A STUDY ON THE APPROPRIATE SIZE OF THE MONGOLIAN GENERAL CORPUS

Choi Sun Soo¹ and Ganbat Tsend²

¹University of the Humanities, Ulaanbaatar, Mongolia ²Otgontenger University, Ulaanbaatar, Mongolia

ABSTRACT

This study aims to determine the appropriate size of the Mongolian general corpus. This study used the Heaps' function and Type-Token Ratio (TTR) to determine the appropriate size of the Mongolian general corpus. This study's sample corpus of 906,064 tokens comprised texts from 10 domains of newspaper politics, economy, society, culture, sports, world articles and laws, middle and high school literature textbooks, interview articles, and podcast transcripts. First, we estimated the Heaps' function with this sample corpus. Next, we observed changes in the number of types and TTR values while increasing the number of tokens by one million using the estimated Heaps' function. As a result of observation, we found that the TTR value hardly changed when the number of tokens exceeded 39~42 million. Thus, we conclude that an appropriate size for a Mongolian general corpus is 39-42 million tokens.

Keywords

Mongolian general corpus, Appropriate size of corpus, Sample corpus, Heaps' function, TTR, Type, Token.

1. INTRODUCTION

The importance of the well balanced and representative general corpus of a language cannot be overstated. The general corpus plays an inseparable and important role not only in language research but also in artificial intelligence, natural language processing, and machine translation. Various general corpora have been composed in English and Korean, etc., but the Mongolian general corpus has not yet been composed.

In composing a general corpus, the size of the general corpus, along with its balance and representativeness, is one of the most important things to consider. With the development of computer, the size of the general corpus is growing day by day. However, is the larger the size of the general corpus, the better? Sinclair [1] stated, "The default value of Quantity is large."

However, the larger the size of the general corpus, the larger the amount of data to be processed, which reduces the effectiveness of analysis and utilization. And, since it takes a lot of time and money to compose a general corpus, it cannot be composed infinitely large. So we have no choice but to compromise on a reasonable general corpus' size.

Before composing a Mongolian general corpus, if there is an information about the appropriate size of the Mongolian general corpus, it will be of great help in composing the Mongolian general corpus. Then, what size of the Mongolian general corpus is appropriate for analysis and utilization? Finding the answer to this question is the purpose of this study.

2. RELATED WORKS

In the meantime, in various countries and languages, general corpus of various sizes have been composed. And many studies have been conducted on the appropriate size of the general corpus. First, let's take a look at the size of some corpus composed in Mongolian, English, and Korean.

Language	Corpus	Year	Size	Reference
Mongolian	Language Resources for Mongolian		5,090,270	[2]
English	Brown Corpus	1964	1,014,312	[3]
	BNC (British National Corpus)	1995	98,363,783	[4]
	COCA (Corpus of Contemporary	1990-	1 000 000 000	[5]
	American English)	present	1,000,000,000	[9]
Korean	Sejong Balanced Corpus	2011	10,000,000	[6]

Table 1.	Sizes*	of various	corpus.
----------	--------	------------	---------

*Here, Size means the number of tokens of type I, but, only in BNC, means that of tokens of word-units (Type I + Type III, see section 3).

As shown in Table 1, the size of the general corpus varies greatly, from 1 million to 1 billion. This means that there is no set size for how large a general corpus should be. In fact, every general corpus is a sample of a population of a language, and no sample can be perfect.

Biber [7] proposed the following recursive method of composing a general corpus as shown in Figure 1.

Figure 1. Biber's recursive method of corpus composition.

The key point of the method proposed by Biber is that an improved corpus should be composed recursively through various statistical analyses after creating one pilot corpus, rather than creating a perfect corpus from the beginning. This is also true for determining the appropriate size of the corpus. Therefore, the result of the present study is not perfect one and should be regarded as one research result that can serve as an example for determining the appropriate size of the Mongolian general corpus in the future.

Kyung Sook Yang et al. [8] suggested that the appropriate size of a Korean general corpus is about 10 million tokens using the cubic model, power model, and ARIMA (autoregressive integrated moving average) model. Sejong balanced corpus was composed with a size of 10 million tokens, which is in line with the results of this study.

Yukie Sano et al. [9] showed that the number of types can be predicted according to the size of the corpus using the estimated Zipf's and Heaps' function. We will also use the Heaps' function to estimate the number of potential types as the number of tokens increases.

3. DEFINITION OF TERMS

The definitions of key terms used in this study are as follows.

General Corpus: McEnery et al. [10] defined a corpus as follows.

A corpus is a collection of machine readable, authentic texts (including transcripts of spoken data) which is sampled to be representative of a particular language or language variety.

According to McEnery et al.'s definition, we defined a general corpus as a collection of machine readable, authentic texts (including transcripts of spoken data) which is sampled to be representative of a particular language. Therefore, General corpus is not specifically restricted to any particular subject field, register, domain or genre.

After Peirce [11] first introduced the concepts of type, token, and tone to science, type and token became widely used in natural language processing. In this study, the type is divided into type I, II, and III and defined as follows.

Type: Type is a form that exists in common in certain tokens, and refers to different forms among the tokens.

Type I: Type I refers to the different forms of a sequence of letters and numbers separated by spaces on both sides in a raw corpus. It can also be called word form.

Type II: Type II refers to different forms among the forms in which Type I is converted into the root form. It usually refers to the form of a headword in a dictionary. It can also be called lemma.

Type III: Type III refers to a unit that consists of two or more tokens and forms one meaning. It can also be called a multi-word unit.

For better understanding, we will show an example of preprocessing the corpus with type I, II, and III.

Raw corpus				
Гучин гуравдугаар зүйл.				
1/Улсын Их Хурлын баталсан хууль, бусад шийдвэрт бүхэлд нь буюу зарим хэсэгт нь хориг				
тавих.				
Article Thirty-three.				
1/to exercise right to veto, either partially or wholly, against laws and other decisions adopted by the				
National Assembly of Mongolia.				
Example of preprocessing with type I (word form)				
Гучин гуравдугаар зүйл.				
1 Улсын Их Хурлын баталсан хууль бусад шийдвэрт бүхэлд нь буюу зарим хэсэгт нь				
хориг тавих.				
Example of preprocessing with type II (lemma)				
Гучин гуравдугаар зүйл.				
1 Улс Их Хурал батлах хууль бусад шийдвэр бүхэл нь буюу зарим хэсэг нь хориг тавих.				
Example of preprocessing with type III (multi-word unit)				
Гучингуравдугаар зүйл.				
1 Улсыниххурал батлах хууль бусад шийдвэр бүхэл нь буюу зарим хэсэг нь хориг тавих.				

Table 2. Example of preprocessing a corpus with type I, II and III.

Token: Token is a sequence of letters or numbers separated by spaces on both sides in the corpus. A token contains a type.

Size of corpus: The number of all tokens in corpus.

Appropriate size of corpus: In this study, Appropriate size of corpus means the number of tokens at the point where the number of types (in this study type I) hardly increases even if the number of tokens increases. An increase of the TTR value is taken as a criterion for this.

4. METHODS

To estimate the appropriate size of the Mongolian general corpus, we used the following methods.

- a) To compose a sample corpus of various domains (registers) of the Mongolian language.
- b) To make the size of all corpus for each domain to be the same by random sampling.
- c) To estimate Heaps' function.
- d) To calculate Type-Token Ratio (TTR).
- e) To find the appropriate size of the corpus.

Now, we will explain each method in detail.

4.1. Composition of a Sample Corpus

For this study, we composed a sample corpus by 10 domains as Table 3.

Corpus by domain	How to compose	Size (Tokens)
C1 (Newspaper-Culture)	Articles downloaded from Mongolian daily newspapers, Өнөөдөр, Өдрийн сонин, Зууны мэдээ, are compiled. 2019. 1.1. ~ 2019. 12. 31.	Raw: 135,384 Sample: 90,605
C2 (Newspaper-Sports)	Articles downloaded from Mongolian daily newspapers, Өнөөдөр, Өдрийн сонин, Зууны мэдээ, are compiled. 2019. 1.1. ~ 2019. 12. 31.	Raw: 177,793 Sample: 90,605
C3 (Newspaper-World)	Articles downloaded from Mongolian daily newspapers, Өнөөдөр, Өдрийн сонин, Зууны мэдээ, are compiled. 2019. 1.1. ~ 2019. 12. 31.	Raw: 155,097 Sample: 90,605
C4 (Law)	All Mongolian laws as of 2020. 01. 03 were downloaded from the https://www.legalinfo.mn.	Raw: 1,634,714 Sample: 90,607
C5 (Newspaper-Politics)	From the Mongolian daily newspaper 'Өдрийн сонин' website, from January 1, 2019 to December 31, 2019, a day's worth of articles randomly selected by week, a total of 52 day's articles were downloaded.	Raw: 94,830 Sample: 90,605
C6 (Newspaper-Economy)	All articles from the Mongolian daily newspaper 'Өдрийн сонин' website from January 1, 2019 to December 31, 2019, among the articles in 'Өнөөдөр', a day's worth of articles randomly selected by week, a total of 52 days downloaded. The period for extracting articles from 'Өнөөдөр' is also 2019. 1.1. ~ 2019. 12. 31.	Raw: 109,312 Sample: 90,609
C7 (Newspaper-Society)	From the Mongolian daily newspaper 'Өдрийн сонин' website, from January 1, 2019 to December 31, 2019, a day's worth of articles randomly selected by week, a total of 52 day's articles were downloaded.	Raw: 214,798 Sample: 90,610

C8 (Textbook-Literature)	In 2019, all the works in Mongolian 6th-12th grade literature textbooks were directly entered into txt files.	Raw: 90,605 Sample: 90,605
C9 (Interview)	All interview articles conducted with 143 Mongolians from 2010 to 2020 of gogo café on the 'Gogo.mn' site were downloaded.	Raw: 410,525 Sample: 90,608
C10 (Podcast transcription)	A total of 29 hours and 59 minutes of 36 podcast broadcast recording files from 'https://soundcloud.com/caak-podcast/sets' were downloaded, and transcribed.	Raw: 255,221 Sample: 90,605

International Journal on Natural Language Computing (IJNLC) Vol.12, No.3, June 2023

The corpus with the smallest size was the corpus of literature textbooks. Therefore, the sample size of corpus of other domains was set to 90,605, which is the same as the corpus of literature textbooks, by random sampling method. The number of tokens in the above corpus was calculated using the AntConc program [12]. Arabic numerals were excluded when calculating the number of tokens.

4.2. Heaps' Function (a.k.a. Heaps' Law)

Heaps [13] proposed the following exponential relationship between the number of types and the number of tokens in the corpus. The Heaps' function is:

$$V = k \cdot N^{\beta} \tag{1}$$

where:

- *V*: Total number of types in the corpus (type I);
- *N*: Total number of tokens in the corpus;
- *k*: Heaps' coefficient;
- β : Heaps' exponent.

The Heaps' function expresses the exponential relationship between the number of tokens and the number of types in a corpus. Using the Heaps' function, we can predict the number of types according to the size of the corpus, that is, the number of tokens. There is one thing to note here. That is, the number of types and the number of tokens depends on the definition of the type. Therefore, In corpus-based research, the definition of type is very important. Depending on the definition of type, the results of corpus-based studies vary. Therefore, in corpus-based research, defining what a type is one of the most important things. In this study, type and token are defined as section 3. In this study, type means type I, that is, word form. Therefore, V in the Heaps' function means the total number of type I, that is, different word forms, neither type II (lemma) nor type III (multi-word unit).

4.3. Estimating the Heaps' Function

The process of estimating the Heaps' function is as follows.

- a) Calculate the number of types and tokens for each sample corpus in Table 3.
- b) Arrange the corpus in order of the corpus with the largest number of types to the corpus with the smallest number of types.
- c) Calculate the number of cumulative tokens and types in the order listed in b).
- d) Calculate the logarithm of the cumulative number of types and the number of tokens.
- e) Obtain a linear regression equation using the logarithm of the type and number of tokens.

- f) Convert the linear regression equation to a Heaps' function. Let's call it Heaps' function 1.
- g) Randomly shuffle the order of the corpus to find a new Heaps' function and let's call call it Heaps' function 2.

We will estimate the value of V while changing the value of N with the estimated Heaps' function 1 and 2. Then, TTR will be estimated using the estimated value of V.

4.4. Calculating Type-Token Ratio (TTR)

The TTR is:

$$TTR = \frac{Total \ number \ of \ types}{Total \ number \ of \ tokens} = \frac{V}{N}$$
(2)

If V is almost unchanged no matter how large N is, there will be little change in TTR value. In other words, the point where the change in the TTR value becomes small can be said to be the appropriate size of the corpus. No matter how large N is, if V does not change, there is no need to make the corpus larger. Therefore, when estimating the appropriate size of the corpus, it is good to consider the amount of change in the TTR value as well.

4.5. Finding the appropriate size of the corpus

The process of determining the appropriate size of the corpus is as follows.

First, Estimate V with the estimated Heaps' function 1 and 2. And obtain estimated TTR. Second, Find the point, N, at which the increase in TTR is smaller than 0.0001. Why 0.0001? There is no scientific, objective basis for this. However, this value was set as a reference value on the basis that the amount of change in TTR should be close to zero.

5. EMPIRICAL ANALYSIS AND RESULTS

5.1. Data Sets for Heaps' Function Estimation

In this study, the Heaps' function was estimated by the two methods mentioned in section 4.3. The two data sets used for estimating the Heaps' function are as Table 4.

	Sub Corpus	Token	Type I
	C8	90,605	19,765
	C8+C1	181,210	31,546
	C8+C1+C3	271,815	40,394
	C8+C1+C3+C9	362,423	45,933
Data sot 1	C8+C1+C3+C9+C2	453,028	51,364
Data Set 1	C8+C1+C3+C9+C2+C7	543,638	55,596
	C8+C1+C3+C9+C2+C7+C6	634,247	58,809
	C8+C1+C3+C9+C2+C7+C6+C10	724,852	63,380
	C8+C1+C3+C9+C2+C7+C6+C10+C5	815,457	65,113
	C8+C1+C3+C9+C2+C7+C6+C10+C5+C4	906,064	66,101
Data set 2	C1	90,605	17,903
	C1+C2	181,210	25,899

Table 4.	Two data	sets for	the Heaps'	function.
----------	----------	----------	------------	-----------

C1+C2+C3	271,815	34,496
C1+C2+C3+C4	362,422	36,582
C1+C2+C3+C4+C5	453,027	39,453
C1+C2+C3+C4+C5+C6	543,636	43,047
C1+C2+C3+C4+C5+C6+C7	634,246	46,830
C1+C2+C3+C4+C5+C6+C7+C8	724,851	57,601
C1+C2+C3+C4+C5+C6+C7+C8+C9	815,459	61,635
C1+C2+C3+C4+C5+C6+C7+C8+C9+C10	906,064	66,101

International Journal on Natural Language Computing (IJNLC) Vol.12, No.3, June 2023

Data set 1 is the data obtained from the number of accumulated tokens and types in the order of the corpus with the largest number of types to the corpus with the smallest number of types. Data set 2 is the cumulative number of tokens and the number of types obtained after classifying the order of the corpus into written and spoken language and then randomly arranging the rest. The reason why the data set is divided into two is to find out how the Heaps' function varies depending on the data set. The graphs of the data sets in Table 4 are as follows.

Figure 2. Two Graphs of two data sets.

Now, we will estimate two Heaps' functions using the two data sets in Table 4.

5.2. Heaps' Function Estimation

The two Heaps' functions estimated using the R with the data sets in Table 4 are as follows.

Table 5. Two Heaps' functions.

Heaps' function 1	Heaps' function 2
$V = 56.31101 \cdot N^{0.52054}$	$V = 35.40312 \cdot N^{0.5442}$

Table 5 confirms that the two Heaps' functions have almost the same β value, but a large difference in *k* value. Therefore, when estimating the Heaps' function, how the data is structured is very important. We will use these two functions to find the appropriate size of the corpus, respectively.

5.3. Estimation of V and TTR

Now, using the two Heaps' functions estimated in 5.2., the value of V and TTR according to the size of N by million are estimated as Appendices. The estimated values using Heaps' function 1 are in Appendix 1, and the estimated values using Heaps function 2 are in Appendix 2.

Although Heaps' function 1 and 2 are different, it can be seen that the TTR estimates of both functions show little change as N becomes larger than 40 million. The graph of the estimated values of V by the two Heaps' functions is shown in Figure 3.

Figure 3. Two Graphs of Estimated V (Type I) using the Heaps' function 1 and 2.

Figure 3 shows that as N increases, V also increases, but the amount of increase gradually decreases. To confirm this more accurately, TTR was obtained. The result is shown in Figure 4.

Size of Corpus (Token)

Figure 4. Two Graphs of Estimated TTR using the Heaps' function 1 and 2.

As shown in Figure 4, as N increases, TTR decreases rapidly at first, but after N becomes 40 million or more, it is almost unchanged. This means that new types rarely appear when N is over 40 million. Therefore, if the size of the Mongolian general corpus is about 40 million, it can be said that it contains sufficient types.

For a more accurate analysis, let's find the amount of change in TTR. The amount of change in TTR means the following.

$$\Delta TTR_{n \text{ million}} = TTR_{n \text{ million}} - TTR_{n-1 \text{ million}}$$
(3)

For example, subtracting the TTR when the number of tokens is 4 million from the TTR when the number of tokens is 5 million is the amount of change in TTR when the number of tokens is 5 milliom. The graph of the amount of change in TTR is shown in Figure 5.

Figure 5. Two Graphs of Estimated TTR change using the Heaps' function 1 and 2.

In order to find the point where the amount of change in TTR becomes smaller than 0.0001, a part of the amount of change in TTR is shown in a Table 6 as follows.

	By	By Heaps' function 1			By Heaps' function 2		
Token (N)	Type (V)	TTR	TTR change	Type (V)	TTR	TTR change	
•	•	•	•	•	•	•	
•	•	•	•	•	•	•	
37 million	489942	0.0132	0.0002	465218	0.0126	0.0002	
38 million	496791	0.0131	0.0002	472019	0.0124	0.0002	
39 million	503554	0.0129	0.0002	478739	0.0123	0.0001	
40 million	510234	0.0128	0.0002	485381	0.0121	0.0001	
41 million	516835	0.0126	0.0002	491947	0.012	0.0001	
42 million	523359	0.0125	0.0001	498441	0.0119	0.0001	
43 million	529809	0.0123	0.0001	504865	0.0117	0.0001	
•	•	•	•	•	•	•	
•	•	•	•	•	•	•	

Table 6. Estimated V and TTR change using the Heaps' function 1 and 2.

In Table 6, the point at which the change in TTR becomes smaller than 0.0001 is when the number of tokens is 39 million for the heaps function 2 and 42 million for the heaps function 1.

Therefore, it can be said that the appropriate size of a Mongolian general corpus is between 39 and 42 million.

6. CONCLUSION

In order to predict the appropriate size of the Mongolian general corpus, this study composed a sample corpus of 906,064 tokens in 10 Mongolian language domains. Two Heaps' functions were estimated using the composed sample corpus. The first Heaps' function was estimated after arranging the number of types for each 10 domains in order from the largest to the smallest. The first Heaps' function's *k* was 56.31101 and β was 0.52054. The second Heaps' function was estimated after discriminating only the written and spoken domain and randomly arranging the rest. The second Heaps' function's *k* was 35.40312 and β was 0.5442.

The values of V and TTR were estimated while increasing N by a million units using the estimated two Heaps' functions. As a result, in the case of Heaps' function 1, when N is 42 million, and in the case of Heaps' function 2, when N is 39 million, the change in TTR starts to become less than 0.0001. Therefore, this study concludes that the appropriate size of a Mongolian general corpus is between 39 and 42 million.

The above results are valid results only in the present study based on the sample corpus used in this study. Therefore, the results of studies using other sample corpus may come out differently. However, it is meaningful that this study presented an example of the appropriate size of the Mongolian general corpus. In the future, we expect to draw more elaborate conclusions by using more diverse functions based on various sample corpus.

Sinclair, J. (1996). Preliminary Recommendations on Corpus Typology. EAGLES Document EAG-TCWG-CTYP/P. Available at:

http://www.ilc.cnr.it/EAGLES96/corpustyp/corpustyp.html. [Accessed 13/10/2011]

References

- [1] John, Sinclair. (1996). Preliminary recommendations on corpus typology, EAGLES document, EAG-TCWG-CTYP/P, version of May, p. 6.
- [2] Purev J., Altangerel Ch. (2011). Language resources for Mongolian. *Conference on Humane Language Technology for Development*, Alexandria, Egypt.
- [3] Francis W. Nelson., and Henry Kučera. (1964, 1971, 1979). MANUAL OF INFORMATION to accompany: A Standard Corpus of Present-Day Edited American English, for use with Digital Computers. Rhode island, USA: Brown University.
- [4] Lou, Burnard. (2007). *Reference Guide for the British National Corpus (XML Edition)*. Published for the British National Corpus Consortium by the Research Technologies Service at Oxford University Computing Services. Available at: http://www.natcorp.ox.ac.uk/docs/URG/
- [5] Mark, Davies. (2010). The Corpus of Contemporary American English as the first reliable monitor corpus of English. *Literary and Linguistic Computing*, Vol. 25, No. 4. pp. 447-464. Available at: https://www.english-corpora.org/davies/articles/davies_44.pdf
- [6] Hwang Yong Ju., Choi Jung Do. (2016). 21 세기 세종 말뭉치 제대로 살펴보기- 언어정보
나눔터 활용하기, 새국어 생활 (New Korean Life), Vol. 26, No. 2, 국립국어원 (National Institute
of Korean Language), pp. 73-86. Available at:
https://www.korean.go.kr/nkview/nklife/2016_2/26_0204.pdf
- [7] Douglas, Biber. (1993). Repesentativeness in Corpus Design, *Literary and Linguistic computing*, vol. 8, no. 4, Oxford University Press, p. 256.
- [8] Kyung Sook Yang., Byung Sun Park., and Jin Ho Lim. (2003). The Statistical Relationship between Types and Tokens, *Annual Conference on Human and Language Technology*, Seoul, Korea, pp. 81-85. (pISSN: 2005-3053)

- [9] Yukie Sano., Hideki Takayasu., and Misako Takayasu. (2012). "Zipf's Law and Heaps' Law Can Predict the Size of Potential Words", *Progress of Theoretical Physics Supplement*, No. 194, pp. 202-209.
- [10] Tony, McEnery., Richard, Xiao., Yukio, Tono. (2005). *Corpus-based language studies: An Advanced Resource Book.* Oxfordshire, UK: Routledge Taylor & Francis Group. p. 5.
- [11] Charles S. Peirce. (1906). Prolegomena to an apology for pragmaticism. *The Monist, 16(4).* pp. 492–546. Available at: http://www.jstor.org/stable/10.2307/27899680
- [12] Laurence, Anthony. (2019). *AntConc (Version 3.5.8) [Computer Software]*. Tokyo, Japan: Waseda University. (https://www.laurenceanthony.net/software)
- [13] Harold, Stanley, Heaps. (1978). *Information Retrieval: Computational and Theoretical Aspects*. Academic Press, Orland. USA.

AUTHORS

Choi Sun Soo, is a doctoral student in Linguistics in the University of the Humanities. His areas of interest are: Corpus Linguistics, Corpus Composition, and Deep learning and Data Processing.

Ganbat Tsend, is a professor in Otgontenger University. His R&D interests are a natural language processing, machine learning, digital transition, system analysis and design. He is an author of several IT books as human and computer interaction, information retrieval, computer modeling and simulation.

APPENDIX 1

Token (N)	Type (V)	TTR	Token (N)	Type (V)	TTR	Token (N)	Type (V)	TTR
1 million	74788	0.0748	35 million	475973	0.0136	69 million	677685	0.0098
2 million	107283	0.0536	36 million	483004	0.0134	70 million	682780	0.0098
3 million	132493	0.0442	37 million	489942	0.0132	71 million	687840	0.0097
4 million	153897	0.0385	38 million	496791	0.0131	72 million	692866	0.0096
5 million	172852	0.0346	39 million	503554	0.0129	73 million	697859	0.0096
6 million	190061	0.0317	40 million	510234	0.0128	74 million	702819	0.0095
7 million	205940	0.0294	41 million	516835	0.0126	75 million	707746	0.0094
8 million	220764	0.0276	42 million	523359	0.0125	76 million	712643	0.0094
9 million	234722	0.0261	43 million	529809	0.0123	77 million	717509	0.0093
10 million	247955	0.0248	44 million	536187	0.0122	78 million	722344	0.0093
11 million	260567	0.0237	45 million	542496	0.0121	79 million	727150	0.0092
12 million	272640	0.0227	46 million	548738	0.0119	80 million	731927	0.0091
13 million	284240	0.0219	47 million	554916	0.0118	81 million	736675	0.0091
14 million	295419	0.0211	48 million	561031	0.0117	82 million	741396	0.009
15 million	306222	0.0204	49 million	567085	0.0116	83 million	746088	0.009
16 million	316684	0.0198	50 million	573080	0.0115	84 million	750754	0.0089
17 million	326837	0.0192	51 million	579018	0.0114	85 million	755393	0.0089
18 million	336708	0.0187	52 million	584900	0.0112	86 million	760006	0.0088
19 million	346319	0.0182	53 million	590728	0.0111	87 million	764594	0.0088
20 million	355690	0.0178	54 million	596504	0.011	88 million	769156	0.0087
21 million	364839	0.0174	55 million	602229	0.0109	89 million	773693	0.0087
22 million	373782	0.017	56 million	607904	0.0109	90 million	778206	0.0086
23 million	382531	0.0166	57 million	613531	0.0108	91 million	782695	0.0086
24 million	391101	0.0163	58 million	619110	0.0107	92 million	787161	0.0086
25 million	399500	0.016	59 million	624644	0.0106	93 million	791603	0.0085
26 million	407740	0.0157	60 million	630133	0.0105	94 million	796022	0.0085
27 million	415830	0.0154	61 million	635578	0.0104	95 million	800419	0.0084
28 million	423777	0.0151	62 million	640981	0.0103	96 million	804794	0.0084
29 million	431589	0.0149	63 million	646342	0.0103	97 million	809147	0.0083
30 million	439272	0.0146	64 million	651662	0.0102	98 million	813479	0.0083
31 million	446835	0.0144	65 million	656942	0.0101	99 million	817789	0.0083
32 million	454280	0.0142	66 million	662184	0.01	100 million	822079	0.0082
33 million	461616	0.014	67 million	667388	0.01	101 million	826348	0.0082
34 million	468845	0.0138	68 million	672555	0.0099	102 million	830596	0.0081

Estimated V and TTR using the Heaps' function 1.

APPENDIX 2

Token (N)	Type (V)	TTR	Token (N)	Type (V)	TTR	Token (N)	Type (V)	TTR
1 million	65199	0.0652	35 million	451360	0.0129	69 million	653045	0.0095
2 million	95074	0.0475	36 million	458333	0.0127	70 million	658179	0.0094
3 million	118547	0.0395	37 million	465218	0.0126	71 million	663279	0.0093
4 million	138638	0.0347	38 million	472019	0.0124	72 million	668347	0.0093
5 million	156538	0.0313	39 million	478739	0.0123	73 million	673383	0.0092
6 million	172867	0.0288	40 million	485381	0.0121	74 million	678387	0.0092
7 million	187994	0.0269	41 million	491947	0.012	75 million	683361	0.0091
8 million	202164	0.0253	42 million	498441	0.0119	76 million	688304	0.0091
9 million	215546	0.0239	43 million	504865	0.0117	77 million	693218	0.009
10 million	228266	0.0228	44 million	511221	0.0116	78 million	698103	0.009
11 million	240418	0.0219	45 million	517511	0.0115	79 million	702959	0.0089
12 million	252076	0.021	46 million	523738	0.0114	80 million	707788	0.0088
13 million	263299	0.0203	47 million	529904	0.0113	81 million	712589	0.0088
14 million	274135	0.0196	48 million	536010	0.0112	82 million	717363	0.0087
15 million	284623	0.019	49 million	542059	0.0111	83 million	722111	0.0087
16 million	294797	0.0184	50 million	548051	0.011	84 million	726832	0.0087
17 million	304686	0.0179	51 million	553989	0.0109	85 million	731529	0.0086
18 million	314312	0.0175	52 million	559874	0.0108	86 million	736200	0.0086
19 million	323697	0.017	53 million	565708	0.0107	87 million	740846	0.0085
20 million	332860	0.0166	54 million	571492	0.0106	88 million	745468	0.0085
21 million	341817	0.0163	55 million	577227	0.0105	89 million	750066	0.0084
22 million	350581	0.0159	56 million	582915	0.0104	90 million	754641	0.0084
23 million	359165	0.0156	57 million	588557	0.0103	91 million	759192	0.0083
24 million	367581	0.0153	58 million	594154	0.0102	92 million	763721	0.0083
25 million	375838	0.015	59 million	599707	0.0102	93 million	768228	0.0083
26 million	383946	0.0148	60 million	605217	0.0101	94 million	772712	0.0082
27 million	391913	0.0145	61 million	610686	0.01	95 million	777175	0.0082
28 million	399747	0.0143	62 million	616114	0.0099	96 million	781616	0.0081
29 million	407454	0.0141	63 million	621502	0.0099	97 million	786037	0.0081
30 million	415041	0.0138	64 million	626852	0.0098	98 million	790436	0.0081
31 million	422513	0.0136	65 million	632163	0.0097	99 million	794815	0.008
32 million	429877	0.0134	66 million	637437	0.0097	100 million	799174	0.008
33 million	437136	0.0132	67 million	642675	0.0096	101 million	803514	0.008
34 million	444296	0.0131	68 million	647877	0.0095	102 million	807833	0.0079

Estimated V and TTR using the Heaps' function 2.