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Over the years there has been ongoing interest in detecting authorship of a text based on statistical properties of the
text, such as by using occurrence rates of noncontextual words. In previous work, these techniques have been used,
for example, to determine authorship of all of The Federalist Papers. Such methods may be useful in more modern
times to detect fake or AI authorship. Progress in statistical natural language parsers introduces the possibility of
using grammatical structure to detect authorship. In this paper we explore a new possibility for detecting authorship
using grammatical structural information extracted using a statistical natural language parser. This paper provides a
proof of concept, testing author classification based on grammatical structure on a set of “proof texts,” The Federalist
Papers and Sanditon which have been as test cases in previous authorship detection studies. Several features extracted

of some depth, part of speech, and part of speech by level in the parse tree. It was found to be helpful to project the
features into a lower dimensional space. Statistical experiments on these documents demonstrate that information
from a statistical parser can, in fact, assist in distinguishing authors.

1 Introduction and Background
There has been considerable effort over the years related to using statistical methods to identify authorship of texts,
based on examples from candidate authors, in what is sometimes called “stylometry” or “author identification.” Sta-
tistical analysis of documents goes back to Augustus de Morgan in 1851 [1, p. 282], [2, p. 166], who proposed that
word length statistics might be used to determine the authorship of the Pauline epistles. Stylometry was employed as
early as 1901 to explore the authorship of Shakespeare [3]. Since then, it has been employed in a variety of literary
studies (see, e.g. [4, 5, 6]), including twelve of The Federalist Papers which were of uncertain authorship [7] — which
we re-examine here — and an unfinished novel by Jane Austen —which we also re-examine here. Information theo-
retic techniques have also been used more recently [8]. Earlier work in stylometry has been based on “noncontextual
words,” words which do not convey the primary meaning of the text, but which act in the background of the text to
provide structure and flow. Noncontextual words are at least plausible, since an author may address a variety of topics,
so particular distinguishing words are not necessarily revealing of authorship. In noncontextual word studies, a set
of most common words noncontextual is selected [2], and documents are represented by word counts, or ratios of
word counts to document length. A review of the statistical methods is in [9]. As a variation, sets of ratios of counts
of noncontextual word patterns to other word patterns are also employed [10]. Statistical analysis based on author
vocabulary size vs. document length — the “vocabulary richness” — has also been explored [11]. For other related
work, see [12, 13, 14, 15]

A more recent paper [16] considers the effectiveness of a wide variety of feature sets. Feature sets considered there
include: vectors comprising frequencies of pronouns; function words (that is, articles, pronouns, particles, expletives);
part of speech (POS); most common words; syntactic features (such as noun phrase, or verb phrase); or tense (e.g. use
of present or past tense); voice (active of passive). In [16], feature vectors are formed from combinations of histograms,
then reduced in dimensionality using a two-stage process of principle component analysis [17] followed by dimension
reduction using linear discriminant analysis (LDA). In their LDA, the within-cluster scatter matrix is singular (due to
the high dimension of the feature vectors relative the number of available training vectors), so their scatter matrix is
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regularized. To test this, the authors consider a range of regularization parameters, selecting one which gives the best
performance.

More recent work [18] mentions the survey in [15] in which commonly used features in the authorship field are
word and character n-grams. As noted, there are risks the statistical methods might be biased by topic-related patterns.
As [18] observe, “an authorship classifier (even a seemingly good one) might end up unintentionally performing topic
identification if domain-dependent features are used. ... In order to avoid this, researchers might limit their scope
to features that are clearly topic-agnostic, such as function words or syntactic features.” The work presented here
falls in the latter category, making use of grammatical structures statistically extracted from the text. These appear
to be difficult to spoof. Examination of other recent works [19, 20] indicate that there is ongoing interest in author
identification methods, but none making use of the grammatical structures use here; there is a tendency to rely more
on traditional n-grams.

In this work the feature vectors are obtained using tree information from parse trees from a natural language parsing
tool [21]. These features were not among the features considered in [16]. The grammatical structures are, it seems,
more subtle than simple counts of classes of words, and hence may be less subject to spoofing or topic bias, since it
seems unlikely that an author intending to imitate another would be able to coherently track complicated patterns of
usage, and the features do not include any words from the documents. It is found that the tree-based features perform
better than the POS features on the test data considered.

The feature vectors so obtained can be of very high dimension, so dimension reduction is also performed here.
However, to deal with the singularity of the within-cluster scatter matrix, a generalized SVD approach is used, which
avoids the need to select a regularization parameter.

This paper provides a proof-of-concept of these tree-based features to distinguish authorship by applying them
to documents which have been previously examined, The Federalist Papers and Sanditon. The ability to classify by
authorship is explored for several feature vectors obtained from the parsed information.

2 Statistical Parsing and Extracted Features
Part-of-speech (POS) tagging classifies the words in a sentence according to their part of speech, such as noun,verb,
or interjection. Because of the complexity of English language, there is potential for ambiguity. For example, many
words (such as “seat” or “bat” or “eye”) can be either nouns or verbs. The ambiguity can be dealt with using statistical
parsing, in which a large corpus of language is used to develop probabilistic models for words which are based on
contextual words. These models are typically trained with the assistance of human linguistic experts. The parser
used in this work uses a language model developed using the annotated corpus called the Penn Treebank, which is
a corpus of over 7 million words of American English, collected from multiple sources, labeled using human and
semi-automated markup [22, 23]. The parser is described in [21]. It is a probabilistic context free grammar (PCFG)
parser [24], with language transition probabilities determined based on the Penn Treebank corpus. The parser software
is known as the Stanford Parser [25]. Parsing results presented here are produced by version 4.2.0, released November
17, 2020.

Table 1 lists the POS labels (the POS tagset) associated with words when a sentence is parsed by this parser. It
also lists the syntactic tagset, produced by the parser when doing grammatical parsing. (see [23, Table 1.1, Table 1.2],
[26, Chapter 5]).

A brief introduction to statistical parsing is provide in Appendix A.
As an example of the parsing, consider the first sentence of The Federalist Papers 1 by Alexander Hamilton:

After an unequivocal experience of the inefficacy of the subsisting federal government, you are
called upon to deliberate on a new Constitution for the United States of America. (1)

Parsing this sentences yields the tree representation portrayed in figure 1(a). The leaf nodes correspond to the words
of the sentence, each labeled with a POS. The non-leaf (interior) nodes represent syntactic (grammatical structure)
information determined by the parser. The label of each node of the tree is referred to as a token. The parse tree can
be represented using the text string shown in 1(b). This is formatted to show the various levels of the tree implied by
the nesting of the parentheses in figure 1(c).

In preparing to extract feature vectors from a parse tree, some additional tidying-up is performed. The parser
creates a ROOT node for each tree, which is therefore uninformative and is removed. Punctuation nodes in the tree,
such as (, ,), (. .), or (. ?) are removed. Since the intent is to explore how the parsed information can be used for
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Table 1: Penn Treebank POS Tagset and Syntactic Tagset.

POS tagset [23, Table 1.2]
CC coordinating conjunction (and,but,

or)
CD cardinal number (one, two, three)

DT determiner (a, the) EX existential “there”
FW foreign word IN preposition or subordinating con-

junction (of, in, by)
INTJ interjection JJ adjective (yellow)
JJR adjective, comparative (bigger) JJS adjective, superlative (biggest)
LS list item marker (1, 2, one) MD modal (can, should)
NN noun, singular or mass (llama,

snow)
NNS noun, plural (llamas)

NNP proper noun, singular (IBM) NNPS proper noun, plural (Carolinas)
PDT predeterminer (all, both) POS possessive ending (’s)
PRP personal pronoun (I, you, he) PRP$ possessive pronoun (your, one’s)
RB adverb (quickly, never) RBR adverb, comparative (faster)
RBS adverb, superlative (fastest) RP particle (up, off)
SYM symbols (+, %, &) TO “to”
UH interjection (ah, oops) VB verb, base form (eat)
VBD verb, preterite (past tense) (ate) VBG verb, gerund (eating)
VBN verb, past participle (eaten) VBP verb, non-3sg pre (eat)
VBZ verb, 3sg pres (eats) WDT wh-determiner (which, that)
WP wh-pronoun (what, who) WP$ possessive WH- (whose)
WRB wh-adverb (how, where)
$ dollar sign # pound sign
“ left quote ” right quote
( left parenthesis ) right parenthesis
, comma . sentence-final (. ! ?)
: mid-sentence punc (: : . . . – -) ′′, ‘, ’ straight double quote; left single

open quote, right single close quote
Syntactic Tagset [23, Table 1.1]
ADJP Adjective phrase ADVP Adverb phrase
NP Noun phrase PP Prepositional phrase
S Simple declarative clause SBAR Subordinate clause
SBARQ Direct question introduced by wh-

element
SINV Declarative sentence with subject-

aux inversion
SQ Yes/no questions and subconstituent

SBARQ excluding wh-element
VP Verb phrase

WHADVP Wh-adverb phrase WHNP Wh-noun phrase
X Constituent of unknown or uncer-

tain category
* “Understood” subject of infinitive or

imperative
0 Zero variant of that in subordinate

clauses
T Trace of wh-Constituent
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classification, rather than the words of the document, the words of the sentence are removed from the parse tree. With
these edits, the sentence (1) has the parsed representation

(S(PP(IN)(NP(NP(DT)(JJ)(NN))(PP(IN)(NP(NP(DT)
(NN))(PP(IN)(NP(DT)(JJ)(JJ)(NN)))))))
(NP(PRP))(VP(VBP)(VP(VBN)(PP(IN))
(S(VP(TO)(VP(VB)(PP(IN)(NP(NP(DT)(JJ)(NN))
(PP(IN)(NP(NP(DT)(NNP)(NNP))(PP(IN)(NP(NNP)))))))))))))

(2)

From this prepared data, various feature vectors were extracted, as described below. (The text manipulation and data
extraction was done using the Python language, making extensive use of Python’s dictionary type. The parsed string
(2) can be used, for example, as a key to a Python dictionary.)

3 Parse Tree Features
The richness of the parsed representation introduces the possibility of many different feature vectors. Of the many
possible feature vectors that might be chosen, four are discussed here. Examples are provided based on the sentence
above to illustrate the features.

All Subtrees One set of features is the set of all subtrees of a given depth encountered among all the parsed sentences.
For example, Figure 2 shows eleven subtrees of depth 3 extracted from (2). Subtrees of a given depth may appear more
than once within a sentence. For example, the subtree

(NP(NP(DT)(JJ)(NN))(PP(IN)(NP(NP)(PP))))

appears twice in (2).
Across all the sentences in the documents considered, there is a very large number of subtrees. This leads to

vectors of very high dimension. This is a problem that is dealt with later.

Rooted Subtrees A rooted subtree is a subtree of a tree whose root node is the root node of the overall tree, down to
some specified level. The first few rooted subtrees can be thought of summarizing the general structure of a sentence,
with the amount of detail in the summary related to the number of levels of the subtree. Fig. 3 illustrates the subtrees
of levels one, two, and three for the tree of Fig. 1.

Part-of-Speech A simple set of features ignores the tree structure, and simply extracts the counts of tokens in the
parse tree. For (2), the counts of the POS are

S P IN NP DT JJ NN PRP VP VBP VBN TO VB NNP
2 7 7 11 5 4 4 1 4 1 1 1 1 3

POS by Level A more complicated set of features is the histogram of tokens at each level of the tree. For the tree of
(2), this is shown in Table 2.

For purposes of author classification, the idea, of course, is to see how the patterns in the feature vectors obtained
from the sentences of one author compare with the patterns in the feature vectors of other authors.

4 Classifier
This section describes the basic operation of the classifier employed in the tests for this paper. In this paper, when
“classes” are referred to, it refers to the different authors under consideration. Let k denote the number of classes
(authors).

Let ni denote the number of documents associated with author i, i = 1, 2, . . . , k. Let vi,j ∈ Rm denote a feature
vector associated with a document (e.g. a normalized histogram of the all subtrees counts for a document). The
set of all feature vectors for author i is formed by the columns the m × ni matrix Vi =

[
vi,1 vi,2 . . . vi,ni

]
,

i = 1, 2, . . . , k.
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ROOT

S

PP

IN After NP

NP

DT an JJ unequivocal NN experience

PP

IN of NP

NP

DT the NN inefficacy

PP

IN of NP

DT the JJ subsisting JJ federal NN government

NP

PRP you

VP

VBP are VP

VBN called PP

IN upon

S

VP

TO to VP

VB deliberate PP

IN on NP

NP

DT a JJ new NN Constitution

PP

IN for NP

NP

DT the NNP United NNP States

PP

IN of NP

NNP America

(a) Graphical representation of parse tree

(ROOT(S (PP(IN
After)(NP(NP(DT an)(JJ
unequivocal)(NN
experience))(PP(IN
of)(NP(NP(DT the)(NN
inefficacy)) (PP(IN
of)(NP(DT the)(JJ
subsisting)(JJ federal)(NN
government)))))))(,
,)(NP(PRP you))(VP(VBP
are) (VB(VBN called)(PP(IN
upon))(S(VP(TO to) (VP(VB
deliberate) (PP (IN on) (NP
(NP(DT a)(JJ new)(NN
Constitution)) (PP(IN
for)(NP(NP(DT the)(NNP
United)(NNP States))(PP(IN
of)(NP(NNP
America))))))))))))))

(b) Textual representation of
parse tree

(ROOT
(S

(PP
(IN After)
(NP

(NP
(DT an)(JJ unequivocal)(NN experience))

(PP
(IN of)
(NP

(NP
(DT the)(NN inefficacy))

(PP
(IN of)
(NP

(DT the)(JJ subsisting)(JJ federal)
(NN government)))))))

(, ,)
(NP

(PRP you))
(VP

(VBP are)
(VB

(VBN called)
(PP

(IN upon))
(S

(VP
(TO to)

(VP
(VB deliberate)

(PP
(IN on)

(NP
(NP

(DT a)(JJ new)(NN Constitution))
(PP

(IN for)
(NP

(NP
(DT the)(NNP United)(NNP States))

(PP
(IN of)
(NP

(NNP America))))))))))))))

(c) Formated textual representation of parse tree

Figure 1: Example parse tree
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VBN PP S

(S(S(VP(VB)(NP)))(NP(PRP9))

(VP(VBP)(VP(VBN)(PP)(S))))

S

VP

VB NP

NP PP

(S(VP(VB)(NP(NP)(PP))))

VP

VB NP

NP

DT JJ NN

PP

IN NP

(VP(VB)(NP(NP(DT)(JJ)

(NN))(PP(IN)(NP))))

NP

NP

DT JJ NN

PP

IN NP

NP PP

(NP(NP(DT)(JJ)(NN))(PP(IN)

(NP(NP)(PP))))

PP

IN NP

NP

DT NN

PP

IN NP

(PP(IN)(NP(NP(DT)(NN))

(PP(IN)(NP))))

NP

NP

DT NN

PP

IN NP

DT VBG JJ NN

(NP(NP(DT)(NN))(PP(IN)

(NP(DT)(VBG)(JJ)(NN))))

VP

VBP VP

VBN PP

IN

S

VP

(VP(VBP)(VP(VBN)

(PP(IN))(S(VP))))

VP

VBN PP

IN

S

VP

TO VP

(VP(VBN)(PP(IN))

(S(VP(TO)(VP))))

S

VP

TO VP

VB PP

(S(VP(TO)(VP(VB)(PP))))

VP

TO VP

VB PP

IN NP

(VP(TO)(VP(VB)(PP(IN)(NP))))

VP

VB PP

IN NP

NP PP

(VP(VB)(PP(IN)(NP(NP)(PP))))

PP

IN NP

NP

DT JJ NN

PP

IN NP

(PP(IN)(NP(NP(DT)(JJ)

(NN))(PP(IN)(NP))))

NP

NP

DT JJ NN

PP

IN NP

NP PP

(NP(NP(DT)(JJ)(NN))

(PP(IN)(NP(NP)(PP))))

PP

IN NP

NP

DT NNP NNP

PP

IN NP

(PP(IN)(NP(NP(DT)

(NNP)(NNP))(PP(IN)(NP))))

NP

NP

DT NNP NNP

PP

IN NP

NNP

(NP(NP(DT)(NNP)

(NNP))(PP(IN)(NP(NNP))))

Figure 2: Some subtrees of depth 3 extracted from the tree in (2)

Table 2: POS counts by level for the tree (2).

Level Counts
1 S: 1
2 PP: 1 NP: 1 VP : 1
3 IN : 1 NP: 1 PRP: 1 VBP: 1 VP: 1
4 NP: 1 PP: 1 VBN: 1 PP: 1 S: 1
5 DT: 1 JJ: 1 NN: 1 IN: 1 NP: 1 IN: 1 VP: 1
6 NP: 1 PP: 1 TO: 1 VP: 1
7 DT: 1 NN: 1 IN: 1 NP: 1 VB:1 PP: 1
8: DT: 1 JJ: 2 NN: 1 IN: 1 NP: 1
9: NP: 1 PP: 1
10: DT:1 JJ: 1 NN: 1 IN: 1 NP: 1
11: NP: 1 PP: 1
12: DT: 1 NNP: 1 IN: 1 NP: 1
13: NNP: 1
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S

PP NP VP

S

PP

IN NP

NP

PRP

VP

VBP VP

S

PP

IN NP

NP PP

NP

PRP

VP

VBP VP

VBN PP S
(S(PP)(NP)(VP)) (S(PP(IN)(NP))(NP(PRP))(VP(VBP)(VP))) (S(PP(IN)(NP(NP)(PP)))(NP(PRP))(VP(VBP)(VP(VBN)(PP)(S))))

One level Two levels Three levels

Figure 3: Rooted Subtrees of the tree in (2) of one, two, and three levels

An overall m× n data matrix is formed as V =
[
V1 V2 . . . Vk

]
, where

∑k
i=1 ni = n. Let Ni denote the set

of column indices of V associated with the vectors in class i. The centroids (that is, the mean of the set of vectors) of
the feature vectors for each class are computed by

c(i) =
1

ni

ni∑
j=1

vi,j and the overall centroid is c =
1

n

k∑
i=1

ni∑
j=1

vi,j .

In the tests performed for the investigation in this paper, the classifier works as follows (see figure ??).

• For each feature vector under consideration v = vi,j ∈ Vi coming from class i, the vector vi,j is removed from
the pool of vectors in Vi, producing a set of vectors Ṽi and the centroid c̃i of the resulting data is computed:

c̃(i) =
1

ni − 1

∑
i∈Ni\j

Vi.

Centroids for all the other classes are computed, but without removing the vector under consideration, so c̃(j) =
c(j).

• The vector v under consideration is compared with the class centroid for each class, and the estimated class is
that class whose centroid is closest to v, where the distance measure is simply Euclidean distance:

î = argmin
j

∥v − c̃(j)∥

• A count of the vectors v which do not classify correctly is formed, where there are n− 1 possible errors.

5 Dimension Reduction
As described in section 3, the number of elements m of the feature vectors can be very large. It has been found to
be helpful to reduce the dimensionality of the feature vectors by projecting them into a lower dimensional space. The
reduction of dimension is similar to principle component analysis (PCA) [17], but is used when the dimension of the
vectors exceeds than the number of observations of vectors in the classes. This has been used in other textual analysis
problems [27, 28] and facial recognition problems [29]. (In [16], dimension reduction is accomplished in a two-stage
process, with PCA being following by a process similar to the one described here.) In this section we introduce the
criterion used to perform the projection. In Appendix B, a few more details are provided (see [27, 29] for more detail).

While the feature vectors are in high-dimensional space, the salient concepts of dimension reduction can be illus-
trated in low dimensional space, such as figure 4. In that figure there are two 2-dimensional data sets, denoted with ◦
and ×, respectively. The problem is to determine for a given vector which class it belongs to. Also shown in the figure
are two axes upon which the data are projected. (For “projection,” think of the shadow cast by the data points by a light
source high above the projection line.) The 1-dimensional data produced in Projection 1 have a cluster widths denoted
by SW2 and SW2. This is the within-cluster scatter, a measure of the variance (or width) of the densities. There is also
a between-cluster scatter, a measure of how far the cluster centroids are from the overall centroid. In Projection 1, the
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SW1

Direction of projection onto
Projection 2

SB
SB

SW2

SW2 SW1

Projection 1

Projection 2

Direction of projection onto Projection 1

Figure 4: Illustration of within-cluster and between cluster scattering and projection.

between-cluster measure is rather small compared with the width of the cluster widths. By contrast, the 1-dimensional
data produced in Projection 2 have a much larger between-cluster measure SB . The within-cluster scatter SW1 and
SW2 are also larger, but the between-cluster measure appears to have grown more than these within-cluster measures.
Projection 2 produces data that would be more easily classified than Projection 1.

More generally, one can conceive of rotating the data at various angle with respect to the axis that data are projected
upon. At some angles, the between cluster scatter will be larger compared to the within-cluster scatters.

In light of this discussion, the goal of the projection operation is to determine the best “angles of rotation” to
project upon which maximize the between-cluster scatter while minimizing the within-cluster scatter. In general, there
are k clusters of data to deal with (not just the two portrayed in figure 4). All this takes place in very high dimensional
space, where we cannot visualize the data, so this is done via mathematical transformations. In higher dimensions,
it is also not merely a matter of projecting onto a single direction. In m dimensions, the dimension of the projected
data could be 1-dimension, 2-dimensions, etc., up to m − 1 dimensions. It is not known in advance what the best
dimensionality to project onto is, so this is one of the parameters examined in the experiments described below.

With this discussion in place, we now describe the mathematics of how the projection is accomplished. For class
i, with within-cluster scatter matrix —- that is, a measure of how the data in the in the class vary around the centroid
of the class — is

SWi =
∑
j∈Ni

(vj − c̃(i))(vj − c̃(i))T

The total within-cluster scatter matrix is the sum of the within-class scatter matrices,

Sw =

k∑
i=1

∑
j∈Ni

(vj − c̃(i))(vj − c̃(i))T .

For the data considered here, which has high dimensions and not a lot of training data, Sw is singular, that is, not
invertible.

The between-cluster scatter matrix is the scatter of the individual class centroids compared with the overall cen-
troid,

Sb =

k∑
i=1

∑
j∈Ni

(c̃(i) − c)(c̃(i) − c)T =

k∑
i=1

ni(c̃
(i) − c)(c̃(i) − c)T .

The idea behind dimension reduction is to find a ℓ × m matrix GT with ℓ < m then use GT to transform the data
according to vℓ

i = GTvi. One may think of the matrix GT as providing rotation of the vectors and selection of the
dimensions which are retained after rotation.

The operation vℓ
i = GTvi may be thought of (naively) as feature selection: elements of vi are retained in vℓ

i

which improve the clustering. Actually, beyond mere feature selection, the transformation GT also produces lin-
ear combinations of feature vectors which improve the clustering of the data (and hence may improve the classifier
capability).

Based on the discussion above, the matrix GT is selected to minimize the within-cluster scatter Sw of the trans-
formed data while also making the between-cluster scatter Sb as large as possible.

It may be surprising that projecting into lower dimensional spaces can improve the performance — it seems to be
throwing away information that may be useful in the classification. What happens, however, is that the information
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Table 3: Number of subtrees in union and intersection of sets of all
subtrees

Author # Docs Total #
Sentences

Total #
Words

# Subtrees
of depth 2

# Subtrees
of depth 3

# Subtrees
of depth 4

Hamilton 51 3126 206586 9660 19785 25834
Madison 14 1034 65492 4653 8182 9419
Jay 5 159 11732 1590 2150 2044
UncertainHorM 12 688 40607 3200 5363 6077
HandM 3 154 7928 1007 1373 1293
Totals 85 5161 332345 20110 36853 44667

Table 4: Summary statistics of Fed-
eralist data

Depth # in union # in intersection
2 14377 283
3 30121 195
4 39607 78

discarded is in directions that are noisy, or may be confusing to the classifier. As the results below indicate, projecting
onto lower dimensions can significantly improve the classifier.

6 The Federalist Papers
With this background, we now turn attention to applying features derived from statistical parsing to two different sets
of documents, the first being The Federalist Papers. The Federalist Papers consists of a series of 85 papers written
around 1787 by Alexander Hamilton, James Madison, and John Jay in support of the U.S. Federal Constitution [30].
Of these papers, 51 are attributed unambiguously to Hamilton, 14 to Madison, 5 to Jay, and 3 to both Hamilton and
Madison. The remaining twelve papers are of uncertain attribution, but are known to be by either Madison or Hamilton.
In [7, 8], statistical techniques were used to determine that all twelve ambiguous papers were due to Madison.

The authors used in this study are {Hamilton, Madison, Jay, UncertainHorM, HandM}. A machine-readable copy
of The Federalist Papers was obtained from the Gutenberg project [31]. Each of the 85 papers is considered a separate
document, each of which is parsed into a separate file. Below we consider the performance of classifiers based on the
feature vectors described above.

All Subtrees Subtree extraction is done on all trees for each of the Federalist papers. Table 3 shows the total number
of sentences and words for each author considered. The table also shows the number of different subtrees at any level
for the depths considered. The number of subtrees grows rapidly with the depth, leading to large feature vectors. Table
4 shows the number of subtrees in the union of the subtrees of all the authors and in the intersection of the subtrees of
all the authors.

To form feature vectors using the subtree information, the top N subtrees (by count) for each author are selected
(where we examined N = 5, 10, 20, and 30), then the union across authors was formed of these top subtrees. In the
tables below, the number of subtrees in the union of the top N is denoted as “length(union)”. The fact that this number
exceeds N indicates that not all authors have the same top N subtrees. This length(union) is m, the dimension of the
feature vector used for classification before projection into a lower dimensional space.

The subtrees in the union of the top N form the row labels in a term-by-document matrix, where the terms (rows)
are the subtrees and there is one column for each paper. This term-by-document is filled with counts for each subtree,
then the term-by-document matrix is normalized so that each column sum is equal to 1. Classification was done by
nearest distance to the class centroid, as described in section 4.

Classification results are shown in Table 5. The results (most of them) are also shown in figure 5. The test
conditions are the number N (for the top N ), the depth of the tree, and the dimension of the reduced dimension space
ℓ. There is an error count in the column “# Err”, which is the number of errors (out of 85) using the original high-
dimensional feature vectors. There are also error counts # Errℓ, for ℓ = 1, 2, 3, 4, 5, which are the number of errors
for data projected in the ℓ-dimensional space as described in section 5. The # Err column never achieves a value less
than 16, illustrating that the raw subtree features do not provide good classification. However, the reduced-dimension
data can achieve good classification. For example, with top N = 5, subtrees of depth 4 achieve an error count of 1
for ℓ = 2 and ℓ = 3 dimensional projection. In fact, the error count is actually better than the table shows. For all
error counts of 1, the one error that occurs is a classification of the author HandM as the author Madison. Since it is
understood that the HandM papers were actually written by Madison, this is a correct classification.

There is clearly a broad “sweet spot” for these features. Taking the top N at least 10, a subtree depth of 3 or 4,
and projected dimension of ℓ = 2, 3 or 4 provides the best performance. Interestingly, in all cases, moving to ℓ = 5
actually slightly increases the number of errors to 2.
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Table 5: Classification of Federalist papers based on
“all subtree” feature vectors

top N
subtree
depth length(union) # Err # Err2 # Err3 # Err4 # Err5

5 2 16 25 29 10 13 15
3 45 22 12 5 2 3
4 103 25 1 1 2 2

10 2 36 21 27 5 4 6
3 80 20 1 1 1 2
4 194 22 1 1 1 2

20 2 82 16 1 1 1 2
3 182 19 1 1 1 2
4 402 20 1 1 1 2

30 2 146 15 1 1 1 2
3 286 19 1 1 1 2
4 700 23 1 1 1 2
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Figure 5: Error counts for the “all subtree” features

These results indicate that the subtree feature does provide information which can distinguish authorship, with
appropriate weighting of features and selection of the dimension.

Rooted Subtrees We next considered using rooted subtrees as feature vectors. A few examples of these trees created
from a Hamilton paper in the The Federalist Papers are shown in figure 6. There is quite a variety of possibilities (more
than initially anticipated).

Some summary information about the number of different trees by author and level is shown in Table 6. Table
7 shows the number of rooted trees in the union of the trees across the authors, and the number of trees common to
all authors (the intersection). There is so much variety in these trees that it is only at level 1 that there are any trees
common to all authors, which is the tree S(NP)(VP), that is, a sentence with a noun phrase and a verb phrase.

The feature vectors were formed as follows. For each level of rooted subtree, the top N trees for each author
were selected, and the union of these trees across the documents formed the terms in a term-by-document matrix. The
number of trees obtained is shown in the column # Trees of Table 8.

Incidence counts were formed for each document of each user. Classification was done by nearest distance to the
class centroid, as described in section 4. This gave rather high error counts for each of the different levels. Then
the data was projected into ℓ-dimensional space, and the error counts # Errℓ are computed. The results are shown in
Table 8. The columns # Err, #Err2, . . . #Err5 show the number of errors for full dimension then 2-, . . . , 5-dimensional
projections. Figure 7 graphically portrays the tabulated results.

As in the “all subtree” feature case, these low-dimensional projections do very well. In fact, as before, the error
that occurs in the case that there is one error is when the HandM author was classified as the Madison author, which is
in fact a correct classification.

The rooted subtrees features have a very broad sweet spot where good classification occurs. For dimensions
ℓ = 2, 3 or 4, and at least 2 levels does very well. As for the all subtrees features, in this case also: for all error counts
of 1, the one error that occurs is a classification of the author HandM as the author Madison. Since it is understood that
the HandM papers were actually written by Madison, this is a correct classification, so all documents were correctly
classified.

POS POS is a seemingly natural way to classify documents, but, contrary to expectations, it does not perform as
well as the tree-based features. Feature vectors in this case are formed by taking the top N most common POS for
each author, then forming the union of these POS. Feature vectors are formed by POS counts by author and document,
normalized. Results are shown in Table 9. The raw error count for different values of N are all greater than or equal
to 23. Moderate improvements can be obtained by projecting the feature vectors to lower dimensional space, with the
errors for the ℓ-dimensional projection denoted by # Errℓ, for ℓ = 2, 3, 4, 5. Even in the best of circumstances, the
error counts is equal to 4.

We conclude that while the POS provides a measure of distinguishability between authors, it does not provide the
same degree of distinguishability as that provided by the structural information obtained from the parse trees.
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Figure 6: Example rooted trees of 1 level, 2 levels, 3 levels

Table 6: Summary statistics of number of “rooted subtrees” of different
levels

Author # Rooted
sub trees
of 1 level

# Rooted
subtrees
of 2 levels

# Rooted
subtrees
of 3 levels

# Rooted
subtrees
of 4 levels

Hamilton 285 1688 2732 2955
Madison 156 703 959 995
Jay 51 139 159 157
UncertainHorM 111 490 633 647
HandM 28 137 152 148

Table 7: Summary statistics of
number of rooted trees unioned and
intersected over authors

Level # in union # in inter-
section

1 398 1
2 2625 0
3 4425 0
4 4808 0

Table 8: Classification of Federalist papers based on
“rooted subtree” feature vectors

top N level # Trees # Err # Err2 # Err3 # Err4 # Err5
5 1 37 36 15 13 11 2

2 168 34 1 1 1 2
3 371 35 1 1 1 2
4 394 30 1 1 1 2

10 1 140 33 1 1 1 2
2 413 35 1 1 1 2
3 734 30 1 1 1 2
4 774 30 1 1 1 2

20 1 323 33 1 1 1 2
2 945 29 4 1 1 2
3 1462 31 1 1 1 2
4 1538 30 1 1 1 2

30 1 381 34 1 1 1 2
2 1416 29 1 1 1 2
3 2145 30 1 1 1 2
4 2283 30 1 1 1 2
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Figure 7: Error counts for the “rooted subtree” fea-
tures

Table 9: Classification of Federalist papers based on POS vectors

top N # POS in union # Err # Err2 # Err3 # Err4 # Err5
5 7 30 32 27 27 30
10 17 25 41 19 14 16
20 28 23 31 11 6 7
30 46 23 12 6 4 5
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Table 10: Classification of Federalist papers based
on “POS by level feature” vectors

top N level # Trees # Err # Err2 # Err3 # Err4 # Err5
5 1 9 42 11 35 39 40

2 14 35 31 30 24 28
3 12 46 38 31 32 35
4 11 49 33 37 39 39

10 1 27 41 34 27 23 21
2 20 36 35 28 21 24
3 21 39 29 20 21 27
4 19 40 23 19 20 22

20 1 33 41 36 18 18 18
2 44 33 16 5 5 6
3 36 38 23 13 9 9
4 40 39 34 12 10 11
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Figure 8: Error counts for the “POS by level” feature
vectors

Table 11: Summary statistics of Sanditon data

Author # Docs Total #
Sentences

Total #
Words

# Subtrees
of depth 2

# Subtrees
of depth 3

# Subtrees
of depth 4

Austen 2 1176 26342 4921 7378 7460
Other 4 2559 55453 8194 13795 15266
Totals 6 5161 332345 20110 36853 44667

Table 12: Number of subtrees in
union and intersection of sets of
subtrees for Sanditon.

Depth # in union # in intersection
2 11189 1926
3 19277 1896
4 21560 1166

POS by Level Table 10 shows the classification results for feature vectors obtained using the POS by level, using
feature vectors formed in a manner similar to the other features. Figure 8 provides a graphical representation of this
data. This feature vector provides some discrimination between authors, but fares substantially worse than the purely
tree-based features.

6.1 Sanditon
Up until shortly before her death in 1817, Jane Austen was working on a novel posthumously titled Sanditon [32, p.
20]. Before her death she completed a draft of twelve chapters (about 24,000 words). The novel was posthumously
“completed” by various writers with varying success. The version best known was published in 1975 [33], coathored
by “Another Lady,” whose identity remains unknown. Whoever she was, she was a fan of Austen’s and attempted to
mimic her style. Of this version, it was said, it “received, as compared with [its] predecessors, a warm reception from
the English critics.” [34, p. 76]. Notwithstanding its literary appeal and the attempts at imitating the conscious habits
of Austen, she failed in capturing the unconscious habits of detail: stylometric analysis has been able to distinguish
between the different authors [2, Chapter 16].

We obtained a computer-readable document from the Electronic Text Center at the University of Virginia Library
[35]. The document was evidently obtained optical character recognition (OCR) from scanned documents, so it was
necessary to carefully spell-check the document, but contemporary spellings were retained. Two documents were
produced, the first for Austen (with 1176 sentences) and the second for Other (with 2559 sentences). These were split
into segments (for purposes of testing the classification capability). The Austen document had two segments of length
588 sentences. The Other document had four segments of lengths 640, 640, 640, 639. Subtrees of various depths
were extracted from the segments, and these were classified the same way as the Federalist papers. Summary statistics
about the documents are provided in Table 11.

Despite the attempt to duplicate Austen’s style, the segments for the different authors readily classify according to
author, as shown below.
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Table 13: Classification of Sanditon based on “all
subtrees” feature vectors

top N
subtree
depth length(union) # Err # Err2 # Err3 # Err4 # Err5

5 2 9 0 0 2 4 5
3 11 0 0 2 4 5
4 15 2 0 2 5 5

10 2 12 0 0 2 4 5
3 17 0 0 2 4 5
4 29 2 0 3 4 5

20 2 30 0 0 2 4 5
3 35 0 0 1 3 5
4 58 1 0 2 4 5

30 2 46 0 0 2 4 5
3 51 0 0 1 3 5
4 88 2 0 3 4 5

2 3 4

subtree depth

0

1

2

#
 o

f 
e

rr
o

rs

N=5

N=10

N=20

N=30

all 2 3 4 5

# of dimensions, (N=5)

0

2

4

6

#
 o

f 
e

rr
o

rs

subtree depth 2

subtree depth 3

subtree depth 4

all 2 3 4 5

# of dimensions, (N=10)

0

2

4

6

#
 o

f 
e

rr
o

rs

subtree depth 2

subtree depth 3

subtree depth 4

all 2 3 4 5

# of dimensions, (N=20)

0

2

4

6
#

 o
f 

e
rr

o
rs

subtree depth 2

subtree depth 3

subtree depth 4

Figure 9: Classification of Sanditon based on “all
subtrees” feature vectors

Table 15: Classification of Sanditon based on POS vectors

top N # POS in union # Err # Err2 # Err3 # Err4
5 5 0 3 4 5
10 11 0 0 1 3
20 21 0 0 2 4
30 36 0 0 2 4

All Subtrees For each six of the documents (two Austen, four Other), counts of all subtrees were extracted. As for
the Federalist papers, the top N counts were extracted for N = 5, 10, 20, 30, and the union of these features was
formed. This was done for subtrees of depth 2, 3, and 4. The number of trees in the union and intersection of these
sets is shown in Table 12.

Classifier results for the all subtrees feature are shown in Table 13, and also portrayed in figure 9. As is shown, even
with the full dimensionality (without projecting into a lower dimensional space), separation can be done completely
accurately. On the other hand, the projected feature vectors do not generally perform as well as the full-dimensional
data. This differs from how the lower dimensional projections worked for the Federalist documents.

Rooted Subtrees We next considered using rooted subtrees as feature vectors. Feature vectors were formed in the
same way as for the The Federalist Papers. Results are shown in Table 14 and portrayed in figure 10. While not as
effective at distinguishing as the subtrees features, this feature still shows the ability to distinguish between authors.

POS POS feature vectors were extracted in the same manner as for the The Federalist Papers. Data up to Err4
were produced. The POS data was able to effectively distinguish between authors, more effectively than for the The
Federalist Papers. Reducing the dimensionality did not improve the classifier (and beyond ℓ = 2 made it worse).
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Table 14: Classification of Sanditon based on “rooted
subtree” feature vectors

top N level # Trees # Err # Err2 # Err3 # Err4 # Err5
5 1 8 0 5 1 3 5

2 11 2 0 1 3 6
3 27 4 0 3 4 6
4 27 2 0 2 3 6

10 1 15 0 0 1 3 5
2 28 4 0 3 3 5
3 56 3 0 2 4 5
4 56 2 0 2 4 5

20 1 31 0 0 2 3 5
2 60 2 0 2 4 5
3 115 2 0 1 5 5
4 116 2 0 2 3 5

30 1 59 0 0 2 3 5
2 106 2 0 2 3 5
3 174 2 0 2 5 5
4 176 2 0 2 3 5
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Figure 10: Classification of Sanditon based on
“rooted subtree” feature vectors
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Table 16: Classification of Sanditon based on “POS
by level” feature vectors

top N level # Trees # Err # Err2 # Err3 # Err4
5 1 5 0 2 4 4

2 5 0 1 2 5
3 7 1 0 1 3
4 7 0 0 2 3

10 1 11 0 0 2 4
2 11 0 0 2 4
3 13 1 0 2 3
4 10 0 0 2 3

20 1 26 0 0 3 4
2 21 0 0 2 4
3 21 0 0 1 3
4 21 0 0 2 4

30 1 42 0 0 3 4
2 36 0 0 2 4
3 35 0 0 1 3
4 33 0 0 2 4
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Figure 11: Classification of Sanditon based on “POS
by level” feature vectors

POS by Level POS by Level feature vectors were extracted in the same manner as for the The Federalist Papers.
Data up to Err4 were produced. The classification results are shown in Table 16 and portrayed in figure 11.

The POS by Level data was able to effectively distinguish between authors, more effectively than for the The
Federalist Papers. Reducing the dimensionality did not improve the classifier (and beyond ℓ = 2 made it worse).

7 Conclusions, Discussion, and Future Work
As this paper has demonstrated, information drawn from statistical parsing of a text can be used to distinguish between
between authors. Different sets of features have been considered (all subtrees, rooted subtrees, POS, and POS by
Level), with different degrees of performance among them. Other than the POS these features have not been previously
considered (to the knowledge of the authors), including in the large set of features examined in [16]. This suggests
that these tree-based features, especially the features based on all subtrees, may be beneficially included among other
features.

It appears that the Sanditon texts are easier to classify than the The Federalist Papers. Even without the generally
performance-enhancing step of dimension reduction, Sanditon classifies well, even using the POS feature vectors
which are not as strong when applied to the The Federalist Papers. This is amusing, since the completer of Sanditon
attempted to write in an imitative style, suggesting that these structural features are not easily faked.

The methods examined here does not preclude the excellent work on author identification that has previously been
done, which is usually done using more obvious features in the document (such as word counts, with words selected
from some appropriate set). This makes previous methods easier to compute. But at the same time, it may make it
easy to spoof the author identification. The grammatical parsing provides more subtle features which will be more
difficult to spoof.

Another tradeoff is the amount of data needed to extract a statistically meaningful feature vector. The number of
trees — the number of feature elements — quickly becomes very large. In order to be statistically significant a feature
element should have multiple counts. (Recall that for the chi-squared test in classical statistics a rule of thumb is that
at least five counts are needed.) This need to count a lot of features indicates that the method is best applied to large
documents.

In light of these considerations, the method described here may be considered suplemental to more traditional
author identification methods.

The method is naturally agnostic to the particular content of a document — it does not require selecting some
subset of words to use for comparisons — and so should be applicable to documents across different styles and genres.
The analysis could be applied to any document amenable to statistical parsing. (It does seem that documents with a
lot of specialized notation, such as mathematical or chemical notation would require adaptation to the parser.)

This paper introduces many possibilities for future work. Of course there is the question of how this will apply to
other work in author identification. It is curious that the dimension reduction behaves so differently for the Federalist
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Table 17: Example rules for a PCFG (see Figure 14.1 of [26]). S=start symbol (or sentence); NP=noun phrase; VP =
verb phrase; PP=prepositional phrase.)

Grammar Probability Lexicon
S → NP VP [0.80] Det → that [0.10] | a [.30] | the [.60]
S → Aux NP NP [0.15] Noun → book [.10] | flight [.30] |
S → VP [0.05] meal [.15] | money [.05]
NP → pronoun [0.35] flights [.40] | dinner [.10]
NP → Proper-Noun [0.30] Verb → book [0.30] | include [0.30] |
NP → Det Nominal [0.20] prefer [0.40]
NP → Nominal [0.15] Prounoun → I [0.40] | you [0.40] |
Nominal → Noun [0.75] me [0.15] | you [0.40]
Nominal → Nominal Noun [0.20] Proper-noun → Houston [0.60] |
Nominal → Nominal PP [0.05] NWA [0.40]
VP → Verb [0.35] Aux → does [0.60] | can [0.40]
VP → Verb NP [0.20] Preposition → from [0.30] | to [0.30] |
VP → Verb NP PP [0.10] on [0.20] | near [0.15] |
VP → Verb PP [0.15] through [0.15]
VP → Verb NP PP [0.05]
VP → VP PP [0.15]
PP → Preposition NP [1.0]

and Sanditon — Federalist best in smaller dimensions, but Sanditon works better in larger dimensions. Given recent
furor over machine learning, it would be interesting to see if the features extracted by the grammatical parser corre-
spond in any way to features that would be extracted by a ML tool. (My suspicion is that training on current ML tools
does not extract grammatical information applicable to the author identification problem.)

A A Brief Introduction to Statistical Parsing
At the suggestion of an anonymous reviewer, this appendix was written to provide a brief a discussion of the statistical
parsing, drawing very closely from [26, Chapter 14, Statistical Parsing]. More detailed discussions are provided in
[21, 24]. The probabilistic grammar employed is a probabilistic context-free grammar (PCFG). In this grammar are
rules for transforming nonterminal symbols to a string of symbols which could be nonterminal symbols or terminal
symbols. In a PCFG each rule is accompanied by a probability. As an example, Table 17 shows a grammar for a toy
language (used for airline reservations). Each rule in the table of the form A → B [p] means that p is the probability
that the non-terminal A will be expanded to the sequence B. This can be alternatively represented as P (A → B) or
as P (A → B|A) or as P (LHS|RHS), where LHS and RHS mean “left hand side” and “right hand side,” respectively.

In Table 17, S denotes an start symbol (for a sentence). The grammar’s first rule says that a sentence may consist
of a NP (noun phrase) followed by a VP (verb phrase), and that such a rule occurs with probability 0.8. The second
rule says that a sentence may consist of an auxiliary (such as does or can) followed by NP then a VP, with probability
0.15. The next rule says that a sentence can be a verb phrase, VP. The tokens obtained by application of a rule can be
recursively expanded using their own rules, shown in the table. Thus, a NP may consist of a pronoun, or a proper-noun,
etc. The probabilities are estimated from a large corpus of data parsed by a linguist.

There is also a lexicon (or dictionary) of terms, each term of which has a probability within its lexicon type.
The right side of Table 17 illustrates a lexicon for this application. For example, a determiner Det can be that (with
probability 0.1) or a (with probability 0.3) or the (with probability 0.6). A noun (in this application context) can be
book, flight, meal, money, flights, or dinner, with their respective probabilities. Probabilities are (again) estimated
from a corpus.

A PCFG can be used to estimate the probability of a parse tree, which can be used to disambiguate multiple
parsings, or it can be used to determine the probability of a sentence in a language modeling setting.

“The probability of a particular parse tree T is defined as the product of the probabilities of all the rules used to
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expand each of the n non-terminal nodes in the parse tree T , where each rule i can be expressed as LHSi → RHSi:

P (T, S) =

n∏
i=1

P (RHSi|LHSi)

The resulting probability P (T, S) is . . . the joint probability of the parse and the sentence and the probability of the
parse P (T ).” [26, p. 462] . In computing the probability on a tree, there is a factor for every rule, which corresponds
to every edge on the tree.

As an example, consider two different ways of parsing the sentence: “Book the dinner flight.” This can be parsed
(understood) either asl1 Book a flight that serves dinner

or as l2 Book a flight for [on behalf of] the dinner.

The parse tree, rules, and corresponding probability for parsing l1 is shown here:

S

VP

VERB

Book

NP

Det

the

Nominal

Nominal

Noun

dinner

Noun

flight

Rules Prob
S → VP .05
VP → Verb NP .20
NP → Det Nominal .20
Nominal → Nominal Noun .20
Nominal → Noun .75
Verb → book .30
Det → the .60
Noun → dinner .10
Noun → flights .40

P (T1) = (.05)(.2)(.2)(.2)(.75)(.3)(.6)(.1)(.4) = 2.2 × 10−6

The parse tree, rules, and corresponding probability for parsing l2 is shown here:

S

VP

Verb

Book

NP

Det

the

Nominal

Noun

dinner

NP

Nominal

Noun

flight

Rules Prob
S → VP .05
VP → Verb NP NP .10
NP → Det Nominal .20
Nominal → Noun .75
Nominal → Noun .75
Verb → book .30
Det → the .60
Noun → dinner .10
Noun → flights .40

P (T2) = (.05)(.1)(.2)(.15)(.75)(.75)(.3)(.6)(.1)(.4) = 6.1 × 10−7

The probabilities computed for these two parse structures are

P (T1) = 2.2× 10−6 P (T2) = 6.1× 10−7.

The parsing l1 has much higher probability than parsing l2 (which accords with a common understanding of the
sense of the sentence).

The parser works through the text being parsed, probabilistically associating the word with its grammatical el-
ement, in the context of the tree that is being built. When competing trees are constructed, the tree with highest
probability is accepted.
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B Dimension Reduction: Some Mathematical Details
This material is drawn from [27]. The trace of Sw provides a measure of the clustering of the feature for each class
around their respective centroids,

tr(Sw) =

k∑
i=1

∑
j∈Ni

(vj − c(i))T (vj − c(i)) =

k∑
i=1

∑
j∈Ni

∥vj − c(i)∥2.

Note that Sw, being the sum of the outer product of n terms, generically has rank min(n,m). In the work here, the
dimension of the feature vectors m is very large, so that rank(Sw) = n; Sw is singular.

Similarly, tr(Sb) measures the total distance between cluster centroids and the overall centroid,

tr(Sb) =

k∑
i=1

∑
j∈Ni

(c(i) − c)T (c(i) − c) =

k∑
i=1

∑
j∈Ni

∥c(i) − c)∥2.

A measure of cluster quality which measures the degree to which tr(Sw) is small and tr(Sb) is large is

J1 = tr(S−1
w Sb)

As noted above, Sw is singular, so this a conceptual expression (not actually computed). In [16], the problem of the
singularity of Sw is dealt with by working with a regularized scatter matrix Sw+λI , for some regularization parameter
λ, which is found there by searching over a range of λs which provide best performance. The method described here
using the SVD avoids the need to perform this search (and the possibility that some performance may have been
sacrificed by not finding an optimum value of λ).

When the vectors are transformed by the transformation GT , the scatter matrices are

Sw,G =

k∑
i=1

∑
j∈Ni

(GTvj −GT c(i))(GTvj −GT c(i))T = GTSwG,

and (similarly) Sb,G = GTSbG and Sm,G = GTSmG. The goal now is to choose GT to make tr(Sw,G) small while
making tr(Sb,G) large. More precisely, the matrix G is sought that maximizes

J1(G) = tr((GTSwG)−1(GTSbG)).

In this case, the matrix GTSwG may not be singular.
To express the algorithm, the following matrices are defined. The scatter matrices Sw, Sb and Sm can be expressed

in terms of the matrices

Hw =
[
V1 − c(1)en1

V2 − c(2)en2
· · · Vk − c(k)enk

]
∈ Rm×n,

Hb =
[√

n1(c
(1) − c)

√
n2(c

(2) − c) · · · √
nk(c

(k) − c)
]
∈ Rm×k

and
Hm =

[
v1 − c v2 − c · · · vn − c

]
∈ Rm×n

as
Sw = HwH

T
w Sb = HbH

T
b Sm = HmHT

m.

That is, Hm, Hb and Hm form factors of the respective scatter matrices.
The algorithm for computing G is shown below. (adapted from Algorithm 1 of [27]).

Algorithm 1 Finding a structure-preserving, dimension-reducing matrix G:
Given matrices Hb ∈ Rm×k and Hw ∈ Rm×n (the factors of Sb and Sw), determines the matrix G ∈ Rm×ℓ which
preserves the cluster structure in the ℓ dimensional space.
Input: Hb, Hw, ℓ. Output: G
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1. Form

K =

[
HT

b

HT
w

]
∈ R(k+n)×m

and compute its SVD

K = P

[
R 0
0 0

]
QT .

Determine the rank of K:
t = rank(R)

2. Compute the SVD of a submatrix of P :

P (1 : m, 1 : t) = UΣWT

3. Form an empty matrix G ∈ Rm×ℓ.

4. (Compute G as the first ℓ columns of Q
[
R−1W 0

0 I

]
. This can be done as follows:)

(Overwrite the first t columns of Q as QR−1:)
for j = 1 : t
Q(:, j) = Q(:, j)/R(j, j)

end
if(ℓ ≤ t)
G(:, 1 : ℓ) = Q(:, 1 : t)W (:, 1 : ℓ)

else
Print: “Number of columns of G requested exceeds number of nontrivial

singular values pairs of HT
b and HT

w”
G(:, 1 : t) = Q(:, 1 : t)W (:, 1 : t)

if(ℓ > n)
Print: “And it exceeds the number of columns of G”

else (Set the remaining columns of G equal to Q2)
G(:, t+ 1 : ℓ) = Q(:, t+ 1, ℓ)

end
end
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