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ABSTRACT 
 

In this paper, we introduce a set of new kernel functions derived from the generalized Legendre 

polynomials to obtain more robust and higher support vector machine (SVM) classification accuracy. The 

generalized Legendre kernel functions are suggested to provide a value of how two given vectors are like 

each other by changing the inner product of these two vectors into a greater dimensional space. The 

proposed kernel functions satisfy the Mercer’s condition and orthogonality properties for reaching the 

optimal result with low number support vector (SV). For that, the new set of Legendre kernel functions 

could be utilized in classification applications as effective substitutes to those generally used like Gaussian, 

Polynomial and Wavelet kernel functions. The suggested kernel functions are calculated in compared to the 

current kernels such as Gaussian, Polynomial, Wavelets and Chebyshev kernels by application to various 

non-separable data sets with some attributes. It is seen that the suggested kernel functions could give 

competitive classification outcomes in comparison with other kernel functions. Thus, on the basis test 

outcomes, we show that the suggested kernel functions are more robust about the kernel parameter change 

and reach the minimal SV number for classification generally. 
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1. INTRODUCTION 
 

Support Vector Machines (SVMs) has become famous machines for data classification as a result 

of use for the vast data set and practical for application [1-3]. The operation of SVMs is based 

upon selecting kernel functions [4-6]. Picking various kernel functions will give out various 

SVMs [7- 9] and may turn out to be in various performances [10-11]. Some effort has been 

carried out on curbing kernels by handling prior knowledge; however, the optimal selection of a 

kernel for a provided problem is yet a free research crisis [12]. Chapelle and Schölkopf [13] 

suggested a kernel to use constant transformations. The disadvantage here is that they are most 

probably just suitable for linear SVM classifiers. Hastie et al. [14] had given comparisons among 

multi-class SVMs algorithms when implied to defy data set. Zanaty et al. [15-17] mixed GF and 

RBF functions to attain new kernel functions that can make use of their corresponding power. In 

[18-19], the Hermite kernel functions were defined for advancing the operation of SVMs in a 

variety of applications. Meng and Wenjian [20] proposed orthogonal polynomials to advance 

generalization performance in both classification and regression duties. The particular estimation 

of crossing kernel SVMs which is logarithmic in time was shown in Maji et al. [21]. They proved 

that the procedure is approximately in complex and the classification efficacy is passable, but the 
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runtimes are symbolically boosted in comparison with the implanted radial bases function (RBF) 

and polynomial kernel (POLY) because of the great number of SVs for every classifier [14, 21]. 

Ozer et al. [22] presented kernel functions coming from the Chebyshev polynomials. They built 

various kernel functions so that they can catch the highly non-linear boundaries in the Euclidian 

space. In Jiang and Ching [23], the managed kernel learning with an SVM classifier was 

outstandingly applied in biomedical diagnosis like segregating various types of tumour tissues for 

noisy Raman Spectra, see [24-25] for further details.  

 

The problems of data classification remain in picking the most convenient kernel of SVMs for a 

specific application, specifically since various functions and parameters can have vastly different 

operations [19-22]. A vital research field in SVMs is to establish an effective kernel function for 

constructing SVMs in a particular application, specifically because of variable current application 

which will demand various methods [22].   

 

In this paper, Legendre kernel functions are constructed to advance the classification certainty of 

SVMs for both linear and non-linear data groups. We sustain a group of Legendre kernel 

functions based on advancing SVMs classification certainty. The class of Legendre kernel 

functions fulfils mercer conditions and gives competitive operation in comparison with all other 

typical kernel functions with the same standard of the simulation datasets. The suggested kernels 

can be used for categorizing compound data which have numerous properties. 

 

The remainder of the paper is arranged in this way: In section 2, SVM classifications are 

elaborated. The kernel theory is deliberated in section 3. The generalized Legendre kernels are 

introduced in section 4. Section 5 shows functional examination on the presented Legendre 

kernels. Experimental and comparative outcomes are given in section 6. Lastly, section 7 presents 

the conclusion. 

 

2. SUPPORT VECTOR MACHINE (SVM)  

 

SVMs became popular for data classification and regression. They used to segregate the data by 

constructing two hyperplanes. If you have a set of N points NkRx n

k
,.....,1,   to be 

conjoined with a label }1,1{ 
k

y  which can be categorized the data into one of two 

groups. According to SVMs formulation, the classifier )(xy  will be the design of a hyper-plane 

wTxk + b which shows optimum separation 
2

2

w
between points 

k
x belonging to the two 

classes. This introduces an optimization issue of the form: 
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2

1
min: ,  bxwywwQ k

T
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                                             (1) 

where the wwT

2

1
 term stands for a cost function to be minimized to maximize segregation. 

The restraints are formulated so that the nearest points 
k

x  with labels [either +1 or -1] are (with 

suitable input space scaling) at least 
2

1

w
away from the separating hyper-plane. Nevertheless, 
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for the Least-Squares SVM classification, changes are done so that at the target value, an error 

variable ek is enabled so that misclassifying can be gone along with in case of coinciding 

distributions and the subsequent optimization problem is framed in the primal weight space for a 

given training set 
N

kkk
yx
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Along with the N restrains as given in Eq.(3). This formula included the tradeoff between a cost 

function term and a sum of squared errors governed by the trade-off parameter γ. 
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To solve this ‘primal minimization’ issue, we design the dual maximization of Eq.(2) using the 

Lagrangian form: 
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and αk are Lagrange multipliers. The circumstances for optimality are given by 
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After removal of the variables w and e we get this solution: 
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where  ]1;...;1[],,..;1  vN Iyyy  and ];;...;[ 1 N    

 

The kernel trick is applied here as follows: 
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The outcoming LS-SVM model for classifier turns out: 
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where αk , b are the answer to the linear system presented by Eq.(7) and N stand for the 

number of non-zero Lagrange multipliers αk, called SVs. 

 

According to Eq.(9), the kernel functions have been applied on the pairs of elements 

separately, for a given pair of two input vectors x and z, the outcoming kernel can be 

formulated as: 

 

                                  
 )(),( jjj zx(x,z)K                                                         (10) 

 

Where (.)K j  is the kernel function that is evaluated on the jth elements of the vector 

pair zandx .  More various kernel functions were found in literature as in Table (1). 

 
Table 1: Expressions of kernels list  

 

kernel kernel expression  
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Chebyshev kernel [7]: 
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, m is polynomials order  and 

T(x) is the Chebyshev polynomials. 

 

3. PROPOSED KERNEL FUNCTIONS 

 

In the suggested modified Henon map will be defined in terms of two basic processes 

namely ciphering and deciphering. To advance the classification certainty of SVMs, 

various kernel functions are required for various applications. We figured that Legendre 

function will ensure to be effective kernels for numerous applications. From the solution 

of Legendre’s differential equation, the formula of Legendre polynomials may be written 

down using Rodrigues’ formula: 
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By differentiating )1( n  times both sides of the identity: 
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d
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and applying the general Leibniz rule for repeated differentiation. 

 

3.1. Legendre Recurrence  

 
From Eq.(16), expanding for the first two terms gives: 
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Eq.(11) is discriminated concerning t on both sides to acquire more terms with no use of direct 

broadening of the Taylor series, and reorganized to attain:  
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Replacing the quotient of the square root with its description in (11), and equating the coefficients 

of  powers of t in the outcoming expansion gives Bonnet’s recursion formula:  
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Theorem 1: Taylor series expansion of Legendre’s differential equation:  
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   can be represented as the following recurrence relation: 
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 Compare the coefficients of t j:  



International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.4, July 2019 

92 

   (j=0) 

                                             
,)(,1)( 10 xxQxQ 
 

   (j=1) 

2/)13(221

22

2

2

2

2

2

1201





xQxQx

xQQQxQ

 

   
)2( j

 

11

111

)12()1(

)1(2)1(









jjj

jjjjj

jQxQjQj

QjxjQQjQxQ

 
 

3.2. Orthogonally of Legendre Function 
 

Legendre polynomials ),(xQn
0,1,2,3,...,n N  form a whole orthogonal group on the 

interval 1 1.x    
 

Theorem 2: Let Pn(x) denote the Legendre polynomial of degree n . Then: 
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 Proof: We know that the polynomials )(xQn and )(xQm  
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Then we have: 
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This completes the proof.   

 

3.3. Generalized Legendre Kernels 
 

Here, we are suggesting a general method of conveying the kernel function to resolve the 

vagueness on how to apply Legendre kernels. As of what we know, there was a preceding work 

illustrating the Legendre polynomials for vector inputs recursively. thus for vector inputs, we 

illustrate the generalized Legendre polynomials as: 
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Therefore, the generalized Legendre, )(xQ j , yields a row vector; if not, it gives a scalar value. 

Therefore, with the use of generalized Legendre polynomials, we describe generalized nth order 

Legendre kernel as 
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Where x and z are m-dimensional vectors. In Eq. (13), the denominator should be greater than 
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value will be equal to m which is the dimension of input vector x. 

 

Consequently, the 5th order generalized Legendre kernel could be presented as: 
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Where  xxa . ,  zzb . , and  zxc . . In addition, the first 4th order 

kernel functions are listed in Table 1. 
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Table 2: List of the generated Legendre kernel functions up to 4th order. 

 

Parameter : n                   Kernel function: ( , )k x z , Parameter : n 
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4. FUNCTIONAL ANALYSIS 
 

In order to reproduce proposed kernels, we use functional analysis as described in [26] to prove 

Mercer’s theorem conditions. The mapping   could be designed from the eigen function 

decomposition of k . With respect to Mercer’s work [27-28], it is known that if k  is the 

symmetrical and continuous kernel of an integral operator
22: LLOk  , in such a way that:  
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that k  acts as the given dot product, i.e.,
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Theorem 3: A kernel is a valid SVM kernel; if it satisfies the Mercer Conditions [29].  

 

Proof: If the kernel does not fulfill the Mercer Conditions, SVM might not derive the best 

parameters, but instead it might bring up suboptimal parameters. Additionally, in case of the 

Mercer conditions not being fulfilled, the Hessian matrix for the optimization portion might not 

be positive straightforward. Thus we inspect if the generalized Legendre kernel fulfill the Mercer 

conditions. 
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To be a credible SVM kernel, for any finite function )(x , the subsequent integration must 

always be non-negative for the given kernel function ),( zxk [1]: 
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Regard that )(x is a function where  :

 

,RRm   then we can calculate and validate the 

Mercer condition for ),( zxk  as follows by speculating each element is independent of others: 

 

 

 

 

                                                                                                                  

           

Thus, the kernel ),( zxk  is a verified kernel. 

 

Theorem 4: A nonnegative linear combination of Mercer kernels is also a Mercer kernel.  
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where 0ia is a nonnegative constant. According to Mercer’s theorem, we have   
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Theorem 5: The product of Mercer kernels is also a Mercer kernel.  

 

Proof: is like that of the previous theorem.  

 

5. EXPERIMENTAL RESULTS AND DISCUSSIONS 
 

The multi-class problem is described as the categorizing problem that has numerous classes. To 

prolong these classifiers to take care of many classes, the target of this method is to map the 

generalization capabilities of the binary classifiers to the multi-class domain. Multi-class SVMs 

are ordinarily applied by mixing a couple of two class SVMs. In multi-class experimentations, we 

have trained SVM for every class individually so that one is against all. In every experiment, we 

utilized the SVM toolbox accessible at [32]. The multi-class problem is described as a 

classification problem which has numerous classes or characters. Current SVMs [24] are binary 

classifiers, i.e., they could categorize two classes. To be capable of dealing with various classes 

(greater than 2), the current classifiers should be prolonged. The target is to depict the 

generalization abilities of the binary classifiers to the multi-class domain. Multi-class SVMs are 

usually applied by merging several two - class SVMs. The classifier is constructed to read two 

input data files, the training data and the test data (for more details see [11, 18]). Every file is 

arranged as records, each of which is made up of a vector of attributes x: ),...,,( 211 mi xxxx   

followed by the target y: ),...,,( 212 ci yyyx   where c is the number of classes m and is the 

number of attributes. The SVM designs binary classifiers, and utilizes the training data to find the 

maximum separating hyperplane.  

 

The classification experimentations are carried out on number image segmentation data sets like 

Brickface, Foliage, Sky, Cement, Window, Path and Grass data set [30-31]. The data has 7 

diverse image classes. It has 210 data for training and a different 2100 data for evaluating. Every 

vector has 18 elements having diverse maximum and minimum values. For the training, we got 

30 data for the class (+1) and 180 data for the class (1) and likely for testing, we have 300 against 

1800 data, correspondingly for every class. With the test step, the kernel functions presented 

various performance values on various classes and there was winning kernel presenting the 

optimal performance one very class as shown in Table (3). The suggested Legendre kernel 

operated better than the standard. The optimal performance values having the least SV numbers 

are presented in bold. Table (3) illustrates the test results for every class with various kernel 

functions. We carry out some evaluations to compare the suggested kernel with its preceding 

opposite as well as the Gaussian (GF) [25], polynomial (POLY) [14], Wavelet [7] and Chebyshev 

[22] kernel functions. The operation of the suggested kernel with SVMs according to 

classification accuracy (ACC) and kernel parameter against SV, is calculated by implementation 

to data sets in Table (3). As shown in Table (3), the generalized Legendre kernel results present 

better generalization capability than the current GF, POLY, Wavelet and Chebyshev kernels. For 

instance, the optimal ACC is retrieved for Brickface, Foliage, Window, Path, Grass with the least 

SV to be 17, 6, 4, 6 and 15 correspondingly. Even though the ACC of the generalized Legendre 

kernel and GF kernel for Foliage data is similar, we emphasize that SV   of the generalized 

Legendre kernel has the least. In Figs.(1-7), we give the ACC against SV of the POLY, GF, 

Wavelet, Chebyshev, and generalized Legendre kernels for Brickface, Foliage, Sky, Cement, 

Window, Path and Grass data set. The generalized Legendre kernel functions present the minimal 

SV 4 while maintaining the generalization ability right for the dataset. The relation between ACC 

and SV showed that, as the SV increases, the ACC increases and asymptotically arrive at a high 

performance value.   
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Figs. (8-12) describe the relation between kernel parameter vs. SV for GF, POLY, Wavelet and 

Chebyshev kernel functions when these methods  are implemented on Brickface, Foliage, Sky, 

Cement, Window, Path and Grass data set correspondingly. These figures prove that as the kernel 

parameter increases, the Chebyshev, Legendre and wavelet kernel increase their operation and 

asymptotically reach allow performance value. While as the kernel parameter increases, the 

Chebyshev and wavelet kernels need more SV than Legendre kernel. During the evaluations, we 

witnessed that the generalized Legendre kernel function reaches the minimal SV number in 

general. 

 
Table 3: Data classification results with different kernel functions.  

 

Data 

sets 

GF POLY Wavelet Chebyshev Legendre  

SV 

No. 
ACC σ 

SV 

no. 
ACC n 

SV 

no. 
ACC a 

SV 

no. 
ACC n 

SV 

no. 
ACC n 

Brickf

ace 

61 0.960 0.4 11

2 

0.969 2 44 0.997 1.4 23 0.997 0 17 0.999 1

5 

Sky 7 1.0 4.3 14 1.0 2 5 1.0 1.5 5 0.99 0 6 1.0 3 

Foliag

e 

106 0.98 1.4 12

2 

0.999 8 99 0.989 2.4 122 0.971 0 6 0.999 2 

Cemen

t 

88 0.989 0.5 78 0.971 1

2 

77 0.997 1.4 65 0.999 4 16 0.998 1 

Windo

w 

49 0.957 0.4 80 0.969 7 34 0.99 1.4 34 0.985 4 4 0.99 2 

Path 44 0.969 0.43 68 0.959 6 66 0.98 1.5 22 0.976 3 6 0.98 1 

Grass 22 0.986 11 25 0.964 2 45 0.979 1.5 54 0.975 0 15 0.990 2 

 

 
 

Figure 1:  SV vs. ACC for Brickface data. 
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Figure 2: SV vs. ACC for Sky data. 

 

 
 

Figure 3:  SV vs. ACC for Foliage data. 

 

 
 

Figure 4:  SV vs. ACC for Cement data 
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Figure 5:  SV vs. ACC for Window data. 

 

 
 

Figure 6: SV   vs. ACC for Path data. 

 

 
 

Figure 7: SV vs. ACC for Grass data 
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Figure 8:  Polynomial kernel parameter vs. SV number. 

 

 
 

Figure 9:  Gaussian kernel parameter vs. SV number 

 

 
 

Figure 10 : Wavelet kernel parameter vs. SV. 
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Figure 11:  Chebyshev kernel parameter vs. SV. 

 

 
 

Figure 12:  Legendre kernel parameter vs. SV. 

 

6. CONCLUSION 
 

Presenting the current paper, the classification certainty of SVMs has become advanced by 

mapping the training data into a feature space by the help groups of Legendre functions. A class 

of Legendre kernel functions based upon the properties of the common kernels is suggested, 

being able to recognize many applications in training. Normalization takes a vital job for 

generalized Legendre kernel, and thus the whole data should be normalized between [-1,1] before 

utilizing the kernel function. Upon the simulation results, it can be said that picking order of 

Legendre polynomials from an integer group is usually sufficient to acquire a good classification 

consequence from the generalized Legendre kernel function. 

 

We have made a comparison between the classification efficacy of the Legendre kernel function 

and the current kernels like the current GF, POLY and Wavelet kernels. In accordance with the 

test outcomes, the generalized Legendre kernel shows the lowest number of support vectors on 

almost every evaluation. In strictly, we suggest this is derived from the orthogonally characteristic 

of the Legendre polynomials. This character of the kernel function can be vital and helpful in 
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several applications where the support vector number is greatly vital as in feature selection. 

Therefore generalized Legendre kernel functions can be regarded as a valid substitute to the GF, 

POLY, and Wavelet kernel functions for a couple of particular datasets. The test outcomes imply 

that their outcomes have been analogs to the kernel functions developed from the generalized 

Legendre polynomials of the primer kind. Thus, we have not comprised the family of kernel 

functions and their outcomes in this study. Also, since handling the properties of the generalized 

Legendre polynomials is beyond this study, we have not studied these properties specifically even 

though this study could be helpful to design new kernel functions developed from generalized 

Legendre polynomials and that could be the goal of upcoming work. 
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