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ABSTRACT

Events are the core element of information in descriptive corpus. Although many progresses have been
made in Event Detection (ED), it is still a challenge in Natural Language Processing (NLP) to detect
event information from data with unavoidable noisy labels. A robust Joint-training Graph Convolution
Networks (JT-GCN) model is proposed to meet the challenge of ED tasks with noisy labels in this paper.
Specifically, we first employ two Graph Convolution Networks with Edge Enhancement (EE-GCN) to
make predictions simultaneously. A joint loss combining the detection loss and the contrast loss from two
networks is then calculated for training. Meanwhile, a small-loss selection mechanism is introduced to
mitigate the impact of mislabeled samples in networks training process. These two networks gradually
reach an agreement on the ED tasks as joint-training progresses. Corrupted data with label noise are
generated from the benchmark dataset ACE2005. Experiments on ED tasks has been conducted with both
symmetry and asymmetry label noise on different level. The experimental results show that the proposed
model is robust to the impact of label noise and superior to the state-of-the-art models for ED tasks.
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1. INTRODUCTION

As one of the core elements of multi-heterogeneous text data, events play a role that cannot be
ignored in detection, extraction, and utilization of large-scale open-source knowledge. In order
to promote the application of artificial intelligence in the field of open-source information
detection, it is urgent to automate and intelligently process relevant events in various corpus [1],
e.g., reports, News, and social media texts, etc. Event Detection (ED), an information extraction
process to detect trigger words and recognize event types from plain text, plays a crucial role in
Natural Language Processing (NLP) [2-4]. Through ED, valuable structured information can be
obtained to facilitate various tasks such as automatic text summarization [5], question answering
[6], and information retrieval [7], etc.

Although lots of studies on event detection have been proposed [8-11], most of them focus on
ED tasks with clean and accurate labels which ignores the challenge of unavoidable noisy labels.
As is known, collecting and labeling of large-scale datasets with fully precise annotations is
expensive and time-consuming [12]. Manual annotation usually suffers from unavoidable noisy
labels, especially for tasks that requires natural language understanding. Moreover, previous
research on deep learning has shown the negative impact of label noise on the performance of
learning models [13-15]. Unfortunately, few studies have paid attention to robustness of ED
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tasks to noisy labels. Without consideration of label noise, previous ED models are vulnerable
to data label contamination leading to degraded performance.

In this paper, we proposed a robust Joint-training Graph Convolution Networks (JT-GCN)
model to meet the challenge of ED tasks with noisy labels. The model is based on two Graph
Convolution Networks (GCN) with edge enhancement [16]. Motivated by previous co-training
and joint-training frameworks for Deep Neural Networks (DNN) [12,17], a joint loss is then
calculated by two networks' predictions of the same mini-batch data, in which both detection
loss and contrast loss between two GCNs are considered. Besides, a small-loss selection
mechanism is integrated to the joint-training process so as to mitigate the impact of mislabeled
samples in networks. These two networks in JT-GCN gradually reach an agreement on the ED
tasks as joint-training progresses. The primary contributions of this work can be summarized in
the following points:

1) A novel GCN-based model is proposed to address the challenge of ED tasks with noisy
labels.

2) A joint-training framework integrated with small-loss selection mechanism is revised and
applied to ED tasks.

3) The performance of proposed model is validated on corrupted data with both symmetry and
asymmetry label noise on different level generated from the benchmark dataset ACE2005.

The rest of this paper is structured as follows. Section 2 provides a brief review of related works
on event detection, while Section 3 gives preliminaries of key notions related to ED. In Section
4, a robust joint-training graph convolution networks model is proposed for ED tasks with noisy
labels. Experimental results of the proposed framework on the original and corrupted ED
benchmark dataset ACE2005 are shown and discussed in Section 5. Conclusions are lastly
offered in Section 6.

2. RELATED WORK
2.1. Event Detection

In late 1980s, the concept of event extraction was first proposed in the Message Understanding
Conference (MUC) [18]. Following the MUC, the International Evaluation Conference on
Automatic Content Extraction (ACE) [19] further promoted the development of ED technology
which is then widely used in finance, medical care, law, social media and other fields.

Nguyen and Grishman [20] proposed an event detection model using Convolution Neural
Networks (CNN) in 2015, which is applicable to cases with one-word trigger words and event
elements. Further research has been conducted by introducing Recurrent Neural Networks
(RNN) to the joint extraction process of trigger words and event elements [21], and it achieves
better extraction results than the CNN model. Liu et al. [22] exploited argument information
explicitly for event detection via supervised attention mechanisms, and investigated the impact
of different attention strategies. Recently, more attentions are paid to the utilization of Graph
Neural Networks (GNN) in NLP tasks and brought encouraging performance improvements
[2,23]. By converting text sequences into graph-structured data to incorporate rich semantic
information, Nguyen and Grishman [2] first leveraged GCN to conduct ED tasks and achieved
remarkable model performance. The state-of-the-art (SOTA) GCN-based model for ED was
proposed by Cui et al., in which node updating and edge updating modules were introduced to
learn the embedding vectors for the edges in the syntactic dependency graph [16].
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2.2. Robust Deep Learning

The robustness of deep learning models is a key aspect of artificial intelligence. Plenty of
studies have shown the vulnerability of deep learning models towards data with noisy labels
[24], adversary poisoning [25], and imbalance sampling [26]. Especially, various of approaches
have been proposed to address the challenge of robust learning with noisy labels in image
classification tasks [24,27], including specific robust designs on regularization [28], loss
function [29], sample selection [30], and architecture [31].

In the field of NLP, the research on model robustness has also gradually received attention.
Different from adversarial samples generation research for computer vision applications,
Papernot et al. [32] first studied how to design adversarial text sequences for RNN processing
sequential data, and inspired subsequent explorations of robust deep learning in NLP. To
overcome the weakness of ED models in learning generalization knowledge, a Delta-learning
approach was proposed to distill discrimination and generalization knowledge by effectively
decoupling, incrementally learning and adaptively fusing event representation [33]. Liu et al.
[34] proposed a training paradigm called context-selective mask generalization so as to improve
the ED model robustness against adversarial attacks. Unfortunately, little attention has been
paid to the challenge of robust learning with noisy labels in ED or more general NLP tasks,
while manual annotation usually suffers more from unavoidable noisy labels due to the
complexity of natural language understanding.

3. PRELIMINARIES

We first clarify some concepts and notions related to ED tasks.

Related Concepts to ED: 1) Entity: one or a group of semantically classified objects, including
people, organizations, places, time, etc. 2) Event Mention: a phrase or sentence describing an
event that contains event trigger words and their corresponding arguments. 3) Event Trigger: the
trigger word is the core of event identification, usually a verb or a noun. 4) Event Role: an event
role corresponds to a predefined field of the event table. 5) Event Argument: an event argument
is an entity that plays a predefined event role, usually referring to the time, place, and
participants of the event.

ED Tasks with Noisy Labels: To illustrate the ED tasks with noisy labels, we give two
examples as shown in Figure 1. In corpus sample 1 (S1), an event detector aims to figure out the
event trigger fired and recognize the event type EndPosition in this context. As an event
mention, S1 includes three arguments, i.e., two participants (the airline, pilof) and the cause
(fault in work). When there are label noise in data, as shown in S2, the event type is incorrectly
identified as Attack, not as true type Accident due to uncertainty of manual annotation. The
existing of noisy labels in dataset has been proven to be baneful to deep learning [12].

Event Trigger Event Type: EndPosition)

S1: The airline fired that pilot for fault in work.
S2: A destroyer under repair exploded at a naval shipyard, killing 3 and injuring 11.

Event Trigger — Event Type: Attack )

Figure 1. Descriptive examples of event detection with noisy labels
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4. THE PROPOSED MODEL

In this section, we propose the JT-GCN model to meet the challenge of ED tasks with noisy
labels. The core of JT-GCN model lies in three aspects: 1) the construction of simultaneous
learning framework for two networks; 2) the design of join loss and joint training procedure as
well; 3) the implementation of small-loss selection for noise effect mitigation.

The descriptive framework of JT-GCN model is shown in Figure 2. In each iteration of training,
a mini-batch of data with noisy labels is first passed into two networks, i.e., EE-GCNs with 1
and , for forward propagation simultaneously. Two predictions jiand , are then obtained
separately. In order to make the prediction results of the two networks eventually converge to an
agreement, a joint-training procedure is introduced by designing joint loss of two predictions.
Furthermore, a small-loss selection mechanism is integrated to the joint-training process in
which instances with large loss are considered high-probability mislabeled and excluded from
the back propagation process. In this way, the joint-training procedure mitigates the impact of
mislabeled samples on the way to consensus of two networks.

Network 1 }i

A

EE-GCN 6,

Joint Loss Small-loss
Calculation Selection

EE-GCN O,

A

A
Netwiork 2 E

Figure 2. The schematic of JT-GCN model

4.1. Network Construction

The proposed JT-GCN model is based on two Graph Convolution Networks (GCN) with edge
enhancement [16]. In each EE-GCN, there are three components to construct the ED
architecture, i.e., the input layer, the GCN layer, and the classification layer.

Input Layer:For a given input sequence =( 1, ..., ), each is vectorized to =
[ ] C * ) where and denote the word embedding vector and entity type
embedding vector with  and  dimensions respectively. Then, a BILSTM layer is applied to
obtain the contextual information of each words based on the embedding vector
[ 2.0 1 *C * ) | resulting contextualized word representations. To utilize the
syntactic dependency parsing in each sequence , a syntactic dependency graph in form of
adjacency matrix is generated by taking words as nodes and dependencies as edges. To illustrate,
the syntactic dependency parsing of sample S1 is given in Figure 3.
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S1:  The airline fired that pilot for fault in work.

LLdoij \dobi’ j

prep

Figure 3. The syntactic dependency parsing of sample S1

GCN Layer:In order to utilizing the useful linguistic knowledge implicit in dependency parsing

information, an edge representation tensor =[ ] * * is introduced by Cui et al.[16],
where is the vector representation of the corresponding edge in syntactic dependency
graph. Denote by =( 1, 2,..., ) *  the node representation tensor, where is the

dimension of each node's (word's) representation. Then two modules are adopted at each layer
of EE-GCN toupdate and mutually through information aggregation:

(.= - 7™ e

Denote byPool the mean-pooling operation to compress information from all channels, and ©
the ReLLU activation function. By aggregating the information from its neighbors nodes through
adjacent tensor, the update operation for  ateach layer — [1, ]is:

= C Cou 20000 ) 2
Specifically, for each channel [1, ] the aggregation of  is:

=171 . L1 3)

x

where is the parameter to be learned. According to the node context, the edge
representation of each edge in layer can be updated as follows:

= 1. L] @)
where (2 *)* denotes a learnable transformation matrix and represents the join
operation.
Classification Layer:After obtaining the final representation of each word (node) , a fully-

connected network with softmax function is then adopted to compute probability distribution
over all event types ( ) as follows:

(|2 )= ( + ), ®)

where and are a learnable mapping matrix and a bias term. Since there are two EE-
GCNs, we can obtain two classification results 1 and , [0,1] * at each mini-batch
training process from EE-GCN1 with parameters ; and EE-GCN2 with ,. Event label with
the largest probability is then selected as the final classification result ; and ».
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4.2. Joint Loss Design

For each network , the bias loss function is used to enhance the influence of event labels
during training:

()=- (1) O+ Cl.)a-cn =12 ©

=1 =1

where 1s the number of sentences, is the number of words in sentence  and 1s the

ground-truth word's label of event ; ( ) equals 1 if the event type of the word is 'O, otherwise
0; 1is the bias weight large than 1.

Motivated by previous co-training and joint-training frameworks for Deep Neural Networks
(DNN) [12,17], a joint loss is then calculated by two networks' predictions of the same mini-
batch data, in which both detection loss and contrast loss between two EE-GCNs are considered
as follows:

(H)=a-) O+ (), (7)
where [0,1] is a parameter of co-regularization. Denote by the conventional detection
loss:

La(0) =1(0) +1(0). ®)

denotes the contrast loss between two EE-GCNs.We used the Kullback-Leibler (KL)
Divergence to measure the difference between 1and »:

Le(9) =Dgk(P1  P2) + Deke(P2  P1), ©)

where

_ 1 a0
(1 2)_=1=11(|’) (|.

)
)
N PVl 0)
")

Dexc(P2 P1) = 2 1|02(y,2|5.,9)log s

’ (10)

(11)

4.3. Small-loss Selection

Besides, a small-loss selection mechanism is integrated to the joint-training process so as to
mitigate the impact of mislabeled samples in networks. As we know that two EE-GCNs have
different learning abilities based on different initial conditions. If the joint loss of a sample is
small, it is more likely that this sample has a true label [12,33]. Hence, the small-loss selection
mechanism is introduced as follows:

= ) = O (12)

O=1- {= } 13
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where and  denote the initial mini-batch training set and the selected set. () is a the
ratio of small-loss samples at iteration , and [0,1) is a parameter depending on the rate of
noisy labels. Iteration parameter  is set to decide the speed at which () drops from 1 to
during the training process.

5. EXPERIMENTS

In this section, we test and discuss the performance of proposed JT-GCN model on the original
and corrupted ED benchmark dataset ACE2005.

5.1. Experimental Settings

Dataset:We use ACE2005 as the clean dataset which is a standard supervised dataset for ED.
The toolkit CoreNLP! is used for dependency parsing. The corrupted datasets are manually
transformed by the label transition matrix ,where = ( = | = ) given that noisy is
flipped from clean . Two representative structures of  are used in this paper: 1) Symmetry
flipping [36]; 2)Asymmetry flipping [37] where labeling-mistakes are only made within very
similar classes. Illustrative examples of label transition matrix are shown in Figure 4.

Symmetric Noise 0.3 Asymmetric Noise 0.3
70% | 10% | 10% | 10% 70% | 0% | 0% | 30%
10% | 70% | 10% | 10% 0% | 100%] 0% | 0%
10% | 10% | 70% | 10% 0% | 30% | 70% | 0%
10% | 10% | 10% | 70% 0% | 0% | 0% [100%

Figure 4. Examples of label transition matrix  (taking 4 classes and noise ratio 0.3 as an
example

Measurement: Precision (), Recall (R), 1 —score ( ;) are used as metrics to evaluate the
performance of ED models.

Baselines: We compare JT-GCN with the state-of-the-art models MOGANED [3] and EE-
GCNJ16].

Hyper-parameters: Hyper-parameters used in experiments of JT-GCN are listed in Table 1.
All codes are implemented by PyTorch with default parameters on NVIDIA GeForce GTX
1050Ti.

5.2. Results Discussion

We test the proposed JT-GCN and existing EE-GCN model on ACE2005 dataset so as to
evaluate their robustness performance to label noise in training and validating dataset.

Table 1. Hyper-parameters of JT-GCN.

Hyper-parameters Values
Dimension of word vectors () 100
Dimension of entity types vectors () 50
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Dimension of edge labels vectors ( ) 50
Dimension of Bi-LSTM ( /2) 100
Dimension of GCN () 150
Layers of GCN () 2
Learning rate 0.001
Optimizer Adam
Bias weight of loss function ( ) 5
Batch size 30
Epoch 100
Maximum text length 50
Parameter of co-regularization ( ) 0.5
Iteration parameter () 10
Result Analysis—-Osy--test-p Result Analysis--0.2sy-test-p Result Analysis--0.4sy--test-p

precision
B i
precision

precision

] E) 80 00 ° 20 B0 100 o 70

F )
epoch

P £ P o
epoch epoch

Result Analysis--0.8sy--test-p Result Analysis--0.2assy--test-p Result Analysis--0.4assy--test-p

precision
precision

Figure 5. Results on ACE2005 dataset with different label noise ratio. (%) vs. Epochs

Result Analysis--Osy--test-r ™ Result Analysis--0.2sy--test-r Result Analysis--0.4sy--test-r

] E) 80 00 ° 20 B0 100 o 70

P £ P o F )
epoch epoch epoch

Result Analysis--0.8sy--test-r Result Analysis--0.2assy--test-r Result Analysis--0.4assy--test-r
1 8

Figure 6. Results on ACE2005 dataset with different label noise ratio. R(%) vs. Epochs
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Figure 7. Results on ACE2005 dataset with different label noise ratio. 1(%) vs. Epochs

As show in Fig. 5, Fig. 6 and Fig. 7, the label noise ratio of Symmetry flipping is set from 0% to
80% and the label noise ratio of Asymmetry flipping is set from 20% to 40%. The superiority of
JT-GCN continues to expand as the level of label contamination increases. The test ; under
EE-GCN model first reaches a high level and then gradually decreases and overfits to
mislabeled data. With the label noise ratio improves, the downward tendency is more obvious.
Compared with symmetry flipping and asymmetry flipping, the model performs poorly on
asymmetric flipping. With the increase of noise ratio, the performance difference between JT-
GCN model and EE-GCN model gradually increases. JT-GCN is less likely to overfit to
mislabeled data as the increase of training epoch and keeps a stable state. The model can keep
relatively stable performance under the same noise ratio regardless of symmetry or asymmetry

flipping.

The model shows a robust performance that stops or alleviates the decreasing process. Moreover,
we compare the average test performance of both models over the last 10 epochs shown in
Table 2. The test performance of EE-GCN is slightly higher than that of JT-GCN when there is
no label noise in training and validating dataset. However, it is clear that JT-GCN model
dominates EE-GCN model in all flipping rates (20%-80%), different label transition matrix and
metrics ( , R, and ;). When the label noise rate is set as 20% and label transition matrix is
symmetry, JT-GCN reports 74.53% in 1 which is higher than that of EE-GCN reporting
70.45%. When the noise rate is 80% (i.e., 80% labels are wrong in training and validating data)
and label transition matrix is symmetry, the performance of JT-GCN model outperforms EE-
GCN model more than 14%. When the label noise rate is set as 20% and label transition matrix
is asymmetry, JT-GCN reports 73.72% in ; which is higher than that of EE-GCN reporting
71.08%. When the noise rate is 40\% and label transition matrix is asymmetry, the performance
of JT-GCN model outperforms EE-GCN model more than 8%. Under the same noise ratio and
different transfer matrices, JT-GCN model and EE-GCN model have low difference of 1.
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Table 2. Average test performance (%) on ACE2005 over the last 10 epochs.

Noise Ratio EE-](;CN F JT-gCN F
0% 80.56 71.72 75.85 80.21 71.78 75.74
Symmetry-20% 78.05 64.24 70.45 81.02 69.03 74.53
Symmetry-40% 75.39 57.98 65.51 82.52 64.41 72.33
Symmetry-80% 53.40 37.23 43.86 80.26 45.46 58.03
Asymmetry-20% 76.44 66.49 71.08 80.61 67.94 73.72
Asymmetry-40% 68.60 57.10 62.32 79.37 65.39 71.69

6. CONCLUSIONS

In this paper, we proposed a robust Joint-training Graph Convolution Networks (JT-GCN)
model to meet the challenge of ED tasks with noisy labels. A joint-training framework
integrated with small-loss selection mechanism is revised and applied to ED tasks. The
performance of proposed model is validated on corrupted data with symmetry label noise on
different level generated from the benchmark dataset ACE2005. The general robustness of GCN
models for ED tasks considering more complex corrupted data (e.g., asymmetry label noise,
data poisoning attacks) is a potential direction for further study.
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