
International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

DOI: 10.5121/ijnsa.2019.11101 1

MALWARE DETECTION USING MACHINE

LEARNING ALGORITHMS AND REVERSE

ENGINEERING OF ANDROID JAVA CODE

Michal Kedziora, Paulina Gawin, Michal Szczepanik and
Ireneusz Jozwiak

Faculty of Computer Science and Management Wroclaw
University of Science and Technology Wroclaw, Poland

ABSTRACT

This research paper is focused on the issue of mobile application malware detection by Reverse
Engineering of Android java code and use of Machine Learning algorithms. The malicious software
characteristics were identified based on a collected set of total number of 1958 applications (including 996
malware applications). During research a unique set of features was chosen, then three attribute selection
algorithms and five classification algorithms (Random Forest, K Nearest Neighbors, SVM, Nave Bayes and
Logistic Regression) were examined to choose algorithms that would provide the most effective rate of
malware detection.

KEYWORDS

Malware Detection, Random Forest, Android, SVM, Naive Bayes, K-NN, Logistic Regression

1. INTRODUCTION

The main malware detection techniques consist of static and dynamic analysis [16]. Dynamic
analysis techniques rely on monitoring the application in real time, working in an isolated
environment [1]. Static analysis works on decompiled source code, without launching
applications [2] analyzing the case of reporting rights, components, API calls. In this paper we are
focused on static approach case based on the automatic analysis of decompiled mobile application
code. Based on reference items [3], [4] and [5], a unique feature vector derived from the
application Java code was constructed. The total number of features is 696. We divided them into
three categories: First one is model implementation of on Receive () methods for Broadcast
Receiver components. As demonstrated in [3], in malware applications, calls to certain methods
more often occur in the overridden on Receive () method than in secure applications. The full list
of wanted calls in the on Receive() method of components extending the Brodacast Receiver class
can be found in first part of Table 1. Second one is Linux system commands - as the Android
system uses the Linux kernel, there is an API available to execute Linux-specific commands on
the Android mobile device. Some of the commands under examination relate to operations on the
file system. There is also a group of commands that are used to obtain administrative access to the
device (rooting), then to increase the possibilities of attack, and to hide the operation of malware
on the device. The full list of searched Commands is available in second part of table 1. Selected
on the basis of [6]. Third one is API Calls - the largest group of features (616). Includes methods
from classes, some of which have been indicated in [5]. Third part of Table 1 contains a list of
classes, whose selected methods were included in the extraction of features. These were classes
characteristic of the context of the mobile application, for objects of type Intention, for HTTP

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

2

protocol operations, for telephone operations (SMS, connection, MMS), for device network
settings, for data encryption or for dynamic code loading [19].

2. PREPARING TESTING ENVIRONMENT

Based on the literature on the subject, especially on [4], [7], [8], [9], [10], [11], [5], [12], [18],
five classification algorithms were selected for testing under this work. These algorithms were
among the most popular in the field of malware detection on the Android system.
A collection of tested data consist of secure and malicious applications. Safe applications have
been downloaded from two sources. First one is APK Pure - an alternative Android application
store. Second one is F-Droid - the directory of the FOSS Android application (Free and Open
Source Software), which includes free and open software [17]. To increase the likelihood that
applications are considered safe indeed they are not malicious, each of the downloaded files has
been uploaded to the web application Virus Total. Its task consists of analyzing the file using over
70 antivirus scanners, indicating whether the file is malicious, additionally revealing a label,
indicating the species of malware to which the given scanner has classified a dangerous file.
Secondly, Virus Total provides additional information about the file, such as: the date of the first
and last file upload operation to Virus Total, the number of these operations, the results of static
analysis (eg internal structure of the file), the results of dynamic analysis (behavioral
characteristics of the application). The condition for joining the application to the test set of this
work was not to detect malicious activity by any of the more than 70 scanners. Malicious
applications also came from two sources: Virus Share - malware repository, currently containing
over 24 million and Contagio Mobile - a blog that is part of the Contagio Dump project, which is
a collection of malware samples. Contagio Mobile focuses on mobile malware, especially on
Android and iOS. Applications downloaded from the above two sources have also been analyzed
in Virus Total. They were added to the test database if at least one of the scanners classified them
as malware.

2.1. JAVA CODE FEATURES EXTRACTION

To be able to extract the features, the files should be prepared properly. To this end, BASH shell
scripts have been developed and auxiliary scripts that organize files. Scripts gets the .apk file to
the input, returning the corresponding .jar file. For this purpose, the dex2jar tool is used.

Table 1. Methods, commands and classes from which methods where extracted belonging to
the feature vector from java code.

BroadcastReceiver psneuter StringBuilder
startService wpthis Process
bindService exploid Context
schedule rageagainstthecage Intent
startForegroundService motofail ActivityManager
registerReceiver GingerBreak PackageManager
goAsync Classes SmsManager
startActivity ContentResolver TelephonyManager
startActivieties Cipher DexClassLoader
Commands Class BaseDexClassLoader
su File ClassLoader
mount FileOutputStream Runtime
insmod DataOutputStream System
rebot psneuter ConnectivityManager
chown wpthis NetworkInfo
pm install exploid WifiManager

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

3

zergRush rageagainstthecage HttpURLConnection
m7 motofail Socket
fre3vo GingerBreak handler

It’s used for work with .dex and .class files. It enables: reading and writing to a .dex file (Dalvik
Executable format, executable format for Dalvik), conversion from a .dex file to .class files
(compressed as a .jar file), disassembling the .dex file to a small format, as well as the decryption
of code strings present in the code, which have been obfuscated through encryption and whose
decryption was to take place only after execution.

A Java program was prepared for the extraction of the tests. The external library used for the
extraction of features is JD-core-java - a package decompiling Java decompiler called Java
Decompiler (Java Decompiler authors did not provide a tool in the form of a library that can be
used inside the code, only a decompiler as a plug-in for selected programming environments or
graphics tool). Necessary to obtain the application code from the .jar file, on which the analysis of
malware in the second research case is based. To focus on the analysis of features selected by all
three selection methods, in Table 2 there are features present in the top characteristics for each
selection method and their participation in malware applications and secure applications. All
features from Table 2 are much more common in malware than in secure applications.

Table 2. Percentage of occurrences of features derived from java code, which are in the
 top features chosen by 3 selection algorithms in the malware and safe application sets.

Feature Percentage in malware Percentage in safe apps

startService 0.34809 0.00118
getString 0.35412 0.04471

setPackage 0.25553 0
putExtra 0.27767 0.01059

startActivity 0.19215 0.01882
getSystemService 0.17907 0.02000

append 0.20121 0.04588
indexOf 0.11268 0.00941

getInputStream 0.09558 0.00235

Methods from the String class, such as append or index Of, which are much more prevalent in
malicious applications than in safe ones, show a legal manipulation on the string of characters to
obfuscate the code. Operations on strings are used to avoid detection by dynamically creating
URLs, providing parameters to the reflection mechanism API, or to hide Linux commands. The
proof of probable manipulations with Linux commands is that the method for calling them
appeared in 1% of malicious applications, while the extractor detected ten times less true Linux
commands (at the level of 0.1%) - thus the vast majority of applications that calls the method to
Linux commands do not contain these explicit commands (or they are very unpopular and
unusual commands - but this alternative is less likely). In addition, the Context. get String method
allows to extract a string from application resources that are outside the Java code. Therefore, this
is a great opportunity to save a dangerous string of characters, e.g. the URL of a malicious server,
in the application resources, so that it will not be detected during Java code analysis, and this
method allows you to download this string to the code.

The Context.start Service method, the frequency of which in malware applications was mentioned
in [5], is used to start the service. In the dataset of this work, it occurred about 350 times more
often in malware. Knowing that the service is a component running in the background, possibly
without the user’s knowledge, it seems clear that malicious applications will want to reach for the
described method in order not to alert the user about malicious activity by using a component that
will work in hiding.

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

4

The get System method. The Context class service, appearing in malicious applications 9 times
more often than in safe applications, allows access to given system services. Without examining
the parameters of this method, it is difficult to conclude what specifically access was requested
for. However, among the system services that this method gives access to, there are those that can
be potentially dangerous: window visibility management, network connections, Wi-Fi
connectivity, HTTP download process, location data.

The get Input Stream method from the Http URL Connection class, occurring in almost 10% of
malicious applications, and only in 0.2% of secure applications, is important in the process of
data transfer (both sending and receiving) via the HTTP protocol. Thanks to this method, on the
one hand, the application can receive harmful packages (payload), on the other hand, send
sensitive data about the user to the external server.

Intent: set Package and put Extra methods, used mostly in malware in comparison with secure
applications, may have their justification in intentional intentions. Intentional intentions are those
that do not indicate a specific component that the intention can pick up. Therefore, it is possible
that the intention will be received by another application. The threat occurs when a secure
application uses implicit intent, does not specify which component can perform the action, and
then such an intention intercepts the malware. Then he will be able to send the application in
response to inaccurate data or send information about the success of the operation at the moment
when the operation did not take place. The result of intention can be saved using the put Extra
function. The set Package function is used to determine which components can receive the
intention. Perhaps such a large presence in the malware serves to specify exactly which
component should be responsible for the actions in order to have full control over the course of
malicious activity, so that no other application could accidentally intercept the expected event.
It is noted that only two patterns listed at all appear in the code of the tested applications - and
these are the start Service and schedule methods. Appear on the level of 3% and 1% respectively
in the malware code. They are used to activate the service accordingly and scheduling the service.
Statistical tests were performed on the characteristics of Table 2 using the Mann-Whitney U-test.
The confidence level at 0.05 was assumed. For each of the features in Table 2, the null hypothesis
of median equality was rejected and an alternative hypothesis with a larger median in the malware
population was adopted than in the population of safe applications.

3. PRACTICAL MALWARE DETECTION

The research will cover features obtained from the application code. Three methods of feature
selection where be tested. Then, for each classifier, its selected parameters will be tested, and with
the adopted determined parameters, the classification will be determined depending on the
number of features taken into account. Next, the most common features in malware will be listed.
The best results in terms of the number of correctly classified instances will be compiled for the 5
tested classifiers, along with the time of the algorithm’s operation and the time of the pre-
processing process and the extraction of features. For testing each classifier, 10-fold cross
validation will be used, repeated 10 times. The stages are as follows: First is selection of features,
second is characteristics of malware, third is classifiers and their parameters (see Table 3), fourth
is summary of the best results and time data for classifiers and last each of the 5 classifiers will be
tested for selected parameters (see second column of Table 3).

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

5

Table 3. Parameters tested for classifiers.

Classifier Parameter
Random Forest Iterations / max depth

Naive Bayes -
logistic regression Iterations

k-NN number of neighbors
SVM Kernel function

3.1 RANDOM FOREST

Random Forest algorithm is derived from the random tree, which is a type of decision tree.
Therefore, the first element discussed will be the Decision Tree. The Decision Tree creates a
hierarchical division of data from the set, where a homogeneous division into classes is obtained
at the tree leaf level. Each vertex corresponds to the selected attribute describing the instances in
the set, and the edges speak about the set of values of individual attributes. The tree structure is
usually top-down, i.e. from the root to the leaves. Data is split in a recursive manner based on
specific attributes. Split division (partitioning) ends when this division is pure - that is, when all
instances considered in this vertex belong to one class. Other stop conditions are no attributes for
further division or no instance. In the classic Decision Tree (as opposed to the Random Tree), in
each of the vertices the best attribute is selected from all available ones. However, you must
define what "best" means. There is no single answer to this question, because there are several
metrics to assess the apex division. However, they come down to the assessment of the
homogeneity of the division. Among the methods for assessing the homogeneity of the division
are such metrics as: Entropy or Gini Coefficient. The given methods are applied to each candidate
subset; therefore, the quality of the division is calculated by aggregating the obtained results for
subsets. An example of the entropy-based aggregation method is information gain. Classification
consists in browsing the tree from root to leaf through branches - edges that are described by
attribute values. The random tree is a variant of the decision tree, which differs from the classical
decision tree in that we use k randomly chosen attributes to split the vertex, not all available
attributes [24]. And the random forest is based on classification by means of a group of random
trees. Each tree is built by randomly drawing N instances from the N cardinality training set. The
final decision to which class the examined instance belongs to is made by majority voting over
the classes returned by individual trees

First test case included changing of the maximum depth of the tree with assumptions: number of
iterations: 100, number of features: 696. Table 4 shows that after reaching the maximum depth of
50, the percentage of correctly classified instances was stable - and in the range of maximum
depth from 80 to 200 and equal to infinity even identical. Some of the other indicators also
remained at the same level from a depth greater than or equal to 80: TP, FN and F-measure.
Interestingly, among these research cases, the lowest time was recorded for a maximum depth of
100. Measures TN and FP had the best result for a depth of 20.

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

Table 4. Results of the examination of the influence of the maximum
depth for a random fo

 the root of mean square error and the time of learning and testing

Max
Depth

Correctly
classified

mean square
error

10 78,1598 0,4268
20 80,1345 0,3917
30 80,2212 0,3731
40 80,5359 0,3656
50 80,6118 0,3636
100 80,6444 0,3637
200 80,6444 0,3637

However, it is worth noticing a very large difference between the matrices of
matrix. The average value of TP was 68%, while TN
4%, and FN - 32%. The high FN value, i.e. the second type error, seems to be more dangerous in
the field of malware detection -
unconscious infection of the system or even the network of systems, while the error of the first
type, i.e. the recognition of a safe application as dangerous is a false alarm, which can be further
examined and reversed the diagnosis, and then use the application securely.

Figure 1. Percentage of correctly classified instances with changing
number of attributes and attribute selection method (Random Forest)

Second test case included chang
depth: 80, number of features: 696
the number of iterations. The highest percentage of correctly classified instances was recorded for
55 iterations and it was 80.6662%. 55 iterations
(0.9542) and the lowest FP index value (0.0458). For the 80 iterations, the best results were
obtained for FN (0.319) and F (0.7906). Again, the second type of erro
error of the first type, and the percentage of correctly classified instances never exceeded 81%,
which proves the poor quality of the classification.

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

Results of the examination of the influence of the maximum
depth for a random forest on the percentage of correctly classified instances,

the root of mean square error and the time of learning and testing.

Learning and
testing time [ms]

TP TN FP FN

15227,6102 0,6305 0,9582 0,0418 0,3695
31206,3691 0,6564 0,9708 0,0292 0,3436
46360,0157 0,667 0,9604 0,0396 0,333
62293,7623 0,677 0,9554 0,0446 0,323
93321,374 0,68 0,9536 0,0464 0,32

104305,4938 0,6808 0,9534 0,0466 0,3192
122231,6517 0,6808 0,9534 0,0466 0,3192

However, it is worth noticing a very large difference between the matrices of the confusion
matrix. The average value of TP was 68%, while TN - 96%. Similarly, the average FP value was

32%. The high FN value, i.e. the second type error, seems to be more dangerous in
- not detecting software malware and using it may result in the

unconscious infection of the system or even the network of systems, while the error of the first
type, i.e. the recognition of a safe application as dangerous is a false alarm, which can be further

rsed the diagnosis, and then use the application securely.

Figure 1. Percentage of correctly classified instances with changing
number of attributes and attribute selection method (Random Forest)

hanging of the number of iterations with assumptions:

umber of features: 696. The percentage of correctly classified instances, varying with
iterations. The highest percentage of correctly classified instances was recorded for

erations and it was 80.6662%. 55 iterations are also the case of the highest TN index value
(0.9542) and the lowest FP index value (0.0458). For the 80 iterations, the best results were
obtained for FN (0.319) and F (0.7906). Again, the second type of error is much greater than the
error of the first type, and the percentage of correctly classified instances never exceeded 81%,
which proves the poor quality of the classification.

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

6

F-measure

 0,7555
 0,7797
 0,7833
 0,7885

0,7899
 0,7904
 0,7904

the confusion
96%. Similarly, the average FP value was

32%. The high FN value, i.e. the second type error, seems to be more dangerous in
e malware and using it may result in the

unconscious infection of the system or even the network of systems, while the error of the first
type, i.e. the recognition of a safe application as dangerous is a false alarm, which can be further

assumptions: maximum
The percentage of correctly classified instances, varying with

iterations. The highest percentage of correctly classified instances was recorded for
also the case of the highest TN index value

(0.9542) and the lowest FP index value (0.0458). For the 80 iterations, the best results were
r is much greater than the

error of the first type, and the percentage of correctly classified instances never exceeded 81%,

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

Figure 2. Percentage of correctly classified instances with varying number of
attributes and attribute selection method (SVM)

Third test case included changing of
80, number of iterations: 55. Fig.
in the number of features (and the algorithm of feature selection) and its impact on the percentage
of correctly classified instances. 5 to 80 best traits with step 5 were examined. Only at 80
selected using the ReliefF algorithm, this index was achieved at over 80%. It is not possible to
distinguish a strong favorite among the algorithms of feature selection
at different times all the algorithms studied.

3.2 NAIVE BAYIAN CLASSIFER

Let the definition of conditional probability be used as an introduction to the discussion of the
naive Bayesian classifier. The conditional probability P (X | Y) is the probability of an X event,
provided that an event Y has occurred. It is expressed by the formula:

By way of simple mathematical transformations, the basis of the Naive Bayes algorithm can be
obtained from the above formula, namely

where P(X) is the a priori probability, P(X
probability of occurrence (likelihood).
Y. In the case of many variables, on which the variable X depends, to facilitate complex
mathematical operations, we sim
dependent are independent. Therefore, operating on the concepts from the field of classification,
if for X we assume the class C, and for the variables on which it depends, we adopt a set o
attributes F1, ..., Fn, the probability of belonging to the class C in its description with features F
..., Fn stands out from the formula:

Since the denominator P(F1, ..., F
classification is made by calculating the probability P(C

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

Figure 2. Percentage of correctly classified instances with varying number of
attributes and attribute selection method (SVM)

ing of the number of features with assumptions: maximum depth:
Fig. 2 presents the summary results from the research on the change

in the number of features (and the algorithm of feature selection) and its impact on the percentage
of correctly classified instances. 5 to 80 best traits with step 5 were examined. Only at 80
selected using the ReliefF algorithm, this index was achieved at over 80%. It is not possible to
distinguish a strong favorite among the algorithms of feature selection - they came out on the lead
at different times all the algorithms studied.

AYIAN CLASSIFER

Let the definition of conditional probability be used as an introduction to the discussion of the
naive Bayesian classifier. The conditional probability P (X | Y) is the probability of an X event,

occurred. It is expressed by the formula:

By way of simple mathematical transformations, the basis of the Naive Bayes algorithm can be
obtained from the above formula, namely - the Bayes theorem

where P(X) is the a priori probability, P(X│Y) is a posteriori probability, and P(Y
(likelihood). The above formula assumes the existence of one variable

Y. In the case of many variables, on which the variable X depends, to facilitate complex
mathematical operations, we simplify the assumption that the variables on which the variable X is

Therefore, operating on the concepts from the field of classification,
if for X we assume the class C, and for the variables on which it depends, we adopt a set o

, the probability of belonging to the class C in its description with features F
stands out from the formula:

, ..., Fn) is constant, we can omit calculating it for each class C. The
classification is made by calculating the probability P(C│F1, ..., Fn) for each class C with the new

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

7

Figure 2. Percentage of correctly classified instances with varying number of

aximum depth:
2 presents the summary results from the research on the change

in the number of features (and the algorithm of feature selection) and its impact on the percentage
of correctly classified instances. 5 to 80 best traits with step 5 were examined. Only at 80 guilds
selected using the ReliefF algorithm, this index was achieved at over 80%. It is not possible to

they came out on the lead

Let the definition of conditional probability be used as an introduction to the discussion of the
naive Bayesian classifier. The conditional probability P (X | Y) is the probability of an X event,

By way of simple mathematical transformations, the basis of the Naive Bayes algorithm can be

and P(Y│X) is the

The above formula assumes the existence of one variable
Y. In the case of many variables, on which the variable X depends, to facilitate complex

plify the assumption that the variables on which the variable X is
Therefore, operating on the concepts from the field of classification,

if for X we assume the class C, and for the variables on which it depends, we adopt a set of
, the probability of belonging to the class C in its description with features F1,

) is constant, we can omit calculating it for each class C. The
) for each class C with the new

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

instance features obtained on entry and then selecting the largest value from the calculated
probabilities. Test case for this research have
3 shows how the percentage of correctly classified instances has changed depending on the
number of features selected by each selection method. The highest score achieved over 80
attributes is 76.12% for 10 features se
attributes - it dominated competitors. Despite that, from 45 to 80 features, there was no significant
improvement in the quality of the classification.

Figure 3. Percentage of correctly classified instances with varying number of
attributes and attribute selection method (Naive Bayesian classifier, features from Java code)

3.3 LOGISTIC REGRESSION

The regression problem is aimed at the given training
output value y for the new observation x. To this end, we want to model the conditional
distribution p(y | x). When the model is linear, the problem is called linear regression. The model
then has the form:

where w is parameter matrix, φ (x)
of y observation. The conditional distribution model then has the form:

So, for linear regression, the conditional reliability function is expressed as:

Its logarithm is the function of the goal, and our task is to optimize it in terms of parameters
However, linear regression assumes that the variable we predict is continuous. The problem of the

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

instance features obtained on entry and then selecting the largest value from the calculated
for this research have included changing of the number of features

3 shows how the percentage of correctly classified instances has changed depending on the
number of features selected by each selection method. The highest score achieved over 80
attributes is 76.12% for 10 features selected by the ReliefF algorithm. In two cases

it dominated competitors. Despite that, from 45 to 80 features, there was no significant
improvement in the quality of the classification.

Figure 3. Percentage of correctly classified instances with varying number of

attributes and attribute selection method (Naive Bayesian classifier, features from Java code)

The regression problem is aimed at the given training sequence D={(xn, yn)}
N

(n = 1)
output value y for the new observation x. To this end, we want to model the conditional

When the model is linear, the problem is called linear regression. The model

φ (x) is matrix of features and ε is variable modeling the uncertainty
The conditional distribution model then has the form:

So, for linear regression, the conditional reliability function is expressed as:

Its logarithm is the function of the goal, and our task is to optimize it in terms of parameters
However, linear regression assumes that the variable we predict is continuous. The problem of the

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

8

instance features obtained on entry and then selecting the largest value from the calculated
the number of features. Figure

3 shows how the percentage of correctly classified instances has changed depending on the
number of features selected by each selection method. The highest score achieved over 80

lected by the ReliefF algorithm. In two cases - 10 and 35
it dominated competitors. Despite that, from 45 to 80 features, there was no significant

Figure 3. Percentage of correctly classified instances with varying number of
attributes and attribute selection method (Naive Bayesian classifier, features from Java code)

 to predict the
output value y for the new observation x. To this end, we want to model the conditional

When the model is linear, the problem is called linear regression. The model

variable modeling the uncertainty

Its logarithm is the function of the goal, and our task is to optimize it in terms of parameters w.
However, linear regression assumes that the variable we predict is continuous. The problem of the

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

output variable, which is the value on the nominal scal
two values), corresponds to logistic regression. When the output variable can take more than two
values, we deal with multi-logistic regression (multinomial logistic regression)

In our research as first test case
assumptions: Number of features: 696
the increase in the number of iterations decreased slightly. This is best seen in
the initial 10 and 20 iterations, more than 79.1% of correctly classified instances were achieved,
and for each of the subsequent cases it was about 78.9%. With such small differences it can be
said that changes in the records were negligible.

Figure 4. Percentage of correctly classified instances with varying
 number of attributes and attribute selection method (Logistic regression)

Second test case included chang
iterations: 20. Figure 5 shows deterioration
features less than 35. For 35 and more features, the metric value was reached between 77% and
79%.

Figure 5. Percentage of correctly classified instances from the
number of iterations

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

output variable, which is the value on the nominal scale, and in particular dichotomic (assuming
two values), corresponds to logistic regression. When the output variable can take more than two

logistic regression (multinomial logistic regression)

test case we included changing of the number of iterations
Number of features: 696. The quality of classification for logistic regression with

the increase in the number of iterations decreased slightly. This is best seen in Fig. 4, where for
nitial 10 and 20 iterations, more than 79.1% of correctly classified instances were achieved,

and for each of the subsequent cases it was about 78.9%. With such small differences it can be
said that changes in the records were negligible.

ercentage of correctly classified instances with varying

number of attributes and attribute selection method (Logistic regression)

hanging of the number of features with assumptions:
deterioration in the quality of the classification with a number of

features less than 35. For 35 and more features, the metric value was reached between 77% and

Figure 5. Percentage of correctly classified instances from the
number of iterations (logistic regression)

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

9

e, and in particular dichotomic (assuming
two values), corresponds to logistic regression. When the output variable can take more than two

the number of iterations with
The quality of classification for logistic regression with

ig. 4, where for
nitial 10 and 20 iterations, more than 79.1% of correctly classified instances were achieved,

and for each of the subsequent cases it was about 78.9%. With such small differences it can be

assumptions: Number of
in the quality of the classification with a number of

features less than 35. For 35 and more features, the metric value was reached between 77% and

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

3.4. K NEAREST NEIGHBORS

The k-nearest neighbors kNN algorithm belongs to the group of memory algorithms. The
prediction is based on considering K the most similar to the test instance object from the teaching
set and assigning it to a new object of this class, which is assigned t
object instance. The parameters of the algorithm include the neighborhood size K and the distance
function, which is used to calculate the similarity between objects. The classification algorithm k
nearest neighbors consists of the
test object and the objects from the training set
the most similar objects by distance value
neighboring objects are assigned.
distance function. Its choice often depends on the type of features in the set. The distance function
that was used during the research in this work is the Euclidean distance, which is a generalization
of the distance of points in a two

Where xi, xj are examined objects
features and xim is the value of the m feature for the x
included changing of the number of neighbors
Euclidean distance function Fig. 6 show that the best results in
instances, TP, FN and F, were achieved for k = 1, and these statistics deteriorated with increasing
parameter k. When the number of neighbors is equal unity, there is a risk of over
too much a fit of the model to the learning data.

Figure 6. Percentage of correctly classified instances with changing
number of attributes and attribute selection method (K

Second test case included chang
neighbors: 1. Research on the number of features selected by 3 selection methods for K = 1 in the
k nearest neighbors algorithm. With 50 features, the highest result was obtained in terms of
properly classified instances - 80.1995% for information profit. Then,

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

nearest neighbors kNN algorithm belongs to the group of memory algorithms. The
prediction is based on considering K the most similar to the test instance object from the teaching
set and assigning it to a new object of this class, which is assigned to the majority of the majority
object instance. The parameters of the algorithm include the neighborhood size K and the distance
function, which is used to calculate the similarity between objects. The classification algorithm k

of the four following steps. First is calculating the distance between the
test object and the objects from the training set. Second is sorting the distance. Third is to s
the most similar objects by distance value and the last step is selecting the class to which the most
neighboring objects are assigned. The basis for determining the neighborhood is to determine the

choice often depends on the type of features in the set. The distance function
h in this work is the Euclidean distance, which is a generalization

of the distance of points in a two-dimensional space. Expressed by the formula:

examined objects, D is number of objects in the training set, m is the number of
the value of the m feature for the xi object. In our research as first

umber of neighbors with assumptions: Number of features: 696
Euclidean distance function Fig. 6 show that the best results in percent of correctly classified
instances, TP, FN and F, were achieved for k = 1, and these statistics deteriorated with increasing
parameter k. When the number of neighbors is equal unity, there is a risk of over fitting, which is

del to the learning data.

Figure 6. Percentage of correctly classified instances with changing

number of attributes and attribute selection method (K-NN)

hanging of the number of features with assumptions:
Research on the number of features selected by 3 selection methods for K = 1 in the

k nearest neighbors algorithm. With 50 features, the highest result was obtained in terms of
80.1995% for information profit. Then, up to 80 traits, the value of

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

10

nearest neighbors kNN algorithm belongs to the group of memory algorithms. The
prediction is based on considering K the most similar to the test instance object from the teaching

o the majority of the majority
object instance. The parameters of the algorithm include the neighborhood size K and the distance
function, which is used to calculate the similarity between objects. The classification algorithm k

alculating the distance between the
. Third is to select K

class to which the most
The basis for determining the neighborhood is to determine the

choice often depends on the type of features in the set. The distance function
h in this work is the Euclidean distance, which is a generalization

the number of
irst test case we

assumptions: Number of features: 696.
percent of correctly classified

instances, TP, FN and F, were achieved for k = 1, and these statistics deteriorated with increasing
fitting, which is

assumptions: Number of
Research on the number of features selected by 3 selection methods for K = 1 in the

k nearest neighbors algorithm. With 50 features, the highest result was obtained in terms of
up to 80 traits, the value of

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

this metric ranged from 78.3% to just over 80%. None of the selection methods was not the
absolute best in this case.

3.5 SVM

The SVM algorithm, also known as the Support Vector Machine, is based on finding a classifier
that divides the solution space into two (in the case of binary classification) disjoint areas that will
correspond to the two classes. Therefore, the search object is the decision boundary between
classes. In the case of 2D space, it is simple, while with the
- the hyperplane. However, if there is a linear separability of space points, it turns out that there
are many such hyper-planes, and therefore one should choose the optimal one. For this purpose,
objects called carrier vectors will be used
which would change the position of the decision boundary between classes. Optimization in the
case of SVM is a quadratic optimization with linear constraints, where the margin of s
separating the nearest points in the data space from different classes is maximized, with the
limitation that there is no object from the training set between the maximum margins. The
problem is solved by the Lagrange multipliers method.
separate the data linearly. Then, the transformation takes place in a highly multidimensional
space, defined by the kernel function.

In our research with use of this algorithm f
assumptions: Number of features: 696
correctly classified instances was achieved for the Puk function (79.8579%), however, it is only
slightly better than the Polykernel function (79.7879%), but the diff
the Puck function this is over 60 seconds, and for Polykernel, 23 seconds. The Puk function also
proved to be the best according to TP, FN, F
the high level of 98%, the functio
an extremely low TP rate - 55%.

Figure 7. Percentage of correctly classified instances with varying
number of attributes and attribute selection method (SVM)

Second test case included chang
algorithms of feature selection is noticed. By reducing the number of features, a better result was
not obtained according to the percentage of correctly classified instances than in sub
where all 696 features were used. The highest result in this case is 79.8091% for 75 features
selected by the ReliefF algorithm
than the best result using 696 features, and the time decrea

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

this metric ranged from 78.3% to just over 80%. None of the selection methods was not the

The SVM algorithm, also known as the Support Vector Machine, is based on finding a classifier
divides the solution space into two (in the case of binary classification) disjoint areas that will

correspond to the two classes. Therefore, the search object is the decision boundary between
classes. In the case of 2D space, it is simple, while with the increase in the number of dimensions

the hyperplane. However, if there is a linear separability of space points, it turns out that there
planes, and therefore one should choose the optimal one. For this purpose,

r vectors will be used - those points from the training set, the removal of
which would change the position of the decision boundary between classes. Optimization in the
case of SVM is a quadratic optimization with linear constraints, where the margin of s
separating the nearest points in the data space from different classes is maximized, with the
limitation that there is no object from the training set between the maximum margins. The
problem is solved by the Lagrange multipliers method. However, it is not always possible to
separate the data linearly. Then, the transformation takes place in a highly multidimensional
space, defined by the kernel function.

In our research with use of this algorithm first test case included Kernel F
Number of features: 696. Figure 7. shows that the best result by percentage of

correctly classified instances was achieved for the Puk function (79.8579%), however, it is only
slightly better than the Polykernel function (79.7879%), but the difference in time is large
the Puck function this is over 60 seconds, and for Polykernel, 23 seconds. The Puk function also
proved to be the best according to TP, FN, F-measure and error indicators. According to TN, at
the high level of 98%, the function Normalized Polykernel won, but this should be combined with

55%.

Figure 7. Percentage of correctly classified instances with varying

number of attributes and attribute selection method (SVM)

hanging of the number of features. No clear favorite among the
algorithms of feature selection is noticed. By reducing the number of features, a better result was
not obtained according to the percentage of correctly classified instances than in sub
where all 696 features were used. The highest result in this case is 79.8091% for 75 features

ithm - it is worth noting that it is only 0.05 percentage point worse
than the best result using 696 features, and the time decreased from 60 seconds to 23 seconds.

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

11

this metric ranged from 78.3% to just over 80%. None of the selection methods was not the

The SVM algorithm, also known as the Support Vector Machine, is based on finding a classifier
divides the solution space into two (in the case of binary classification) disjoint areas that will

correspond to the two classes. Therefore, the search object is the decision boundary between
increase in the number of dimensions

the hyperplane. However, if there is a linear separability of space points, it turns out that there
planes, and therefore one should choose the optimal one. For this purpose,

those points from the training set, the removal of
which would change the position of the decision boundary between classes. Optimization in the
case of SVM is a quadratic optimization with linear constraints, where the margin of separation
separating the nearest points in the data space from different classes is maximized, with the
limitation that there is no object from the training set between the maximum margins. The

it is not always possible to
separate the data linearly. Then, the transformation takes place in a highly multidimensional

Function with
7. shows that the best result by percentage of

correctly classified instances was achieved for the Puk function (79.8579%), however, it is only
erence in time is large - for

the Puck function this is over 60 seconds, and for Polykernel, 23 seconds. The Puk function also
measure and error indicators. According to TN, at

n Normalized Polykernel won, but this should be combined with

No clear favorite among the
algorithms of feature selection is noticed. By reducing the number of features, a better result was
not obtained according to the percentage of correctly classified instances than in sub-point a,
where all 696 features were used. The highest result in this case is 79.8091% for 75 features

it is worth noting that it is only 0.05 percentage point worse
sed from 60 seconds to 23 seconds.

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

12

3.6. SUMMARY OF THE BEST RESULTS

As part of this paper, selected aspects of the test outputs were verified by statistical tests. The
tests carried out belong to the two groups: comparison of the medians of the occurrence of
features in safe applications and malware and comparison of the accuracy of classifiers. Statistical
methods (Shapiro-Wilk test and Lilliefors test) were checked for distribution normality for
features whose size was to be compared in populations. After receiving a negative answer to the
question about the normality of the distribution, the Mann-Whitney U-test was used to compare
the population. It is used to answer the question whether observations in one population are
greater than in the second population, which is interpreted as a comparison of medians in
populations [13]. Based on [14] and [15], the McNemar test was selected to compare the accuracy
of classifiers. Most of the features were dichotomous and did not have a normal distribution,
which spoke for the use of the test.

Table 5. Accuracy of the classifiers

Classifier Options Correctness Learning and
testing time

Random Forest max depth = 80
Iterations = 55
Features = 696

80.6662 74552.3246

Naive Bayes Features = 10 (RelieF) 76.1217 9.5848
Logistic Regression Iterations = 20

Features = 696
79.1152 2441.0845

k-NN neighbors = 1
features = 696

80.3301 20979.0845

SVM Kernel Function = PUK
features = 696

79.8579 60714.3058

All statistical tests were carried out in the MATLAB environment. The best result in terms of
percentage of correctly classified instances, equal to 80.6662% was obtained by random forest,
with an iteration number equal to 55, maximum depth equal to 80 and 696 features. At the same
time, the learning and testing time was the highest, at 75 seconds. It is worth comparing this result
with the algorithm k nearest neighbors, which acted three times shorter, and correctly classified
instances are lower by only 0.4 percentage points. Unfortunately, none of the algorithms
exceeded 81 according to the discussed indicator. A comparison of the classification results times
is shown in Table 5.

Table 6. Results of statistical surveys

 RF NBC KNN LR SVM
RF ← = ← ←
NBC ↑ ↑ ↑
KNN ← ←
LR ↑
SVM

Then the classifiers were statistically compared to the accuracy of the classifiers with the
McNemar test. Table 6 shows the results of statistical surveys. The equality sign says that there
were no grounds for rejecting the null hypothesis about the equality of the classifiers accuracy.
The arrow indicates the classifier for which an alternative hypothesis has been adopted with
greater accuracy than for the second classifier. According to statistical surveys, there are the
following relationships between the accuracy of classifiers: Random forest algorithm and k
nearest neighbors have the same accuracy, and both are more accurate than logistic regression,

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

13

SVM and the naive Bayesian classifier. The naive Bayesian classifier has an accuracy lower than
all other algorithms.

4. CONCLUSION AND FUTURE WORK

Paper is focused on the issue of malware detection for currently the most popular mobile system
Android, using static analysis. In this thesis, an overview of Android malware analysis was
presented, and a unique set of features was chosen that was later used in the study of malware
classification. Five classification algorithms (Random Forest, SVM, K-NN, Nave Bayes, Logistic
Regression) and three attribute selection algorithms were examined in order to choose those that
would provide the most effective malware detection. The characteristics of malicious software
were identified based on a collected set of applications. This analysis was conducted for features
extracted from Java class code. It was determined which source of features provides higher
quality of classification.

Research has been carried out to select the best classification algorithms for application, which is
detection of malware on the Android platform, indication of the applications features of the
highest usefulness in the classification of malware. Among the classification algorithms, the best
proved to be: random forest and k nearest neighbors. They obtained the highest scores on the
percentage of correctly classified instances (at the level of 80.3% - 80.7% for Java code). The
accuracy of these classifiers was examined statistically and turned out to be the same. With the
use of the naive Bayesian classifier and logistic regression, the classification accuracy was lower.
It was noticed, to a small extent, the advantage of the existence of patterns of implementation of
the onReceive method in malware, namely calling the function of starting or scheduling a new
service.

The research on Java code has shown a strong presence of methods for manipulation on strings,
as well as for downloading them outside of Java code. Such actions are manifestations of attempts
to hide the real purpose of the application, i.e. obfuscation of the code. In addition, there has been
a high use of methods that give access to and launch services (including system services). There
is an increased presence of the method for data transfer over the HTTP protocol compared to
secure applications, as well as methods for handling intentions, especially secret ones [20-23].
However, the quality of malware detection based on Java code proved to be low. None of the
algorithms did exceed 81% of correctly classified instances. There are many reasons for this: the
transformation and obfuscation of the code, the mechanism of reflection, manipulation on the
chains of characters make the extraction of features a difficult task. Calling the API method can
be implemented in several ways, and code transformation additionally increases the difficulty

REFERENCES

[1] Kabakus, Abdullah Talha, & Ibrahim Alper Dogru, (2018), “An in-depth analysis of Android

malware using hybrid techniques”, Digital Investigation.
[2] Verma, Prashant & Akshay Dixit, (2016), “Mobile Device Exploitation Cookbook”, Packt Publishing

Ltd.
[3] Mohsen, Fadi, (2017), “Detecting Android Malwares by Mining Statically Registered Broadcast

Receivers”, Collaboration and Internet Computing (CIC), IEEE 3rd International Conference.
[4] Yerima, Suleiman Y, (2013), “A new android malware detection approach using bayesian

classification”, Advanced Information Networking and Applications (AINA), 2013 IEEE 27th
International Conference on. IEEE.

[5] Aafer, Yousra, Wenliang Du, & Heng Yin, (2013), “Droid apiminer: Mining api level features for
robust malware detection in android”, International conference on security and privacy in
communication systems, Springer.

International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.1, January 2019

14

[6] Seo, Seung-Hyun, (2014), “Detecting mobile malware threats to homeland security through static
analysis”, Journal of Network and Computer Applications 38, pp: 43-53.

[7] Aung, Zarni, & Win, Zaw, (2013), “Permission-based android malware detection”, International
Journal of Scientific & Technology Research 2.3, pp: 228-234.

[8] Feizollah, Ali, (2017), “Androdialysis: Analysis of android intent effectiveness in malware detection”,
Computers & Security 65, pp: 121-134

[9] Mas’ ud, Mohd Zaki, (2014), “Analysis of features selection and machine learning classifier in
android malware detection”, Information Science and Applications (ICISA), 2014 International
Conference on. IEEE.

[10] Al Ali, Mariam, (2017), “Malware detection in android mobile platform using machine learning
algorithms”, Infocom Technologies and Unmanned Systems (Trends and Future Directions)”,
(ICTUS), 2017 International Conference on. IEEE.

[11] Li, Yiran, & Zhengping Jin, (2015), “An Android Malware Detection Method Based on Feature
Codes.”, Proceedings of the 4th International Conference on Mechatronics, Materials, Chemistry and
Computer Engineering.

[12] Nezhad Kamali, Maryam, Somayeh Soltani, & Seyed Amin Hosseini Seno, (2017), “Android
malware detection based on overlapping of static features”, 7th International Conference on Computer
and Knowledge Engineering (ICCKE 2017), October 26-27, 2017, Ferdowsi University of Mashhad.

[13] B.H. Robbins, (2010), “Non Parametric Tests”, B.H. Robbins Scholars Series, Dept. of Biostatistics,
Vanderbilt University.

[14] Bostanci, Betul, & Erkan Bostanci, (2013), “An evaluation of classification algorithms using
McNemars test”, Proceedings of Seventh International Conference on Bio-Inspired Computing:
Theories and Applications (BIC-TA 2012). Springer, India.

[15] Dietterich, Thomas G, (1998), “Approximate statistical tests for comparing supervised classification
learning algorithms.” Neural computation 10.7, pp: 1895-1923.

[16] La Polla, Mariantonietta, Fabio Martinelli, & Daniele Sgandurra, (2013), “A survey on security for
mobile devices”, IEEE communications surveys & tutorials 15.1, pp: 446-471.

[17] Tam, Kimberly, (2017), The evolution of android malware and android analysis techniques”, ACM
Computing Surveys (CSUR) 49.4, pp: 76

[18] Liang, Shuang, & Xiaojiang Du, (2014), “Permission-combination-based scheme for android mobile
malware detection”, Communications (ICC), 2014 IEEE International Conference.

[19] Saracino, Andrea, (2016), “Madam: Effective and efficient behavior-based android malware detection
and prevention”, IEEE Transactions on Dependable and Secure Computing.

[20] Linn, Cullen, & Saumya Debray, (2003), “Obfuscation of executable code to improve resistance to
static disassembly”, Proceedings of the 10th ACM conference on Computer and communications
security, ACM.

[21] Enck, William, Machigar Ongtang, & Patrick McDaniel, (2009), “On lightweight mobile phone
application certification”, Proceedings of the 16th ACM conference on Computer and
communications security. ACM.

[22] Vidas, Timothy, & Nicolas Christin, (2014), “Evading android runtime analysis via sandbox
detection.” Proceedings of the 9th ACM symposium on Information, computer and communications
security. ACM.

[23] Burguera, Iker, Urko Zurutuza, & Simin Nadjm-Tehrani, (2011), “Crowdroid: behavior-based
malware detection system for android”, Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices. ACM.

[24] Mishra, Ratha, (2016), "Study of Random Tree and Random Forest Data Mining Algorithms for
Microarray Data Analysis”, International Journal on Advanced Electrical and Computer Engineering
vol.3 issue 4.

