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ABSTRACT 

 

This paper shows a vulnerability of the pay-per-click accounting of Google Ads and proposes a statistical 

tradeoff-based approach to manage this vulnerability. The result of this paper is a model to calculate the 

overhead cost per click necessary to protect the subscribers and a simple algorithm to implement this 

protection. Simulations validate the correctness of the model and the economical applicability.   
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1. INTRODUCTION 
 
The pay-per-click accounting method adopted by Google Ads service for online advertising 

services [1][2] enables the Advertising Provider (AdP, e.g., Google) to automatically charge the 

Advertised Subscribers (AdS) for each single advertised page access (called “click”) requested by 

each web user. Differently from previous online pay-per-click methods, this method does not 

need AdP and AdS to agree on respective web access logs and “referrer headers” [3], as a 

consequence the cost of subscriber’s signup and charging processes are extremely reduced. This 

method allows a single AdP to manage millions pay-per-click contracts, thus making the pay-per-

click advertising a mass service, as it appears today. 

 
Figure 1 - Google Ads Revenue [10] 



International Journal of Network Security & Its Applications (IJNSA) Vol. 10, No.1, January 2018 

2 

Being the click count the key figure upon which such a mass business calculates billion dollars 

revenue (see Figure 1), the paper presents a contribution to the relevant topic of evaluating the 

reliability of such a figure. In particular, the paper focuses on the robustness against malicious 

web clients who might spam the click counts, typically to make the click count rapidly exhaust 

the daily budget, thus eliminating AdS competitors from the advertising network within the first 

hours of each accounted day [4]     

 

While big effort has been spent to setup heuristics to detect distributed click spam [5] [6][7] [8], 

we show in this paper that even a centralized attack works. In particular we shows how a simple 

malicious web user agent, using one IP address only, can make the click count increase for a 

given AdS, even if the charged clicks do not correspond to any real advertisement (Section 2).  

 

To protect the AdS from this type of attack, we present a detailed statistical model of the trade-off 

between the security benefits obtained and the revenue losses caused by discarding potentially 

spammed clicks (Section 3).  

 

Upon this model, we formulate a simple algorithm to control the trade-off (Section 4) and we 

validate it through simulation (Section 5).  

 

Some remarks on applications and future work conclude the paper (Section 6). 

 

2. ATTACK 

 

2.1 METHODOLOGY 

 
The attack presented in this paper, as depicted in Figure 2, is directed to the “fairness principle” 

of the AdP who charges one click only to the AdS, even when one user agent accesses the same 

advertised web page more than once. This principle considers that only the first click corresponds 

to a real advertisement, whilst the other repeated clicks do not provide any benefit in terms of 

advertised contents.  

 

 
Figure 2 – Attack method 

 

 The vulnerability to this attack depends on the fact that no deterministic and secure rules to 

implement this principle are applicable on the AdP server side, to determine whether two clicks 

are originated by the same user agent or not.  
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According to the experiments done, the approach followed by Google algorithm adopts the 

heuristic to consider n clicks as originated by the same user agents according two conditions 

 

(a) if the user agent “cookie” header values is the same in the n HTTP requests 

corresponding to the n clicks OR  

 

(b) if the n clicks are originated by the same IP address and also n DNS queries are 

originated from the same IP address to resolve the AP Server name, just before each of 

the n HTTP request corresponding to the clicks 

 

otherwise the n clicks are both accounted, as if they were originated by two different user agents. 

Consequently, the attack works as follows. A malicious HTTP client, whose pseudocode is 

available in Figure 3, performs many HTTP requests to the same link advertised by the AdP 

server, simply resetting both the cookie header value and the client’s system DNS cache before 

sending each HTTP request. The client sends the request from the same source IP address.  

 

Figure 4 and Figure 5 show the clicks accounted shown by Google Ads dashboard, before and 

after our experiments, respectively. 

 

 

Figure 3 Malicious HTTP client pseudocode. 

 

Figure 4. Google AdWords daily accounted clicks before the attack 

 

Figure 5. Google AdWords daily accounted clicks after the attack 
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In case of this sample attack, the AdP has detected only about 50% of false clicks, while the 

others are normally accounted, as shown in Figure 3. 

 

The reader could wonder why Google heuristic does not consider the IP address as a safe 

information to determine that two clicks originate from the same user agent. The answer is that 

most IP networks over the Internet are IPV4 network adopting the Network Address Translation 

(NAT) [9], so that, potentially, two or even more hosts, each running a different user agent, can 

send distinct HTTP requests from the same IP address to the same AdP server. The AdP server 

might see, in that case, different clicks of really different users coming from the same IP address, 

as shown in Figure 6. 

 

Figure 6 – Problems in IP address-based attack discrimination in NAT networks  

 

We observe that disregarding the source IP address is a clearly safe heuristic for the AdP, 

unfortunately it is unsecure for the AdS as our experiments put in evidence. 

 

Our investigation bases on the probability, for each NAT network, that two independent clicks, 

although coming from the same IP address, originate from two or more distinct user agents. This 

probability will drive the algorithm to decide whether counting such clicks or not. 

 

2.1 RESULTS 
Table 1. Attack result table 

 

After attack (started at 12.00 am) End of the day 

Date 

Simulated 

click 

Counted 

click 

Discarded 

 click Counted click Discarded click Cost 

13/01/18 10 10 4 14 5 2,66* 

14/01/18 10 8 2 14 4 1,71 

15/01/18 15 12 3 12 21 1,01 

17/01/18 20 10 12 29 17 2,98* 
*THE DAILY BUDGET HAS BEEN EXCEEDED 

Table 1 shows the results of the most recent experimental test performed just before the 

submission of this paper. 

 

Every attack started at 12.00 a.m. when the click accounting resets. Between consecutive clicks 

the client waits a variable random time interval of 20 minutes average, as we noticed that more 

frequent or regular time intervals often reduce the attack efficiency. 
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The click counters figures have been extracted by report of the Google Ads dashboard one hour 

after the end of the attack execution, i.e., after Google’s heuristics has discarded possible 

spammed clicks. The results show that the impact of spamming for the attacked AdS is huge, 

compared with the click counted at the end of the day reported in the right section of Table 1. 

 

When the click accounting approaches the daily budget, Google AdWords stops advertising the 

contents, as in the cases reported in first and last table rows, so that the competitors of the 

attacked AdS can be strongly motivated in this type of attacks to increase their own visibility.    

 

3. TRADE-OFF MODEL  
 
The model analyzes the clicks coming from a NAT address space using the following variables 

 

● a time interval T, called statistics window, within which two clicks are counted only once 

if they are activated by the same user and have the same target. If the time distance 

between two following clicks is more than time T they are counted twice although 

directed by the same user to the same advertised resource. 

 

● an integer number A, corresponding to the cardinality of the NAT address pool.  

 

● an integer number C corresponding to the number of clicks coming from any address in 

the NAT pool and directed to the same AS resource 

 

The average number N(A,C) of “repeated clicks”, i.e., the clicks directed to the same resource and 

coming from the same IP address but from different users over a NAT pool having cardinality A, 

provided that C clicks in total are coming from that NAT pool. 

 

The case of “no malicious users involved” corresponds to supposing that each user performs only 

one click, so that repeated clicks are originated by two different users using the same IP address. 

We define loss factor  

L(A,C)  = N(A,C) x A / C 

as the average percentage of real clicks that are potentially lost (i.e. not accounted) if all repeated 

clicks (2,3,4...), coming from the same address are systematically ignored. The average number of 

clicks N exceeding the single click is multiplied by the number A of addresses available, to obtain 

the average click over all the NATted network, and is divided by C to calculate the percentage 

over all clicks.   This percentage corresponds to the loss rate of revenue that is paid by the AdP to 

protect the AdS. 

 

If L is below a fixed threshold e.g. 1% , the heuristic decides to ignore all repeated click. 

 

To calculate N(A,C) we consider the clicks as uniformly random independent events falling in a 

1-d continuous space that splits into A equal segments, each representing the subspace of 

probability that a click is originated by the address represented by that segment, as shown in 

Figure 7. We assume that there is no correlation between IP address and user interest for a 

specific content, as there is no reason to suppose any correlation.  This corresponds a Poisson 

Distribution where λ = C/A.  
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Figure 7 –Scheme of the Poisson process mapped to the click spam model 

Considering that the average number of repeated events falling in the same interval is  

 

 
Then 

 
And consequently 

 
 

As shown in the Appendix, it is worth noticing that if A >> C then  

 

 
As a consequence 

 
 

 

 

4. ALGORITHM 
 
The proposed algorithm is based on the following entities:  
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A table, called the status table having the following fields: 

� dest : the destination URL of the Click 

� source: the source IP address (possibly NATted) 

� net: the id of the smallest network range registered in whoid DB 

� time:  timestamp  (epoch)  

An object, called click, having the properties of each click received, i.e.,   

� click.dest : the destination URL of the Click 

� click.source: the source IP address (possibly NATted) 

� click.time: the click message receiving timestamp (epoch)  

The actions done after each click is to count the click as valid incrementing the click counter 

through the function increment_counter() or to reject the click through the function “discard”.  

The algorithm discards the clicks as long as the average statistical number of repeated clicks is 

below a threshold.  

 

Figure 8. Pseudocode of click selection handler 

 

5. SIMULATION 
 
We considered in our simulation the Italian provider Vodafone IT having 28.870.000 subscribers 

and 5.538.048 IP addresses registered. Supposing an advertisement having a huge impact e.g., the 

percentage of 0.1% over the whole population clicks the same advertised link then C= 28.870 and 

C/A = 5.21 . 10-3 

 

According to the model presented in Section 4, the click loss ratio is ½ C/A = 2.6 . 10
-3

 if repeated 

clicks for each IP address are never accounted i.e. it is less than 0.26 %.  

 

A simulation has been carried out to confirm the model.  

The simulation programs:  

● distributes N users randomly over the all IP address  

● selects randomly N/1000 users who clicks the advertised link  
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● Counts how many clicks have been originated by each IP address 

● Yields the number of IP addresses that originated 2 or more clicks divided by the total 

number of addresses  

The simulation has executed 100.000 times and yielded the average value of 2.5368 x 10
-3

. 

The difference between model and simulation is: 

 

As a result, the impact of the loss is very low, even in case in which the number of clicks C is 

very high, and the discrepancy between the model and the simulation is negligible. The cost of 

the protection in the Vodafone IT scenario would correspond to less than 0.26% discount in click 

accounting.  

 

6. CONCLUSION 

 
The tradeoff protection model presented in this paper allows the AdP precisely assigning a part of 

investment as an insurance to protect the customers from a very simple attack. The threshold used 

in the algorithm exactly corresponds to the percentage of turnover loss that can be decided by the 

AdP. Accepting this loss, the AdP protects the customer from click spam coming from a single IP 

address.  

 

This model is particularly suitable for the large mass of small AdS who receive a few clicks per 

day for which a single repeated attack completely vanishes their investments. In that case, the 

customer should be asked to buy an insurance fee increasing the click fee by e.g., 0,5% to 3% of 

the click price to get the protection against this attack or the AdP can offer this feature as a quality 

of service parameter. 

 

The time interval T should be large enough to collect enough statistics on C, and small enough to 

keep the memory of the clicks not too large to count the accesses of the same users who click 

again the same resource after long time. 

 

This aspect is the key of evolution of the presented algorithm, as the standard deviation of the 

repeated clicks will be also considered to calculate the loss more precisely, possibly postponing 

the calculation when the mean is considered enough significant.  

 

7. APPENDIX 

Being   

 

By replacing   we obtain  

 

that can split into two the following parts:  
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The first part is  

 

because  corresponds by definition to the Poisson mean, i.e.,   

 

The second part  

 

Because as it is the sum of the whole Poisson distribution. 

Re-composing the two parts, we obtain  

 

 

Lagrange theorem states that there exists such that  as a consequence, 

being  necessarily  and the following upper bound holds:  

 

Rewriting  as C/A we obtain: 
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