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ABSTRACT 
Representing a board game’s state space, actions, and transition model by text-based notation enables a 
wide variety of NLP applications suited to the strengths of language models. These few shot language 
models can help gain insight into a variety of interesting problems such as learning the rules of a game, 
detecting player behavior patterns, player attribution, and ultimately learning the game in an unsupervised 
manner. In this study, we firstly applied the BERT model to the simple combinatorial Nim game to analyze 
BERT’s performance in the varying presence of noise. We analyzed the model’s performance versus three 
agents, namely Nim Guru, a Random player, and a Q-learner. Secondly, we applied the BERT model to the 
game of chess through a large set of high ELO stockfish games with exhaustive encyclopedia openings. 
Finally, we have shown that model practically learns the rules of the Nim and chess, and have shown that 
it can competently play against its opponent and in some interesting conditions win. 

KEYWORDS 
Natural Language Processing, Chess, BERT, Sequence Learning 

1. INTRODUCTION 
Chess is one of the oldest board games and also one of the most researched computational 
problems in artificial intelligence. The number of combinational positions is around 10^43 with 
a branching factor of 35 and this makes the problem ultimately very challenging for even today’s 
computational resources [1]. Current state of the art solutions to exploring chess are typically 
done by generating valid board positions and evaluating their advantage to win the game. Like an 
optimization problem, generating possible and promising positions is analogous to a feasible 
optimization surface and is built by a tree data structure representing each position reached from 
a previous position. Evaluating a position with a heuristic involves some knowledge of  how a 
piece moves, their values, the position of the king, piece positions, pawn structures, the existence 
of a combination of moves that can lead to a forced mate and numerous other calculations to find 
the winning move or a combination of moves. 

Stockfish, one of the best chess engines today, uses the minimax search with alpha-beta pruning  
to efficiently search through chess positions in order to identify the strongest branches of moves 
[2, 3]. By avoiding variations that will never be reached in optimal play, Stockfish is able to 
consider higher depths than an ordinary brute force state space search. This is essential to the 
engine’s success as the game of chess has a large branching factor of 35 [1]. In other chess 
solutions this computationally search is avoided where it is possible to infer the outcome of the 
game, such as in a deterministic mating attack discovered by the search tree. IBM Deep Blue 
chess computer [4] used dedicated processors conducting tree searches faster on hardware to beat 
the world champion Garry Kasparov who is considered as one of the best human chess players 
ever. Alpha Zero [5] uses plain randomly played games without any chess knowledge but learns 
the moves from the game. A general-purpose reinforcement learning algorithm, and a general-
purpose tree search algorithm are used to conduct combination of moves. The deep learning 
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engine learns the game as much as the hand-crafted knowledge injected in the Stockfish 
evaluation engine. 

In this study, we evaluated and analyzed a different approach to learning chess, specifically using 
BERT transformer to learn the language of chess by observing the moves between players. We 
believe there is great potential in building a chess text corpus because of the unique advancements 
in few shot transformers where large networks and large amounts of data yield interesting results 
[14]. Language models extracted by the state-of-the-art models such as GPT-3 [6] are considered 
as few-shot learners. Among many other statistical information, a language model can involve 
rare patterns represented by only a few counts in a histogram which can be extracted by BERT 
transformers. 

Our study evaluates the BERT language model starting from the initial board state 𝑠!, and tests 
its understanding of a game’s state space as the game tree increases in depth. In our study, we 
evaluate the BERT on two games, namely Chess and Nim. First, we analyzed the application of 
a language model to the simpler game of Nim due to its smaller state space, branching factor and 
action space allowing a complete analysis. We conducted experiments of Nim games with a series 
of agents such as a Guru player which plays through a mathematical approach, a random player 
blindly making valid Nim moves, as well as a Q-Learner model trained from Guru and random 
exploration. We save the results of each game, to be learned by the model. We then analyzed the 
model between a random, a Guru, and a Q-learner player with a controlled number of random 
games. And finally, we applied the model to the chess game by grandmaster games covering all 
possible openings from the chess opening encyclopedia [7]. 

A literature survey shows only a few very recent papers [8, 9] have applied NLP methods to chess 
but none of them used board/move text based on a grammar pattern to encode the game. As a 
novelty, the method in this paper encodes the game positions and moves in a specific text pattern 
based on Forsyth-Edwards Notation which is possibly easier to be learned than a full game in 
Portable Game Notation format [10]. Starting from the opening position, PGN conveys a position 
virtually between the moves without explicitly encoding. In a board game each position and move 
pair can be thought of a sentence passed to the other party. Thus, these sentences are learned by 
the language model, and they are somewhat order independent. The following sections will 
describe the NLP method and analyze its performance towards learning board games that use text 
representation of each position and move. 

1.1. Chess State of the Art 
Stockfish is under the GPL license, open source, and still one of the best chess programs making 
it a suitable candidate to teach a natural language model. There are two main generations of 
Stockfish which are the classical and NNUE variations. The latter is stronger of the two, and for 
the purposes of this research is what will be focused on. In this version, Stockfish relies on a 
neural network for its heuristic. NNUE stands for Efficiently Updateable Neural-Network [11]. 
This network is a lightweight fully connected neural network that gets marginally updated 
depending on the state space of the board, which is an optimization technique to improve its 
performance. 

Alpha Zero is a deep reinforcement learning algorithm with a Monte Carlo Tree Search (MCTS) 
algorithm as its tree search algorithm [8]. MCTS is a probabilistic algorithm that runs Monte 
Carlo simulations of the current state space to find different scenarios [3]. An example of the 
MCTS being used for a game of tic tac toe is shown in Figure 1. Notice the tree branches off for 
various game choices. This is a critical component of the Alpha Zero model in that it allows it to 
project/simulate potential future moves and consequences. MCTS was chosen by the deep mind 
team as opposed to using an Alpha Beta search tree algorithm because it was more lightweight. 

Alpha Zero is famous for beating Stockfish in chess with 155 wins out 1000 games. Stockfish 
won 6 games [8]. There is some debate however as to if more hardware would have helped 
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Stockfish. Nonetheless, the main advantage of Alpha Zero to Stockfish is that it is a deep learning 
model which can play itself millions of times over to discover how to best play chess. One of the 
impracticalities of it is that it is not open source however, and proprietary to DeepMind. 

1.2. Chess Text Notation 
In this study the chess notation is based on coordinate algebraic notation. This notation is based 
on the chess axes where a position is defined as 𝑠 {a, b, ..., h} is the x axis, and {1, 2, ..., 8} is the 
y axis and represents two coordinates {(𝑥!, 𝑦!, ), (𝑥", 𝑦")}. The first coordinate set represents the 
initial position, and the second set represents the position the piece moves to [10]. This notation 
is chosen to represent move states rather than other notations is because of its uniformity and how 
many tokens it would take to represent a full game position. 

The Forsyth-Edwards Notation (FEN) is a notation that described a particular board state in one 
line of text with only ASCII characters [10]. A FEN sequence can completely describe any chess 
game state while considering any special moves. We use this notation to describe our board state 
in our experiments. An example of the FEN sequence is shown in Figure 1, this record represents 
the initial chess state. 

 
Figure 1. Example FEN Sequence 

1. Piece placement: each piece is represented by a letter r, n, b, q, etc. and the case indicates 
the player where uppercase is white, and lowercase is black. The rank of each section of piece is 
described by Standard Algebraic Notation (SAN) [10], and this describes the positions of those 
pieces. 

2. Active color: represented by a “w” meaning white’s turn is next, and “b” meaning black’s 
turn is next. 

3. Castling Availability: There are five tokens to represent castling availability, “-“ no one 
can castle, “K” white can castle king side, “Q” white can castle queen side, “k” black can castle 
king side, and “q” black can castle queen side. 

4. En Passant. 

5. Half Move Clock: Starts at zero and represents the number of moves since the last capture 
or pawn advance. 

6. Full Move Clock: Starts at 1, increments after black’s move [10]. 

FEN is particularly useful because it provides a complete stateless representation of the game 
state in a single character sequence. This is possible because chess is a game where there are no 
unknowns, and everything represented visually is everything there is to the game space. These 
are the reasons for why we chose the game of chess and chose these notations for our 
experimentations. 

1.3. Nim Game 
Nim is a game of strategy between two players in which players remove items from three piles 
on each turn. Every turn the player must remove at least one item from exactly one of the piles. 
There are two different versions of the game goal: the player who clears the last pile wins or the 
player who has to take the last piece loses the game. 

1.3.1. Game Space 
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A Nim experiment consists of three piles, with some quantity for each pile. The notation is described 
below where n is the quantity, and 𝑥" is the ith pile [15]. 

𝑆 = {(𝑥!, 𝑥", 𝑥#)	|	𝑥$ 	𝜖	𝑁%, 𝑥$ ≤ 𝑛, 𝑖 = {1, 2, 3}}	𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑛	𝜖	𝑁	 

The action space is defined as a vector Α with two components such that (α, β) ϵ Α. Where α is the 
pile 𝑥" to take from, and β is the amount taken. A visual representation of what the state space looks 
like when initialized for three piles, and ten items each is shown in Figure 2. 

 

 
Figure 2 – NIM Example State Space 

1.3.2. Guru 
The primary agent in Nim is the GURU player, whom has a theoretical best strategy for a state s if 
such state s ϵ P or s ϵ N where P and N are defined as [15]: 

𝑃 ∩ 𝑆,𝑁 ∩ 𝑆, 𝑃 ∪ 𝑁 = 𝑆	 
With Conditions: 

 All terminal positions are P-positions. 
 From all N-positions, it is possible to move to a P-position. 
 From all P-positions, every move is to a N-position. 

The optimal strategy of Nim is to make moves where the resulting state is in the P set. The authors 
of the Guru algorithm came up with the nim-sum operator ⊕:{0,1}^n  x {0,1}^n→{0,1}^n, which 
is defined as [15]  

[(𝑥!, 𝑥", … , 𝑥&), (𝑦!, 𝑦", … , 𝑦&)] 	⟼ (𝑧!, 𝑧", … , 𝑧&)	𝑤ℎ𝑒𝑟𝑒	𝑧$ = A
1	𝑖𝑓	𝑥$ ≠ 𝑦$
0	𝑖𝑓	𝑥$ = 𝑦$

= 𝑥$ + 𝑦$(𝑚𝑜𝑑	2) 

The Nim-Sum operator is essentially the XOR operator, and some state 𝑠	𝜖	𝑆, 𝑠 = {𝑥!, 𝑥#, 𝑥$} can 
be represented in a binary format such that 𝑥" 	𝜖	{0, 1}%, 𝑖 = 1,2,3 [15]. 

We need one more theory to show that the nim-sum operator is the optimal solution [15]. 

(𝑥!, 𝑥", 𝑥#)	𝜖	𝑃	 ↔ 𝑥!⊕𝑥"⊕𝑥# 
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Figure 3 – Algorithm 1 Guru [15] 

1.3.3. Q-Learner 
The Q-Learner agent’s goal is to achieve as good a policy as possible. This is done by obtaining the 
utility function from the Bellman equation [15]. The Q-Learner learns by relying on an exploratory 
agent (random) to properly explore the state space while the QTable is updated depending on the 
rewards and penalties of the game. 

 

 

Figure 4 – Algorithm 2 Q-Learner [15] 

1.4. BERT Model 
The BERT model (Bidirectional Encodings for Representations of Transformers) is a language 
model which is designed to pretrain on bidirectional representations on unlabeled text by jointly 
conditioning on context from both the right and left sides [12] 
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Figure 5. BERT Architecture [12] 

The Bidirectional Encoder Representations from Transformers (BERT) model is a supervised 
model, that achieved state of the art on Q&A tasks before GPT. It’s a lightweight, deep learning 
model that is trained to learn bidirectional representations of context in unlabeled text. The general 
architecture can be seen in Figure 2, and it should be noted that it is like GPT-1 in terms of its 
architecture and size [13]. 

2. METHODOLOGY 
The objective of our study is to train a transformer model on text sequence datasets in such a way 
that it can learn to accurately play and understand the games. We apply the BERT model to both 
Nim and Chess. In this section we will lay our procedure for procuring the data for these 
experiments as well as our methodology for training the transformer. 

2.1. Nim Data Collection 
Our Nim experiment consisted of using three agents: a random player, a guru player, and a Q-
learner. Each experiment is initialized to three piles, and ten items per pile (i.e. [10,10,10]). Two-
hundred games are played for every combination of each agent so that every player’s behaviors 
for every playstyle are explored. Additionally, there are ten tiers of randomness in play where the 
first tournament of players will have no randomness and the level of injected randomness 
increases for each subsequent tournament of players. The randomness threshold increases by 10% 
until we reach a 100% random tournament. Figure 6 provides a visual of how we intended to 
collect the data. This process would be executing an exhaustive tournament with a given 
randomness threshold.  

 
Figure 6 – NIM Data Collection 

 We can define the chance to play a random move as: 

𝑅𝑎𝑛𝑑 < 𝑃&' 

Where: 

 𝑃&': Our randomness threshold in the range of 0 to 1, with 0.10 increments 
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Such that when a random number is greater than the threshold, we play a random move for the 
player whose turn it is instead of allowing the player to make a move. Additionally, this move 
still gets recorded with the agent’s identifier instead of the random agent’s identifier. Following 
this process of injecting randomness is a suitable way for simulating noise in our Nim data 
collection. 

When we save games such as in Figure 6, we need to store our state space, transition model, and 
action. We choose to represent the game in a stateless form where a given sequence has no directly 
stated connection to other states except for its own child state implicitly. By keeping our data 
stateless we can store it in a way where we can have a data store of unordered sequences. Figure 
7 illustrates this format where the three piles are the state space with a slash delimiter, followed 
by a player identifier which serves to inform a transition model for whose turn is it for this state 
space. Finally, after the player identifier the action is stored which represents the action the agent 
took for the sequence’s state space. 

 
Figure 7 – NIM Sequence 

When we approached the game of Nim we had to decide what grammar to give a Nim text corpus. 
The general vocabulary of our data is that there are three state identifier tokens (a, b, c), amounts 
of 0-10, and an agent tag (G, R, Q, X, W). The grammar of a sequence is that states should be 
separated by slashes, and that a move should have a dash before it. This helps the model to 
differentiate the purpose of the different words in the sequence. 

In our experiments we set up two different experiments with the player identifier position. The 
first was to just input the player identifier, the second was to input some form of value for 
costs/rewards. The latter was indicated by a X/W indicating if the next move resulted in a win or 
not. 

2.2. Chess Data Collection 
The chess experiment uses Stockfish 14, and python 3.9. The Stockfish engine is configured to 
use NNUE, with one thread, default depth, and one for the value of MultiPV. The max depth that 
can be set is 20, however that slows the experiment down too much and so a value of 1 is chosen 
for the sake of getting a large dataset. Additionally, Stock- fish is set to an ELO rating of 3900. 
To gather a large amount of data, one million games of chess are played. A timeout for moves is 
set for 200 to discourage runaway stalemate games. The data collection activity takes about 4-6 
days. 

 

Figure 8. Example Chess Sequence 

1. The basic routine of the program is to initialize a fresh game with the Stockfish engine, 
and the stated configurations 
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2. Select the best move from Stockfish and submit for each player until the game is over 

3. Record the moves (FEN and algebraic coordinate) as they are selected and store 

4. At six moves end the game, delimit each set of moves with the next line tokens and 
perform post-processing 

An example of the data returned by a game of chess is shown in Figure 3 where each line consists 
of a FEN position, the player, and the next move chosen. This example is the opening chess board, 
followed by a separator token and a move for F2 to F4. 

2.3. Pretraining BERT 
For each experiment, once the data is generated, the BERT Word Piece Tokenizer is trained on 
the entire set of data such that it can get a full scope of the sequences. Since information is encoded 
into words and letters being capitalized, the tokenizer must accommodate for this. Therefore, the 
vocabulary includes capitalization. 

We utilize the datasets hugging face library to load all our datasets and deliminate by the end of 
line token. Those datasets are tokenized and collated in parallel then split into training and testing 
sets with a 20% split. For the training procedure, we use the hugging face trainer with a 15% 
MLM (masked language modelling, refer to [12]) probability. 

To provide inference with the model, a hugging face pipeline is used where the state sequence is 
provided and a [MASK] token is placed at the end where the move token would be. For example, 
a sequence for Nim would be a10/b10/c10 G – [MASK], where the pipeline would fill in the 
MASK token for the move. 

2.4. Initial Analysis of BERT Model on Nim 
As a few shot learner and as an unsupervised learner [6, 14] BERT language model can extract 
patterns that are expressed only a few times and in midst of very high noise. The following 
experiment used the language model trained using the games between Guru and random players. 
A number of games are played between the Guru which is a rule based player, and a random 
player generating random but valid moves. Since the Nim game outcome heavily depends on the 
first player move (like Tic Tac Toe), an equal number of games are played by swapping the first 
player. Each game start from a non- zero number of pieces in three piles, so that a Guru player 
can lose a game against a random player since it might be given a losing position in the first place. 
The number of possible positions or the feature space size is 113 (equals 1331) for three piles and 
10 pieces to start the game. Theoretically one needs at least this many positions to fill up the 
feature space for a Guru to make a move so the game data would have at least one sample of every 
board position and winning (or the "right") move by Guru. Note that for the Q-learner, such a 
learning approach takes close to 300k games (against a random player) to be able to be on par 
with a Guru player [15]. 
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Figure 9. BERT Learning Nim Game from Random Player 

The experiment trains a transformer by a certain number of games defined as a match, played 
between the Guru and the random player. Every training starts from reset and the trained model 
is used by the BERT player to make a move. An average game against Guru by the random player 
takes empirically ~6.5 many moves. Thus, 10- game match of Guru-random and an additional 10-
game match of random-Guru would provide around 130 unique moves possibly. This space 
covers only 10% of the feature space (game board) presenting an almost impossible learning 
problem. Against all odds, as shown by the experimentation, the BERT player learns every move 
that Guru makes and plays accordingly when faced a random player. The range of number of 
games (match size) is changed from 10 to 300 where the latter makes the BERT player an 
excellent challenger for the random player. This is the direct result of the few-shot learning 
method presented by the transformers. 

3. EXPERIMENTAL RESULTS 
Following the methodology stated of performing collections of data into a standard dataset format, 
data was collected for both Nim and chess experiments. Some of the characteristics for these 
datasets are listed in Table 1 - Dataset Metrics. 

Table 1. Dataset Metrics 

Methodology Metric Nim Chess 
Number of Games 30,000 30,000 
Total Unique Game States 7973 2575 
Total Unique Moves 30 892 
Dataset Length 423,480 2657 
Average Sequence Length 15.09 74.28 
Dataset Size (MB) 8.1 167.9 

 

Notably with our method of data collection and data format, choosing longer sequences to 
represent a system will cause the dataset’s memory size to grow by an order of M where M is the 
current dataset length. This caused issues when we initially tried to generate a chess dataset that 
contained one million games and created an 8 GB text corpus. This is also one of the reasons we 
added the Nim experiment, to test our hypothesis on a smaller scoped dataset. 
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The hardware used for the experimentation is an RTX-A6000, an i9 processor, and 128 GB of 
RAM. 

3.1. Results Nim 
Following the data collection, two BERT word piece tokenizers were trained on each variant of 
the Nim datasets: X/W and Player ID. The vocabularies for each tokenizer were relatively small 
and are shown in Figure 10 and Figure 11respectively. The vocabulary size maxed out around 
60 tokens for each tokenizer because the game of Nim is not that complicated in sequence form. 

 

Figure 10. BERT Tokenizer Tokens for Nim with Player IDs’ G, Q and R. 

 
Figure 11. BERT Tokenizer Tokens for Nim with Win States 

We can verify the tokenizers captured the game state tokens and move tokens by inspecting their 
vocabulary. Since for Nim, the game state is being represented by a letter a, b, or c and a quantity 
we can see that those tokens do exist in the vocabularies. 

Recall that two datasets were generated with partitions to designate artificial noise, the first had a 
special indicator for which agent made this move and the other had an indicator to as if this move 
won the game. We trained a fresh BERT model on each partition of each dataset and put each 
model into a roster where each agent played every single other agent, the results are below. The 
evaluation was performed with 1000 games of every permutation of every agent for each level of 
randomness for a total of 5000 games. The total wins for each partition were collected and that is 
what is shown in Figure 12, Figure 13, Figure 14, and Figure 15. For each level of randomness 
and for each graph, it took 20 minutes to train the BERT model. 

 

Figure 12. Nim Player ID G.  The BERT model inferenced and played with the Guru (G) ID 
token being specified. 
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Figure 13. Nim X/W Win State 

 
Figure 14. Nim Player ID Q.  The BERT model inferenced and played with the Q learner (Q) ID 

token being specified. 

 
Figure 15. Nim Player ID R.  The BERT model inferenced and played with the random agent 

(R) ID token being specified. 
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The BERT model consistently beats the other agents as the level of randomness increases in the 
dataset. This supports our original hypothesis because it shows evidence that the BERT model 
can identify the strongest signal (Guru and Q-learner) despite the random noise. This is especially 
evident in the 90% index of the results. Despite learning from a dataset where the players were 
only making one out of every ten of their moves, the model performed better than them. This is 
shown in Figure 12, Figure 14, and Figure 15 where at randomness threshold of 30% the BERT 
model outperforms all the agents. This also held true up till 100% random. The model did not 
perform well however with a win/loss indicator system (graphed in Figure 8). In fact, the model 
somewhat follows the same performance trend as the agents. 

The process of playing as one player or the other is defined within the state space of the text 
sequence. This is because the text sequence for a Nim sequence is generalized as the game space 
followed by an indicator token, and the corresponding move. For example, the sequence 
a10/b10/c10 G – [MASK] indicates that this should be a Guru agent move and a sequence such 
as a10/b0/c0 W – [MASK] indicates this is a winning move. These types of indicators are encoded 
into the dataset, and the transformer model learned these patterns. 

The role of these indicators in the performance of the model is interesting. As it shows that one 
could perform additionally postprocessing on the dataset to add more attributes from which the 
model could learn from. 

3.2. Results Chess 
Only one BERT word piece tokenizer was trained on the Chess dataset. Its total vocabulary size 
is 16,000 tokens so it is not possible to show here like the Nim vocabularies. 

The chess dataset was created with the first three moves (for each max level chess engine) per 
game. This is important to keep in mind as the BERT model seemed to perform well given that it 
had a very small subset of all possible chess moves. 

 

Figure 16. BERT Chess Game Length Distribution Versus Grandmaster Chess Engine 

The BERT Chess model was not proficient enough to win chess games, so instead we show how 
well it did at playing chess against a grandmaster level chess player (Stockfish at max ELO). 
Additionally, it took around 3 days to train. Since the choice of a move given a board space is an 
open-ended answer, the model could technically answer with any text that it had in its vocabulary. 
We consider this as a feature of the model that it was given the option of answering in an incorrect 
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format. As a result, we benchmarked its accuracy in terms of giving valid chess moves (shown in 
Figure 17). Given that it was only aware of the opening states of chess, it is impressive that at 35 
moves into a game (35 moves for each player) it has an accuracy of 75%. When the model got a 
move wrong, we substituted a stockfish move in its place, and kept the game going. 

 

Figure 17. BERT Accuracy for Choosing Valid Chess Moves 

In addition to measuring accuracy, we also measured the game length endurance of the model to 
understand how long it could play against a grandmaster stockfish engine till it lost. The results 
are graphed in Figure 11. Surprisingly BERT could survive for on average 32 moves (65 moves 
total for the game, ~32 per player), and at most we saw a game lasting for more than 200 moves. 

4. CONCLUSIONS 
In conclusion, we have shown that the BERT model is capable of learning both the games of Nim 
and Chess. We built text corpuses by representing game states and moves in a text sequence 
format. We have shown that the BERT transformer model is able to learn games in the context of 
very little information, in the presence of large quantities of noise, and in the presence of a large 
amount of data. The BERT model has been shown to learn the behaviors and patterns of primary 
game agents Guru, Q-learner, and stockfish such that the model can emulate their actions. 

The results of our research should encourage BERT and other transformer models to be used as 
few-shot learners in situations where data is expensive to gather, difficult to clean, and in very 
high dimensional learning environments. 

Transformer language models can represent input sequences efficiently through various 
autoencoding steps such as BERT, ALBERT, RoBERTa, ELECTRA, etc. Exploring the 
performance of these language models can help improving chess language models in this study. 
Second, these models can be used to cluster chess opening positions in order to compare and 
contrast to the ECO chess openings taxonomy. Future work will explore the clustering of chess 
positions to build taxonomy of openings, middle game positions and end game positions. This 
approach is analogous to text summarization where BERT approaches are known to be 
successfully applied. Third, future work will investigate player attribution in chess by analyzing 
various master games in chess databases as certain player styles are known to exist, such as 
Karpov likes closed and slow games, as Kasparov and Tal like open and sharp games. 

Additionally, by representing a game space in our text sequence format, there are several 
interesting use cases with BERT such as authorship attribution, author playstyle and game space 
deduction. Given a dataset of games played by grandmasters, one could train this model and assess 
the probability that a given move has been made by Kasparov or another grandmaster by solving 
for the author/agent token instead of a move token. Additionally, if we solve for the move token 
then one could identify how a specific grandmaster would play given the board state. These two 
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use cases allow for someone to prepare against a specific opponent. Given there are three spaces 
of the sequence, the last portion to solve for is the game space, and interestingly one could solve 
for the game space to suggest what is the most likely game space to precede this move for this 
player. All these use cases generalize for practical real-world problems that can be conceptualized 
into a state-independent text corpus such as predicting consumer behavior.  
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