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ABSTRACT 
 

This research recasts the network attack dataset from UNSW-NB15 as an intrusion detection problem in 

image space. Using one-hot-encodings, the resulting grayscale thumbnails provide a quarter-million 

examples for deep learning algorithms. Applying the MobileNetV2’s convolutional neural network 

architecture, the work demonstrates a 97% accuracy in distinguishing normal and attack traffic. Further 

class refinements to 9 individual attack families (exploits, worms, shellcodes) show an overall 54% 
accuracy. Using feature importance rank, a random forest solution on subsets shows the most important 

source-destination factors and the least important ones as mainly obscure protocols. It further extends the 

image classification problem to other cybersecurity benchmarks such as malware signatures extracted 

from binary headers, with an 80% overall accuracy to detect computer viruses as portable executable files 

(headers only). Both novel image datasets are available to the research community on Kaggle. 
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1. INTRODUCTION 
 
This work explores image-based classifiers for non-traditional tasks, either to recognize a pattern 

described previously only in numerical tables or to extract meaningful malware signatures as 

images. The interest in this approach arises from the success of applying deep convolutional 
neural networks (CNN) to similarly challenging but unconventional ways borrowed from 

computer vision. For example, audio classifiers and speech recognition have benefited from 

projecting the audio time-series into a spectrogram, which in turn a CNN can apply computer 

vision methods to identify words or sounds. 
 

 
 

Figure 1. Nine attack types and one normal traffic dataset. We map  

the tabular features to grayscale thumbnails 

http://airccse.org/journal/jnsa21_current.html
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For cybersecurity applications, this work updates the UNSW-NB15 attack dataset [1-4] and 
extends the popular intrusions detection system (IDS) originally inspired by the KDD-

99/DARPA challenge [5-7]. The details of the UNSW-NB15 dataset are published in a series of 

previous papers [1-4] which described the raw network packet captures, generated features on 

labeled attacks, and scored statistical methods for identifying each attack family. As illustrated in 
Figure 1, the current approach aims to map scaled numerical features to images, a method likened 

to traditional spectrogram methods. These fingerprinting techniques have proven useful when 

image-based neural networks have solved similar but challenging time-dependent [8] or audio [9] 
problems. We test the capabilities for mapping tabular features to build fast image classifiers. 

One advantage of this hierarchical method arises from the unique power of transfer learning to 

high accuracy, even when the underlying patterns prove difficult for humans to understand or 
classify. The datasets are available on Kaggle [10]. 

 

2. METHODS 
 

The new datasets to evaluate image classification as a network defense tool include the intrusion 
simulations from UNSW-NB15 [1-4] and a custom anti-virus example. 

 

2.1. Network Intrusion Dataset 
 

The use of convolutional neural networks for network attack classification depends on first 

converting all tabular feature sets into thumbnail images. We, therefore, recast the UNSW-NB15 
 

 
 

Figure 2. Layout template for one-hot-encoded images. 

 

tabular set of features as scaled image thumbnails [11] to solve for 9 families of attack types. This 

version of the dataset renders the corresponding UNSW-NB15 attack set as 256-pixel grayscale 
images (16 x16). We employ one-hot-encoding [12] for the categorical inputs and rescale all 
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numerical inputs as grayscale pixel values (0-255) between the training set’s minimum and 
maximum values. The baseline UNSW-NB15 dataset [1-4] yields 194 values and the images are 

right padded with all black (255) values for any unused pixels (62) identically for all attack 

labels. This padding assists deep learning approaches [13] which have a stride length in powers 

of 2. The column labels are also included in the train and test sets as tabular formats (comma-
separated value files) to compare image-based classification methods to more statistical 

approaches like decision trees, random forest, and support vector machines. The expectation is 

that all the legacy algorithms of both deep learning and statistical machine learning may assist in 
the new task after mapped to images of feature sets. 

 

This approach shares many characteristics with the traditional MNIST dataset [14-20] and thus 
can build quickly on those findings for algorithmic comparisons. Several image-based problems 

to solve include simply binary classifiers for attack vs. normal traffic. Like MNIST digits [14], 

there are 10 categories shown (0=normal; 1-9 various attacks). As shown in Figure 2, the original 

42 network features expand to 194 when one-hot-encoded [12]. This process converts all 
categorical data (services, protocols, and states) into individual columns with their presence 

marked by 1 and absence by 0. For instance, protocol_http becomes pixel value 255 at the 

appropriate grayscale image location (row=3, column = 13) if the attack used hypertext transfer 
protocol. Conversely, the same pixel maps to 0 if the protocol was not used. Each row of the 

UNSW-NB15 thus renders 256 features (of which 194 follow directly from the tabular set). 

 

 
 

Figure 3. Training and testing count per attack family count. 

 

We leave unchanged the train/test split of the original UNSW-NB15 dataset at a 1:2 ratio [1-4]. 

The detailed counts for each class are shown in Figure 3. It is worth noting that the UNSW-NB15 
dataset updates and statistically rebalances some of the KDD99 counts based on their analysis of 

duplicates and potential data leakage between training and test sites. The ratio of 1:2 for training 

and test presents a challenging amount of previously unseen data when an algorithm gets scored 
or deployed. In total, we created almost a quarter-million images as 256-pixel thumbnails using 

ImageMagick [11]. The largest training class (normal traffic: 37,000) outnumbers the smallest 

attack class (worms: 44) by nearly 1000:1 as a ratio of cases. 
 

To explore whether transfer learning from a convolutional neural network can identify network 

attacks, we tested the small (2 Mb) MobileNetV2 model [13] as pre-trained, then introduced both 

the binary and multi-class problems. The binary classifier determines whether a given image 
pattern represents normal or attack traffic. The multi-class problem identifies one of the 10 

possible families (9 attacks in Figure 3 vs. normal). 

 
The multi-class example shares an analogous data setup to the traditional MNIST handwriting 

dataset [14] and thus may benefit from the various state-of-the-art approaches developed to 



International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.3, May 2021 

4 

handle those 10 classes. We solve both the binary and multi-class cases with a standard set of 
hyper-parameters (epochs:50, batch size:16, learning rate: 0.001). Slower learning rates disrupt 

the pre-trained layers of the neural network and preserve some of its beneficial weights for 

feature extraction in the images. We also explore the effects of smaller dataset size (<10,000 

training examples vs. the full 250k) [22]. 
 

 
 

Figure 4. Feature information (GINI) Contribution to Attack Detection. 

 
To rank the feature importance for detecting attacks, we applied a random forest algorithm 

(Figure 4) to the binary classifier [23]. The descending order for the top 14 contributors is shown 

using the Gini Index [23] (or impurity) which effectively gauges the factors contributing to a 
decision split between normal and attack. The highest contributors include 1) the “Source to 

destination Time To Live” value (sttl); 2) Number for each state (dependent protocol, e.g. ACC, 

CLO, CON) according to a specific range of values for source/destination Time To Live 

(ct_state_ttl); and 3) Number of connections of the same source and the destination address in 
100 connections according to the last time (ct_dst_src_ltm). Not shown in Figure 4 are the least 

important which somewhat surprisingly include most of the one-hot-encoded protocol features 

that are more exotic than ordinary TCP (e.g. zero, XTP, XMN.IDP, WSN, etc.). In addition to 
providing a future path to reduce the intrusion detector’s dimensionality, this feature importance 

rank defines what cannot be safely ignored in attack datasets like UNSW-NB15 [1-4]. 

 

 
 

Figure 5. Binary classifier results. 
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2.2. Anti-Virus Dataset 
 

Recent interest in applying the same image-based classification techniques to anti-virus and 

malware detectors [24-30] motivates the present work to score a similar formatted problem and 
compare the algorithmic performance with existing methods. Intel Labs and Microsoft Threat 

Protection Intelligence Team recently launched their static malware collaboration called 

STAMINA: Scalable Deep Learning Approach for Malware Classification [31]. The present 
contribution is to reformulate the malware-image problem as a familiar MNIST variant, to 

generate the 9-virus clusters based on byte-similarities, and then to identify the virus family based 

on a grey-scale thumbnail image (32 x 32). Figure 6 shows the abstract images derived for each 

of the 10 classes, with “0” as the only one that is non-malicious. 
 

 
 

Figure 6. Virus MNIST showing 10 classes. The “0” class represents non malicious examples.  

The other 9 virus families were clustered using a K means method to match with the  

standard MNIST format and multi class solutions. 
 

We explore the malware dataset first combined [27] as bulk virus downloads (from 

virusshare.com) and non-malicious examples (from portableapps.com). Microsoft documents the 

format header for Portable Executable (PE) files [32-33] and importable python libraries 
(“pefile”, [34]) exist as convenient extraction tools from compiled and executable code. The 

Portable Executable dataset [27] contains 51,880 examples of the first 1024 bytes (32x32 pixel 

values) of the header. As comma-separated-values, the entire file’s MD5 hash augments the 
information available for each example and provides enough identifying information to trace its 

operating features using community-supported repositories like VirusTotal.com. 
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Figure 7. Class distributions and example types for malware and “beneware” PE File headers. 

 

Previous solutions have designated a binary class label as either malware or not (e.g. benign 
programs or “beneware”) [27]. If formulated as a two-class problem, the imbalanced ratio of 

malware to “beneware” equals approximately 20:1 (49,364:2516). Without rebalancing this ratio, 

a 95% correct solution would simply declare all cases as malware. To recast the image dataset as 

an MNIST-formatted alternative, we performed a standard cluster analysis using the KMeans 
algorithm [35]; we assigned cluster numbers equal to 9 based on the 1024 column byte vector. 

We exclude the identifying file hash. We attempted to assign dominant families to each derived 

cluster based on the known MD5 hashes but found multiple names and sample diversity when 
querying VirusTotal. To reduce the number of code changes comparing a larger or smaller multi-

class problem with existing MNIST infrastructure, we opted to use the assigned 9-cluster result as 

a fully unsupervised example. Figure 7 summarizes the class distribution following KMeans 
clustering for the malware class only and the 9 resulting virus families. By testing 10 or more 

MD5 hash values against the VirusTotal.com database, we assigned the broad types and example 

executable names. These choices showed sufficient diversity and overlap that the designations 

provide only representative choices. The outcome proves more statistical and less operational for 
malware behavior. 

 

We converted the CSV format [23] to greyscale images using the intermediate NetPBM text 
format (PGM) to create ASCII-raw images (Figure 6), then the ImageMagick [11] command-line 

tools for compressing the image to viewable JPEG files. We split the resulting 51,880 thumbnails 

into the same 85:15 ratio used by MNIST training and testing bins, such that the unseen test 

images help validate any algorithm’s ability to generalize from the training images. The choice of 
32x32 pixels to represent the PE header proves useful for later deep learning algorithms that 

depend on powers of 2 (in stride length) to form their convolutional layers. This differs slightly 

from the traditional (arbitrary) 28x28 pixel thumbnails in most MNIST variants [37]; the 
differences are cosmetic only for most algorithms other than deep learning ones. Three different 

formats are provided for download, including train and test sets as comma-separated values files, 

JPEG images sorted by class (10 total), and the original MNIST binary format (idx-ubyte) [14, 
36]. These three formatting options should cover most all published MNIST solutions with only 

minor modifications. 

 

3. RESULTS 
 
The modeling of two separate cybersecurity-related datasets with image classifiers highlights 

future insertion points for including deep learning and more specifically pre-trained neural 
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networks like MobileNetV2 [13] for minimizing data requirements and transfer learning between 
unrelated tasks. 

 

3.1. Network Intrusion Defense 
 

As shown in Figures 8-10, the results for transfer learning with a deep convolutional neural 

network (MobileNetV2 [13]) demonstrate that the image-based binary classifier achieves greater 
than 97% accuracy in identifying whether an attack occurs (Figure 5).  

 

 
 

Figure 8. Multi-class results. 
 

In Figure 8, the specific identification of an attack family averages 54% accuracy between the 10 

classes, with large deviations between the best (normal and generic traffic: 96+%) and the worst 
(worms and analysis <19%). Figures 8-9 show the error matrix of which attack images confuse 

the neural network (worms misclassed as exploits). It is worth noting that the majority class 

(normal) loses no performance as more attack classes get added from the binary to the multi-

classification example. 
 

One contribution to this variance is the relative sparsity of UNSW-NB15 examples for the lower 

performing classes. To test this hypothesis, we performed the same experiment on a smaller 
subset (<4000) of images with a hold-out test and validation set that represents 20% of the 

training set (as opposed to 200% in the original UNSW-NB15 split). By better balancing, the 

dataset, undetectable worms, and other lesser represented classes could be detected in Figure 8 
(second column). Mapping attacks to images shows the dependence of accuracy on both class 

size and imbalance [23]. 

 

One interesting outcome of using these image-based detection maps is their portability to small 
hardware appliances. The small MobileNetV2 architecture [13] is tailored to run on edge devices 

[37], such as mobile phones. Simple network detectors thus render a complex matrix of packet 

features into a rapid classifier capable of running in near real-time imagery (e.g. 30 frames -or 
attacks- per second). The reduction of the model to use tflite [38] (Tensorflow) as a set of stored 

weights represents a standard model [37] for deploying deep learning to edge devices. 
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Figure 9. Confusion matrix by class for network intrusion data. 

 

For the binary classifier distinguishing attacks from normal traffic, the current results (accuracy = 

97%) compare to previous work using statistical machine learning [39], such as support vector 

machines (SVM, accuracy = 92.28%), Naïve Bayes (NB, accuracy = 74.19%), decision tree 
(simple, accuracy = 95.82%), and random forest (RF, accuracy = 97.49%). For a smaller UNSW-

NB15 subset [40], deep learning approaches [41] reported 91.4% (normal) accuracy and 99.2% 

(attack). Using manual feature selection 
 

 
 

Figure 10. Comparison between previous statistic al solutions and the present result using image based 

classifiers and transfer learning with MobileNetV2 deep neural network. 

 
[41], a larger deep learning approach n the tabular data reported 98% (normal) accuracy and 85% 

(attack). In summary, the original contribution of combining an image-based transfer learning 

method to traditional tabular data offers a promising detector for network defense, particularly for 
97+% accuracy to distinguish normal and malicious traffic connections. 

 

For the refined determination of the attack family, Figure 10 compares the present results with 13 

other popular machine learning approaches [42] as shown by class type and accuracy. While the 
performance of the image-based approach to collecting features lags other methods in some 

under-represented attack families, the high accuracy for normal traffic (98%) vs generic attacks 
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(96%) offers a viable intrusion detection for the multi-class problem. Since Figure 8 demonstrates 
the accuracy dependence on sample size, the lower accuracy seen in under-represented classes 

like worms, analysis, and shellcode would benefit from supplemental or synthetic attack data. 

 

3.2. Virus Detection 
 

Figure 11 shows the accuracy per class in three different CNN models. The highest accuracy 
across all classes averages 80%. 

 

 
 

Figure 11. Accuracy per class. Acc-1 is 20% sampling, Acc-3 is 100% sampling  

and Acc-2 is slow learning rates. 

 

To explore the effects of dataset size, we modeled a faster 20% sampling (Acc-1) with a learning 

rate of 0.001, batch size=16, and 50 epochs. A second model (Acc-2) featured a slower learning 

rate (0.0005) over longer training times (100 epochs). A slower learning rate can avoid disruptive 
steps when transfer learning from a pre-trained network like MobileNetV2. A final model (Acc-

3) included 100% samples (the full 51,880 train and test sets) and a faster learning rate (0.001) 

and time (50 epochs). Across all 10 classes, the average accuracy varied less than 2% for the 
three cases but did peak at 80% for the larger dataset (Acc-3). The three models together show 

the highest false-negative rate for malware is class “0” or benign executables that get flagged as 

potentially malicious. This behavior may reflect the inexactness of the PE header as an indicator 

of malware, or the hijacking of benign header characteristics to disguise malware in the first 1024 
bytes. 

 

 
 

Figure 12. Error matrix highlighting the classes across the rows that each actual case most often gets 

mistaken for. The diagonal shows the correct proportion. 
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Figure 12 shows the error matrix for the first model (Acc-1), which highlights that the class of 
benign programs is most often mistake for backdoors (7), heuristic (9), and downloader (8). It’s 

worth noting that particularly for a downloader that reaches out to a command and control 

malware site, this byte-code signature may prove malicious or benign since it depends on the 

website itself; a benign program may reach out to download an update from Microsoft on launch. 
The higher false-negative rates may also originate in the KMeans approach, given the clustering 

excluded the non-malicious cases to simplify the generation of 9 malware families as independent 

groups from good, benign, or normal software called here as “beneware”. Further investigation 
may explore whether other clustering approaches benefit the class distinctions. For instance, 

density-based clustering (DBSCAN) optimizes the tight groups with minimal overlap. A further 

enhancement would use the MD5 hash to determine virus family and avoid clustering altogether 
as an alternative which also prevents the CNN from simply modeling the unsupervised (KMeans) 

algorithm itself rather than the natural distribution of malware images.  

 

4. DISCUSSION AND CONCLUSIONS 
 
The results demonstrate a viable path of converting tabular feature data to image thumbnails, then 

applying convolutional neural networks to classify attack families. One potential shortcoming in 

our approach is any dependencies on the parametric ordering in the table format. For instance, 
convolutional neural networks tend to highlight close neighbors as being related in the image 

[43], yet there is no obvious relationship in the generated images between protocols, services, or 

states that justify making them into a particular attack fingerprint. One could address this flaw 

quantitatively by shuffling the order and determining the change of accuracy (if any). Future 
work should compare alternative statistical methods borrowed from the extensive machine 

learning literature devoted to the MNIST (and its derivative [14-21]) dataset of handwriting 

recognition. One can anticipate that like MNIST solutions, there exist high accuracy decision 
trees (like extreme gradient boosted trees – XGBoost [44]) that generate both accuracy and 

inference speeds comparable to the deep learning approach here. Further work could also use the 

image dataset [45] to design new attacks (and defenses) based on the techniques of generative 
adversarial networks (GANs [46]). The network intrusion dataset is available on Kaggle [10]. 

 

To address the generality of this approach, we recast a second and consolidated dataset for 

scoring malware Portable Executable file headers as an abstract image recognition problem. The 
image-based approach may generalize better than other heuristic methods, particularly given how 

virus authors change single-bytes to fool hash-based signatures but CNN detection typically 

proves less sensitive to small image changes. The ability to read headers only and render a 
readable file fingerprint as a small image suggests a potential fast detection rate seen in other 

vision applications (near real-time if greater than 30 frames per second by convention). Further 

enhancements may improve accuracy with data augmentation [45] strategies. While the reduction 

of file headers to images may initially seem counterintuitive, the abstract representation of text or 
audio into images has benefited other machine learning applications. We anticipate that further 

work may render simple, standalone appliances that may operate offline for successful detection, 

particularly for the small, fast, and accurate models like MobileNetV2. The Virus-MNIST dataset 
is also available on Kaggle and Github [47].  
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