences are learned by
the language model, and they are somewhat order independent. The following sections will
describe the NLP method and analyze its performance towards learning board games that use text
representation of each position and move.

1.1. Chess State of the Art
Stockfish is under the GPL license, open source, and still one of the best chess programs making
it a suitable candidate to teach a natural language model. There are two main generations of
Stockfish which are the classical and NNUE variations. The latter is stronger of the two, and for
the purposes of this research is what will be focused on. In this version, Stockfish relies on a
neural network for its heuristic. NNUE stands for Efficiently Updateable Neural-Network [11].
This network is a lightweight fully connected neural network that gets marginally updated
depending on the state space of the board, which is an optimization technique to improve its
performance.

Alpha Zero is a deep reinforcement learning algorithm with a Monte Carlo Tree Search (MCTS)
algorithm as its tree search algorithm [8]. MCTS is a probabilistic algorithm that runs Monte
Carlo simulations of the current state space to find different scenarios [3]. An example of the
MCTS being used for a game of tic tac toe is shown in Figure 1. Notice the tree branches off for
various game choices. This is a critical component of the Alpha Zero model in that it allows it to
project/simulate potential future moves and consequences. MCTS was chosen by the deep mind
team as opposed to using an Alpha Beta search tree algorithm because it was more lightweight.

Alpha Zero is famous for beating Stockfish in chess with 155 wins out 1000 games. Stockfish
won 6 games [8]. There is some debate however as to if more hardware would have helped

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

2

Stockfish. Nonetheless, the main advantage of Alpha Zero to Stockfish is that it is a deep learning
model which can play itself millions of times over to discover how to best play chess. One of the
impracticalities of it is that it is not open source however, and proprietary to DeepMind.

1.2. Chess Text Notation
In this study the chess notation is based on coordinate algebraic notation. This notation is based
on the chess axes where a position is defined as 𝑠 {a, b, ..., h} is the x axis, and {1, 2, ..., 8} is the
y axis and represents two coordinates {(𝑥!, 𝑦!,), (𝑥", 𝑦")}. The first coordinate set represents the
initial position, and the second set represents the position the piece moves to [10]. This notation
is chosen to represent move states rather than other notations is because of its uniformity and how
many tokens it would take to represent a full game position.

The Forsyth-Edwards Notation (FEN) is a notation that described a particular board state in one
line of text with only ASCII characters [10]. A FEN sequence can completely describe any chess
game state while considering any special moves. We use this notation to describe our board state
in our experiments. An example of the FEN sequence is shown in Figure 1, this record represents
the initial chess state.

Figure 1. Example FEN Sequence

1. Piece placement: each piece is represented by a letter r, n, b, q, etc. and the case indicates
the player where uppercase is white, and lowercase is black. The rank of each section of piece is
described by Standard Algebraic Notation (SAN) [10], and this describes the positions of those
pieces.

2. Active color: represented by a “w” meaning white’s turn is next, and “b” meaning black’s
turn is next.

3. Castling Availability: There are five tokens to represent castling availability, “-“ no one
can castle, “K” white can castle king side, “Q” white can castle queen side, “k” black can castle
king side, and “q” black can castle queen side.

4. En Passant.

5. Half Move Clock: Starts at zero and represents the number of moves since the last capture
or pawn advance.

6. Full Move Clock: Starts at 1, increments after black’s move [10].

FEN is particularly useful because it provides a complete stateless representation of the game
state in a single character sequence. This is possible because chess is a game where there are no
unknowns, and everything represented visually is everything there is to the game space. These
are the reasons for why we chose the game of chess and chose these notations for our
experimentations.

1.3. Nim Game
Nim is a game of strategy between two players in which players remove items from three piles
on each turn. Every turn the player must remove at least one item from exactly one of the piles.
There are two different versions of the game goal: the player who clears the last pile wins or the
player who has to take the last piece loses the game.

1.3.1. Game Space

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

3

A Nim experiment consists of three piles, with some quantity for each pile. The notation is described
below where n is the quantity, and 𝑥" is the ith pile [15].

𝑆 = {(𝑥!, 𝑥", 𝑥#)	|	𝑥$ 	𝜖	𝑁%, 𝑥$ ≤ 𝑛, 𝑖 = {1, 2, 3}}	𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑛	𝜖	𝑁	

The action space is defined as a vector Α with two components such that (α, β) ϵ Α. Where α is the
pile 𝑥" to take from, and β is the amount taken. A visual representation of what the state space looks
like when initialized for three piles, and ten items each is shown in Figure 2.

Figure 2 – NIM Example State Space

1.3.2. Guru
The primary agent in Nim is the GURU player, whom has a theoretical best strategy for a state s if
such state s ϵ P or s ϵ N where P and N are defined as [15]:

𝑃 ∩ 𝑆,𝑁 ∩ 𝑆, 𝑃 ∪ 𝑁 = 𝑆	
With Conditions:

 All terminal positions are P-positions.
 From all N-positions, it is possible to move to a P-position.
 From all P-positions, every move is to a N-position.

The optimal strategy of Nim is to make moves where the resulting state is in the P set. The authors
of the Guru algorithm came up with the nim-sum operator ⊕:{0,1}^n x {0,1}^n→{0,1}^n, which
is defined as [15]

[(𝑥!, 𝑥", … , 𝑥&), (𝑦!, 𝑦", … , 𝑦&)] 	⟼ (𝑧!, 𝑧", … , 𝑧&)	𝑤ℎ𝑒𝑟𝑒	𝑧$ = A
1	𝑖𝑓	𝑥$ ≠ 𝑦$
0	𝑖𝑓	𝑥$ = 𝑦$

= 𝑥$ + 𝑦$(𝑚𝑜𝑑	2)

The Nim-Sum operator is essentially the XOR operator, and some state 𝑠	𝜖	𝑆, 𝑠 = {𝑥!, 𝑥#, 𝑥$} can
be represented in a binary format such that 𝑥" 	𝜖	{0, 1}%, 𝑖 = 1,2,3 [15].

We need one more theory to show that the nim-sum operator is the optimal solution [15].

(𝑥!, 𝑥", 𝑥#)	𝜖	𝑃	 ↔ 𝑥!⊕𝑥"⊕𝑥#

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

4

Figure 3 – Algorithm 1 Guru [15]

1.3.3. Q-Learner
The Q-Learner agent’s goal is to achieve as good a policy as possible. This is done by obtaining the
utility function from the Bellman equation [15]. The Q-Learner learns by relying on an exploratory
agent (random) to properly explore the state space while the QTable is updated depending on the
rewards and penalties of the game.

Figure 4 – Algorithm 2 Q-Learner [15]

1.4. BERT Model
The BERT model (Bidirectional Encodings for Representations of Transformers) is a language
model which is designed to pretrain on bidirectional representations on unlabeled text by jointly
conditioning on context from both the right and left sides [12]

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

5

Figure 5. BERT Architecture [12]

The Bidirectional Encoder Representations from Transformers (BERT) model is a supervised
model, that achieved state of the art on Q&A tasks before GPT. It’s a lightweight, deep learning
model that is trained to learn bidirectional representations of context in unlabeled text. The general
architecture can be seen in Figure 2, and it should be noted that it is like GPT-1 in terms of its
architecture and size [13].

2. METHODOLOGY
The objective of our study is to train a transformer model on text sequence datasets in such a way
that it can learn to accurately play and understand the games. We apply the BERT model to both
Nim and Chess. In this section we will lay our procedure for procuring the data for these
experiments as well as our methodology for training the transformer.

2.1. Nim Data Collection
Our Nim experiment consisted of using three agents: a random player, a guru player, and a Q-
learner. Each experiment is initialized to three piles, and ten items per pile (i.e. [10,10,10]). Two-
hundred games are played for every combination of each agent so that every player’s behaviors
for every playstyle are explored. Additionally, there are ten tiers of randomness in play where the
first tournament of players will have no randomness and the level of injected randomness
increases for each subsequent tournament of players. The randomness threshold increases by 10%
until we reach a 100% random tournament. Figure 6 provides a visual of how we intended to
collect the data. This process would be executing an exhaustive tournament with a given
randomness threshold.

Figure 6 – NIM Data Collection

 We can define the chance to play a random move as:

𝑅𝑎𝑛𝑑 < 𝑃&'

Where:

 𝑃&': Our randomness threshold in the range of 0 to 1, with 0.10 increments

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

6

Such that when a random number is greater than the threshold, we play a random move for the
player whose turn it is instead of allowing the player to make a move. Additionally, this move
still gets recorded with the agent’s identifier instead of the random agent’s identifier. Following
this process of injecting randomness is a suitable way for simulating noise in our Nim data
collection.

When we save games such as in Figure 6, we need to store our state space, transition model, and
action. We choose to represent the game in a stateless form where a given sequence has no directly
stated connection to other states except for its own child state implicitly. By keeping our data
stateless we can store it in a way where we can have a data store of unordered sequences. Figure
7 illustrates this format where the three piles are the state space with a slash delimiter, followed
by a player identifier which serves to inform a transition model for whose turn is it for this state
space. Finally, after the player identifier the action is stored which represents the action the agent
took for the sequence’s state space.

Figure 7 – NIM Sequence

When we approached the game of Nim we had to decide what grammar to give a Nim text corpus.
The general vocabulary of our data is that there are three state identifier tokens (a, b, c), amounts
of 0-10, and an agent tag (G, R, Q, X, W). The grammar of a sequence is that states should be
separated by slashes, and that a move should have a dash before it. This helps the model to
differentiate the purpose of the different words in the sequence.

In our experiments we set up two different experiments with the player identifier position. The
first was to just input the player identifier, the second was to input some form of value for
costs/rewards. The latter was indicated by a X/W indicating if the next move resulted in a win or
not.

2.2. Chess Data Collection
The chess experiment uses Stockfish 14, and python 3.9. The Stockfish engine is configured to
use NNUE, with one thread, default depth, and one for the value of MultiPV. The max depth that
can be set is 20, however that slows the experiment down too much and so a value of 1 is chosen
for the sake of getting a large dataset. Additionally, Stock- fish is set to an ELO rating of 3900.
To gather a large amount of data, one million games of chess are played. A timeout for moves is
set for 200 to discourage runaway stalemate games. The data collection activity takes about 4-6
days.

Figure 8. Example Chess Sequence

1. The basic routine of the program is to initialize a fresh game with the Stockfish engine,
and the stated configurations

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

7

2. Select the best move from Stockfish and submit for each player until the game is over

3. Record the moves (FEN and algebraic coordinate) as they are selected and store

4. At six moves end the game, delimit each set of moves with the next line tokens and
perform post-processing

An example of the data returned by a game of chess is shown in Figure 3 where each line consists
of a FEN position, the player, and the next move chosen. This example is the opening chess board,
followed by a separator token and a move for F2 to F4.

2.3. Pretraining BERT
For each experiment, once the data is generated, the BERT Word Piece Tokenizer is trained on
the entire set of data such that it can get a full scope of the sequences. Since information is encoded
into words and letters being capitalized, the tokenizer must accommodate for this. Therefore, the
vocabulary includes capitalization.

We utilize the datasets hugging face library to load all our datasets and deliminate by the end of
line token. Those datasets are tokenized and collated in parallel then split into training and testing
sets with a 20% split. For the training procedure, we use the hugging face trainer with a 15%
MLM (masked language modelling, refer to [12]) probability.

To provide inference with the model, a hugging face pipeline is used where the state sequence is
provided and a [MASK] token is placed at the end where the move token would be. For example,
a sequence for Nim would be a10/b10/c10 G – [MASK], where the pipeline would fill in the
MASK token for the move.

2.4. Initial Analysis of BERT Model on Nim
As a few shot learner and as an unsupervised learner [6, 14] BERT language model can extract
patterns that are expressed only a few times and in midst of very high noise. The following
experiment used the language model trained using the games between Guru and random players.
A number of games are played between the Guru which is a rule based player, and a random
player generating random but valid moves. Since the Nim game outcome heavily depends on the
first player move (like Tic Tac Toe), an equal number of games are played by swapping the first
player. Each game start from a non- zero number of pieces in three piles, so that a Guru player
can lose a game against a random player since it might be given a losing position in the first place.
The number of possible positions or the feature space size is 113 (equals 1331) for three piles and
10 pieces to start the game. Theoretically one needs at least this many positions to fill up the
feature space for a Guru to make a move so the game data would have at least one sample of every
board position and winning (or the "right") move by Guru. Note that for the Q-learner, such a
learning approach takes close to 300k games (against a random player) to be able to be on par
with a Guru player [15].

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

8

Figure 9. BERT Learning Nim Game from Random Player

The experiment trains a transformer by a certain number of games defined as a match, played
between the Guru and the random player. Every training starts from reset and the trained model
is used by the BERT player to make a move. An average game against Guru by the random player
takes empirically ~6.5 many moves. Thus, 10- game match of Guru-random and an additional 10-
game match of random-Guru would provide around 130 unique moves possibly. This space
covers only 10% of the feature space (game board) presenting an almost impossible learning
problem. Against all odds, as shown by the experimentation, the BERT player learns every move
that Guru makes and plays accordingly when faced a random player. The range of number of
games (match size) is changed from 10 to 300 where the latter makes the BERT player an
excellent challenger for the random player. This is the direct result of the few-shot learning
method presented by the transformers.

3. EXPERIMENTAL RESULTS
Following the methodology stated of performing collections of data into a standard dataset format,
data was collected for both Nim and chess experiments. Some of the characteristics for these
datasets are listed in Table 1 - Dataset Metrics.

Table 1. Dataset Metrics

Methodology Metric Nim Chess
Number of Games 30,000 30,000
Total Unique Game States 7973 2575
Total Unique Moves 30 892
Dataset Length 423,480 2657
Average Sequence Length 15.09 74.28
Dataset Size (MB) 8.1 167.9

Notably with our method of data collection and data format, choosing longer sequences to
represent a system will cause the dataset’s memory size to grow by an order of M where M is the
current dataset length. This caused issues when we initially tried to generate a chess dataset that
contained one million games and created an 8 GB text corpus. This is also one of the reasons we
added the Nim experiment, to test our hypothesis on a smaller scoped dataset.

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

9

The hardware used for the experimentation is an RTX-A6000, an i9 processor, and 128 GB of
RAM.

3.1. Results Nim
Following the data collection, two BERT word piece tokenizers were trained on each variant of
the Nim datasets: X/W and Player ID. The vocabularies for each tokenizer were relatively small
and are shown in Figure 10 and Figure 11respectively. The vocabulary size maxed out around
60 tokens for each tokenizer because the game of Nim is not that complicated in sequence form.

Figure 10. BERT Tokenizer Tokens for Nim with Player IDs’ G, Q and R.

Figure 11. BERT Tokenizer Tokens for Nim with Win States

We can verify the tokenizers captured the game state tokens and move tokens by inspecting their
vocabulary. Since for Nim, the game state is being represented by a letter a, b, or c and a quantity
we can see that those tokens do exist in the vocabularies.

Recall that two datasets were generated with partitions to designate artificial noise, the first had a
special indicator for which agent made this move and the other had an indicator to as if this move
won the game. We trained a fresh BERT model on each partition of each dataset and put each
model into a roster where each agent played every single other agent, the results are below. The
evaluation was performed with 1000 games of every permutation of every agent for each level of
randomness for a total of 5000 games. The total wins for each partition were collected and that is
what is shown in Figure 12, Figure 13, Figure 14, and Figure 15. For each level of randomness
and for each graph, it took 20 minutes to train the BERT model.

Figure 12. Nim Player ID G. The BERT model inferenced and played with the Guru (G) ID
token being specified.

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

10

Figure 13. Nim X/W Win State

Figure 14. Nim Player ID Q. The BERT model inferenced and played with the Q learner (Q) ID

token being specified.

Figure 15. Nim Player ID R. The BERT model inferenced and played with the random agent

(R) ID token being specified.

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

11

The BERT model consistently beats the other agents as the level of randomness increases in the
dataset. This supports our original hypothesis because it shows evidence that the BERT model
can identify the strongest signal (Guru and Q-learner) despite the random noise. This is especially
evident in the 90% index of the results. Despite learning from a dataset where the players were
only making one out of every ten of their moves, the model performed better than them. This is
shown in Figure 12, Figure 14, and Figure 15 where at randomness threshold of 30% the BERT
model outperforms all the agents. This also held true up till 100% random. The model did not
perform well however with a win/loss indicator system (graphed in Figure 8). In fact, the model
somewhat follows the same performance trend as the agents.

The process of playing as one player or the other is defined within the state space of the text
sequence. This is because the text sequence for a Nim sequence is generalized as the game space
followed by an indicator token, and the corresponding move. For example, the sequence
a10/b10/c10 G – [MASK] indicates that this should be a Guru agent move and a sequence such
as a10/b0/c0 W – [MASK] indicates this is a winning move. These types of indicators are encoded
into the dataset, and the transformer model learned these patterns.

The role of these indicators in the performance of the model is interesting. As it shows that one
could perform additionally postprocessing on the dataset to add more attributes from which the
model could learn from.

3.2. Results Chess
Only one BERT word piece tokenizer was trained on the Chess dataset. Its total vocabulary size
is 16,000 tokens so it is not possible to show here like the Nim vocabularies.

The chess dataset was created with the first three moves (for each max level chess engine) per
game. This is important to keep in mind as the BERT model seemed to perform well given that it
had a very small subset of all possible chess moves.

Figure 16. BERT Chess Game Length Distribution Versus Grandmaster Chess Engine

The BERT Chess model was not proficient enough to win chess games, so instead we show how
well it did at playing chess against a grandmaster level chess player (Stockfish at max ELO).
Additionally, it took around 3 days to train. Since the choice of a move given a board space is an
open-ended answer, the model could technically answer with any text that it had in its vocabulary.
We consider this as a feature of the model that it was given the option of answering in an incorrect

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

12

format. As a result, we benchmarked its accuracy in terms of giving valid chess moves (shown in
Figure 17). Given that it was only aware of the opening states of chess, it is impressive that at 35
moves into a game (35 moves for each player) it has an accuracy of 75%. When the model got a
move wrong, we substituted a stockfish move in its place, and kept the game going.

Figure 17. BERT Accuracy for Choosing Valid Chess Moves

In addition to measuring accuracy, we also measured the game length endurance of the model to
understand how long it could play against a grandmaster stockfish engine till it lost. The results
are graphed in Figure 11. Surprisingly BERT could survive for on average 32 moves (65 moves
total for the game, ~32 per player), and at most we saw a game lasting for more than 200 moves.

4. CONCLUSIONS
In conclusion, we have shown that the BERT model is capable of learning both the games of Nim
and Chess. We built text corpuses by representing game states and moves in a text sequence
format. We have shown that the BERT transformer model is able to learn games in the context of
very little information, in the presence of large quantities of noise, and in the presence of a large
amount of data. The BERT model has been shown to learn the behaviors and patterns of primary
game agents Guru, Q-learner, and stockfish such that the model can emulate their actions.

The results of our research should encourage BERT and other transformer models to be used as
few-shot learners in situations where data is expensive to gather, difficult to clean, and in very
high dimensional learning environments.

Transformer language models can represent input sequences efficiently through various
autoencoding steps such as BERT, ALBERT, RoBERTa, ELECTRA, etc. Exploring the
performance of these language models can help improving chess language models in this study.
Second, these models can be used to cluster chess opening positions in order to compare and
contrast to the ECO chess openings taxonomy. Future work will explore the clustering of chess
positions to build taxonomy of openings, middle game positions and end game positions. This
approach is analogous to text summarization where BERT approaches are known to be
successfully applied. Third, future work will investigate player attribution in chess by analyzing
various master games in chess databases as certain player styles are known to exist, such as
Karpov likes closed and slow games, as Kasparov and Tal like open and sharp games.

Additionally, by representing a game space in our text sequence format, there are several
interesting use cases with BERT such as authorship attribution, author playstyle and game space
deduction. Given a dataset of games played by grandmasters, one could train this model and assess
the probability that a given move has been made by Kasparov or another grandmaster by solving
for the author/agent token instead of a move token. Additionally, if we solve for the move token
then one could identify how a specific grandmaster would play given the board state. These two

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

13

use cases allow for someone to prepare against a specific opponent. Given there are three spaces
of the sequence, the last portion to solve for is the game space, and interestingly one could solve
for the game space to suggest what is the most likely game space to precede this move for this
player. All these use cases generalize for practical real-world problems that can be conceptualized
into a state-independent text corpus such as predicting consumer behavior.

ACKNOWLEDGEMENTS
Special thanks to Booz Allen Hamilton, Johns Hopkins University, as well as our friends and
family for their support.

REFERENCES
[1] Schaeffer, J., Culberson, J., Treloar, N., Knight, B., Lu, P. and Szafron, D. (1991). “Reviving the

Game of Checkers. Heuristic Programming in Artificial Intelligence 2: the second computer
olympiad (eds. D.N.L. Levy and D.F. Beal), pp. 119-136. Ellis Horwood Ltd., Chichester,
England.

[2] Maharaj, Shiva, Nick Polson, and Alex Turk. "Chess AI: competing paradigms for machine
intelligence." Entropy 24.4 (2022): 550.

[3] Magnuson, Max. "Monte carlo tree search and its applications." Scholarly Horizons: University
of Minnesota, Morris Undergraduate Journal 2.2 (2015): 4.

[4] Hsu, Feng-hsiung. "IBM's deep blue chess grandmaster chips." IEEE micro 19.2 (1999): 70-81.

[5] McGrath, Thomas, et al. "Acquisition of chess knowledge in alphazero." arXiv preprint
arXiv:2111.09259 (2021).

[6] Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information
processing systems 33 (2020): 1877-1901.

[7] Matanović, A., M. Molorović, and A. Božić. "Classification of chess openings." (1971).

[8] Silver, David, et al. "A general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play." Science 362.6419 (2018): 1140-1144.

[9] Stöckl, Andreas. "Watching a Language Model Learning Chess." Proceedings of the
International Conference on Recent Advances in Natural Language Processing (RANLP 2021).
2021.

[10] Edwards, Steven J. "Portable game notation specification and implementation guide." Retrieved
April 4 (1994): 2011.

[11] Nasu, Yu. "Efficiently updatable neural-network-based evaluation functions for computer
shogi." The 28th World Computer Shogi Championship Appeal Document (2018).

[12] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language
understanding." arXiv preprint arXiv:1810.04805 (2018).

[13] Radford, Alec, et al. "Improving Language Understanding by Generative Pre-Training." (2018)

[14] Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI (2019)

[15] E. JÄRLEBERG, “Reinforcement Learning Combinatorial Game Nim (2011).pdf,” KTH Royal
Institute of Technology, 2011.

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

14

Authors

Michael DeLeo is an engineer and researcher.
He currently works at Booz Allen
Hamilton as a Machine Learning
Engineer. He graduated from Penn
State with a BS in Computer
Engineering (minors in Math and
Computer Science). He is also
currently studying for his masters in
Artificial Intelligence at Johns Hopkins
University where he is performing
research on NLP.

Erhan Guven is a faculty member at JHU WSE.

He also works at JHU Applied Physics
Lab as a data scientist and researcher.
He received the M.Sc. and Ph.D.
degrees from George Washington
University. His research includes
Machine Learning applications in
speech, text, and disease data. He is
also active in cybersecurity research,
graph analytics, and optimization.

International Journal on Natural Language Computing (IJNLC) Vol.11, No.5, October 2022

15

