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ABSTRACT 
 

Malicious JavaScript code is still a problem for website and web users. The complication and equivocation 

of this code make the detection which is based on signatures of antivirus programs becomes ineffective. So 

far, the alternative methods using machine learning have achieved encouraging results, and have detected 

malicious JavaScript code with high accuracy. However, according to the supervised learning method, the 

models, which are introduced, depend on the number of labeled symbols and require significant 

computational resources to activate. The rapid growth of malicious JavaScript is a real challenge to the 

solutions based on supervised learning due to the lacking of experience in detecting new forms of malicious 

JavaScript code. In this paper, we deal with the challenge by the method of detecting malicious JavaScript 

based on clustering techniques. The known symbols that will be analyzed, the characteristics which are 

extracted, and a detection processing technique applied on output clusters are included in the model. This 

method is not computationally complicated, as well as the typical case experiments gave positive results; 

specifically, it has detected new forms of malicious JavaScript code. 
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1. INTRODUCTION 
 

Dynamic web developers usually use JavaScript because of its efficiency. The flexibility in 

applications of the form of web programming language has been exploited by cyber attackers for 

carrying out target attacks. The reason that cyber attackers often use malicious JavaScript to 

attack websites maybe because they find it convenient to evade. It is difficult for ordinary 

antivirus programs to detect malicious codes. Until now, most of the malicious JavaScript code 

detection methods mainly focus on improving the accuracy as much as possible. There have been 

many studies applying machine learning and deep learning to develop high-precision models for 

detecting malicious JavaScript. Those models are all based on supervised learning. Nevertheless, 

the accuracy of the methods mostly depends on the labeled dataset. In reality, new malicious 

scripts constantly evolve, which requires the frequent upgrade of the dataset. The detection 

methods have to be upgraded as the upgrade of the new dataset so that they can detect new 

malicious codes. Besides, the complexity and heavy computational load in the detection models 

are also a negative side of the detection methods because of their increased resource cost and 

slow speed in response, especially when operating in a multitasking environment. Therefore, the 

detection methods encounter the challenge that is not only to improve the precision but also to 

maintain it. Moreover, the methods should also remain cost-effective. The main goal of the paper 

is to suggest an effective detection method that has low cost as well as high accuracy; 

simultaneously, it can detect new malicious codes which have not been found in the dataset 
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without upgrading the model. The method supports the implementation in practice with different 

defense scales. 

 

Using an unsupervised learning algorithm to get rid of the dependency on the labeled dataset, 

based on which the unidentified new malicious codes are detected. Particularly, the detection 

model could be developed based on a clustering algorithm. Firstly, the JavaScript codes will be 

analyzed and the typical features will be selected for extraction. The clusters are then processed 

against a learned threshold value to determine the existence of malicious JavaScript codes in web 

content. The clustering technique has also been used in many studies as surveyed in [1]. Among 

the unsupervised machine learning algorithms, the Isolation Forest algorithm [3] is also 

commonly used in anomaly detection and we also apply it to the malicious codes detection model 

as another option to compare with the proposed method. 

 

The rest of the paper is presented in the following sections: Section 2 will introduce some recent 

typical studies in attempts to thoroughly detect malicious JavaScript codes, which shows that 

machine learning has become the first choice for this task. Section 3 will represent in detail the 

proposed method which includes detection application, developing the model, and handling 

clusters for malicious codes detection. Next, section 4 will describe the experimental process and 

evaluation of the proposed method with different cases and corresponding results. The paper ends 

with the conclusions in section 5. 

 

2. RELATED WORKS 
 

Cyber attackers have used malicious JavaScript code as a handy tool to attack both websites and 

web users. In reality, malicious JavaScript is commonly used in types of attack such as Cross-Site 

Scripting (XSS), Cross-Site Request Forgery (CSRF), etc. Therefore, malicious JavaScript has 

become a concerning issue about information security. To go against these malicious attacks, it is 

crucial to detect malicious JavaScript as they appear on the web. Malicious JavaScript detection 

is not a leisurely task because of the diversity and constant volatility of this malicious code, 

especially in the context of high traffic usage. Currently, many studies have been attracted to find 

out the best solution to the challenge. In general, each proposed solution has its innovative 

detection technique, applying different technologies, such as the detection method based on static 

code analysis has proposed in [10]. Accordingly, the authors have introduced a detection 

framework called AMA (Amrita Malware Analyzer) that is capable of combating malicious 

JavaScript's evasion strategies. The main technique in this framework is to use the probable 

plaintext attack to deobfuscate the web malware. Recently, many studies have also appeared to 

exploit the advantages of machine learning technology to propose malicious JavaScript detection 

models. The proposal in [2] is a typical case that follows the direction. The authors in [2] also 

used static code analysis to analyze the scripts, add new features to the dataset, and apply various 

supervised algorithms to develop the classifiers. The classifiers achieved a high detection rate, 

which is about 97% to 99%. Other studies used machine learning proposed in [8,11,12]. The 

study in [11,12] uses Abstract Syntax Tree (AST) to represent the code structure and a machine 

learning method to conduct learning features called Doc2vec to detect malicious JavaScript. 

Doc2vec is a neural network that can learn the context of text with variable lengths. Through the 

representation of AST, the authors have built a new dataset to help train this neural network to 

have the ability to detect with high precision. The effectiveness of the methods of building 

malicious JavaScript detection models using machine learning requires having a numerous 

amount of labeled samples in the dataset, and this requirement is one of the difficulties when 

building a detection model. To overcome this problem, the authors in [4] suggested using 

Generative Adversarial Networks (GAN) and using the output from the GAN to train the 

classifiers. As a result, their method was able to achieve high precision with only a limited set of 

labeled samples. Besides the traditional methods of using shallow learning models to detect 
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malicious JavaScript, there are also many studies using deep learning models to increase the 

detection ability of the model. For an instant, in the method proposed in [14], the authors built a 

deep learning network from many denoising auto-encoders called Stacked denoising auto-

encoders (SdA) with the expectation of being able to extract more abstract features of JavaScript 

code, which results in high-precision detection. Being applied SdA together with logistic 

regression, their experiments gave precision as high as 95% and a false-positive rate less than 

4.2%. Another method of using deep learning is proposed in [16]. The authors in [16] build a 

detection model based on the Bidirectional Long Short-Term Memory (BLSTM) neural network 

combined with the Program Dependency Graph (PDG) technique to preserve the rich semantic 

information. This method also gives very positive experimental results, with an accuracy of 97%. 

Similarly, the authors in [5] also analyzed the characteristics of JavaScript code, analyzed the 

extracted feature components, and used multilayer perceptrons to build a malicious JavaScript 

code detection model with an accuracy of 98.8% and a false positive rate of about 3%. 

 

3. PROPOSED METHOD 
 

3.1. Design of malicious JavaScript detection model 
 

The main point of the detection application is an anomaly detection model based on an 

unsupervised machine learning algorithm. The application process is shown in Figure 1. First of 

all, the website data to be tested is collected and processed to retain only the features which are 

suitable to the model design. The output of the processing stage is a set of many data points, 

which may or may not contain malicious vectors. The processed data set will be fed into an 

unsupervised machine learning algorithm for detection. Unlike the classification model with 

supervised machine learning algorithms, the prediction results are not immediately available at 

the output of the model, but an extra computational step is needed to predict the anomaly. 

Depending on the type of unsupervised machine learning algorithm is used, there will be different 

prediction support parameters and how that parameter is calculated. Thus, in our proposal, there 

will be two important parts: building a model with an unsupervised learning algorithm and 

determining the prediction support parameter on the output of the model according to the selected 

unsupervised learning algorithm. 

 

 
 

Figure 1. Process of detection application 

 

The model is built through the following steps: 

 

 Build the dataset 

 Preprocessing and feature extraction 

 Choose an unsupervised learning algorithm 

 Check the discriminant ability of the model 

 

The dataset is built using the same method as [2], which is collecting URLs containing malicious 

JavaScript and benign JavaScript, getting a list of malicious website addresses from the Phistank 

website [17], and getting a list of non-malicious website addresses from the Moz website [18]. 

After that, we will proceed to visit the website addresses that have been saved in the list to extract 
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the JavaScript code. When the extraction is finished, there will be raw JavaScript data. The raw 

data contains the website name, JavaScript code and is labeled malicious or benign. In the raw 

data, we take 44 JavaScript features out of 77 features in [2]. The features are described in Table 

1. 

 
Table 1. JavaScript features used in our dataset 

 
Sr.No. Features (charater or function) Sr.No. Features (character or function) 

1 # 23 eval 

2 % 24 function 

3 ( 25 getElementById 

4 ) 26 indexOf 

5 + 27 location 

6 / 28 log 

7 [ 29 onerror 

8 ] 30 onload 

9 { 31 parseInt 

10 | 32 random 

11 } 33 replace 

12 addEventListener 34 return 

13 attachEvent 35 search 

14 charAt 36 setAttribute 

15 Classid 37 setTimeout 

16 Concat 38 split 

17 Console 39 substring 

18 Cookie 40 toString 

19 createElement 41 unescape 

20 Decode 42 var 

21 Document 43 window 

22 Escape 44 write 

 

In the next step, we will build a dataset from the raw dataset with 44 features mentioned above by 

preprocessing using the TF-IDF method [13]. TF-IDF is an important technique used in 

information retrieval to estimate the importance of a word or phrase in a given text. In which the 

importance of words is quantified through the TF-IDF index calculation formula (1), the 

calculation process is as follows: 

 

 
 

Where: 

 

tf(t, d): frequency of occurrence of word t in the text d 

f(t, d): Number of occurrences of the word t in the text d 

max({f(w, d): w ∈  d}): Number of occurrences of the word with the most number of 

occurrences in the text d. 
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IDF (Inverse Document Frequency): helps to evaluate the importance of a word. When 

calculating TF, all words are considered to be of equal importance. However, some words such as 

"is", "of", and "that" often appear many times but their importance is not high. Thus, we need to 

reduce the importance of these words (2). 

 

 
 

Where: 

 

idf(t, D): idf value of word t in the text set. 

|D|: total number of documents in the set D. 

|{d∈D:t∈d}|: represents the number of documents in set D containing the word t. 
 

 
 

After calculating the TF-IDF for all the features using (3), the dataset will contain the TF-IDF 

values corresponding to each feature of the data point, which can be called the TF-IDF dataset. 

The TF-IDF dataset is still full of features and needs to be reduced before being fed into the 

unsupervised machine learning algorithm. To reduce the number of features, we use the 

Sequential Feature Selector method, thereby identifying features with too small influence and 

eliminating them. The final dataset has only a few features that contribute significantly to the 

model's prediction results.  

 

The unsupervised machine learning algorithm is chosen as the clustering algorithm. In this study 

we use the K-means algorithm [7], the K-means clustering algorithm is used quite commonly 

because of its efficiency in many applications. With our original design goal of low 

computational cost and fast response, K-means is considered a suitable choice. 

 

The model will be evaluated according to its ability to distinguish the data objects to be predicted, 

which is also the ability to correctly cluster on the input data. The model will be trained by re-

labeling after clustering, checking the accuracy of the clustering, and fine-tuning in the steps of 

building dataset and model parameters until the highest possible accuracy is achieved. 

 
3.2. Predictive method and parameter calculation 
 

The goal of the application is to detect if a website has malicious codes or not. However, with the 

above model, the output is only clusters of data points isolated by the K-means algorithm and no 

other information. Therefore, there is no basis to know whether or not malicious code is present 

on the website. To solve this problem, we propose the following predictive support method for 

the model: 

 

First, let d(Cx,Cy) be the difference between two clusters Cx and Cy, this difference is quantified 

by the distance between the two closest points between Cx and Cy in the feature space, a point in 

Cx and a point on Cy. Calling dp a data point belonging to a cluster, we have: 

 

 
 

When the clustering model has high precision, this measure accurately reflects the difference 

between the clusters. Based on experimental data on the dataset, we determine the smallest 
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difference between the two clusters containing benign data and containing malicious codes. This 

difference was taken as the threshold value to support predictive analysis. 

 

 
 

The Thr in (5) is the threshold and D is the set of output clusters of the K-means algorithm. 

 

When the difference between the benign data cluster and any cluster is less than the threshold, the 

prediction result shows that there is no malicious code and vice versa, there is malicious code. 

 

 
 

If the type of malicious code is known in advance, it is possible to predict the type of malicious 

code appearing on the web, based on the unique difference calculation. Especially if the website 

contains a new type of unknown malicious code, this method can also detect it. Thus, the method 

of detecting malicious code based on an unsupervised learning algorithm model has a way of 

fully specifying normal cases in advance to eliminate (detection) anomalies when they occur. 

Therefore, the precision of the model will depend on the normal website data, the more normal 

website data there is to train the model, the higher the accuracy of the malicious JavaScript 

detection model. 

 

4. EXPERIMENTS AND RESULTS 
 

To build the dataset, we write a program to collect data from the website using Python language 

and Selenium library. The program will access the Phistank website [17] to get the addresses of 

malicious websites and visit the Moz website [18] to get the addresses of normal websites. The 

collected addresses are saved in two different files in preparation for Javascript code extraction. 

Websites with duplicate addresses will be removed. Next, the program will access the website 

addresses saved in the two files mentioned above to extract the Javascript code directly from 

these websites. The process of extracting malicious and non-malicious JavaScript is conducted 

separately and then saved together in a .csv file, named script.csv. The script.csv contains the 

website name, Javascript codes, malicious and non-malicious code labels, and the website's ID, 

as shown in Figure 2. The extracted Javascript codes include the types described in Table 1. 

 

 
 

Figure 2. The content in script.csv file 
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Next, according to the method presented in Section 3, we write a program to calculate the TF-

IDF for the features of each data point in script.csv. Since TF-IDF only allows TF-IDF 

calculation of features in character or word form, the features will be divided into two types: 

characters will be calculated TF-IDF in TF-IDF_01.csv file, words will be calculated in the TF-

IDF_02.csv file and will be merged into the combined.csv file based on the website ID from 

script.csv. Figure 3 is the TF-IDF result of the combined.csv file, which is also the final output of 

the dataset preparation phase. It includes more than 2000 benign and malicious data points. 

However, we will extract smaller datasets for experiments and verify the effectiveness of the 

proposed method with the small datasets. As mentioned above, we will conduct feature extraction 

by the Sequential Feature Selector method before clustering. 

 

 
 

Figure 3. The content of combined.csv containing TF-IDF value of the features 

 

When setting the goal of detecting malicious codes using unsupervised learning algorithms, we 

pay attention to Isolation Forest because it is an unsupervised learning algorithm specializing in 

anomaly detection that has received a lot of attention recently, as in [6,9,15]. So we will also 

install and test malicious JavaScript detection with Isolation Forest and compare it with the 

method proposed here. 

 

As analyzed in section 3 when proposing the method, the proportion of malicious data in the 

dataset to be tested will influence the detection efficiency. Therefore, we will conduct 

experiments with different numbers of malicious code to test the effectiveness and difference 

between cases. For each case, a corresponding threshold will be determined from the experiment. 

The program will conduct a check by calculating the difference between groups, and malicious 

code groups will be detected when the difference is greater than the threshold. 

 

First, we will experiment with the training set with more than 2000 data points containing 10% 

malicious code to determine the threshold. Then, we will perform the test process with many 

different shuffled test sets and each test set is tested many times, the test sets are of the same size 

as the training set. Simultaneously, we also applied the Isolation Forest detection method on the 

same data set for comparison. The results show that with the proposed method, the detection 

threshold is 0.2881 and the accuracy is 98%, while the accuracy of the Isolation Forest method is 

only 92%, as presented in table 2. 
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Table 2. Results of the experiment with 10% malicious code 

 

Method Threshold Accuracy 

Proposed method 0.2881 98% 

Isolation Forest 
 

92% 

 

Next, we increase the percentage of malicious code in the training set to 15% and determine a 

threshold of 0.2961. Performing the test in the same way as above gives an accuracy of 97%. 

Also conducting the test according to the Isolation Forest method has much lower results, only 

88%, as presented in table 3. 

 
Table 3. Results of the experiment with 15% malicious code 

 

Method Threshold Accuracy 

Proposed method 0.2916 97% 

Isolation Forest 
 

88% 

 

In the same way, we increase the percentage of malicious code in the training set to 20% and 

determine the threshold is 0.2933. The test results give an almost constant precision of 97% while 

the precision of the Isolation Forest method is also low at 86%,  as presented in table 4, due to 

detecting more malicious code in the test data. 

 
Table 4. Results of the experiment with 20% malicious code 

 

Method Threshold Accuracy 

Proposed method 0.2933 97% 

Isolation Forest 
 

86% 

 

However, when continuing to increase the proportion of malicious code in the training set to 

higher than in the training set, the threshold value increases as shown in Figure 4, and the 

accuracy decreases. Especially, when the proportion is increased to 40%, the threshold value is 

0.31 and the accuracy drops to 87%. The accuracy of the Isolation Forest method is also reduced 

by 72%. The change in accuracy with the proportion of malicious code in the training data set is 

shown in Figure 5. 

 

0.285

0.29

0.295

0.3

0.305

0.31

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Threshold

 
 

Figure 4. Threshold values increase as the increase in the proportion of malicious code 
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Figure 5. The accuracy decreases as the increase in the proportion of malicious code 

 

The threshold, which is used to find malicious code, is a configuration parameter of the malicious 

code detection system. This parameter depends on the number of malicious codes in the training 

data set. As the number of malicious increases, this parameter also tends to increase and the 

accuracy of the model decreases. To test the effect of the configuration parameter, we reduce its 

value below the learned threshold value, especially in the case of a large proportion of malicious 

code in the dataset, as depicted in Figure 6. The results show that it is possible to improve the 

accuracy of the model as depicted in Figure 7. Therefore, it is recommendable to set the threshold 

value in the program lower than the value learned in the case of a dataset with a high proportion 

of malicious code.  

 

 
 

Figure 6. The threshold value is adjusted lower than the learned value 
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Figure 7. The accuracy is improved due to reducing the threshold value. 

 
The results from the above experiments show that the proposed method achieves higher accuracy 

than the method using Isolation Forest. Especially, when the percentage of malicious code in the 

dataset is at 10% to 20%, the accuracy is from 97% to 98%. As the rate of malicious code 
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increases, the accuracy tends to decrease. However, the experiment also shows that in the case of 

a high malware rate, we can reduce the threshold value to improve accuracy. 

 

5. CONCLUSIONS 
 

The malicious JavaScript detection method based on an unsupervised machine learning model 

has been presented. The key part of the method is the model with data preprocessing components, 

feature extraction, clustering by K-means algorithm, and cluster processing. The model is 

designed to be installed as a malicious JavaScript detection program running on the user's 

computers. The method is not only simple and low cost but also detects unknown malicious 

JavaScript codes. Experimental results show that the proposed method achieves higher accuracy 

than the method using the Isolation Forest algorithm. Especially, when the training dataset has a 

low proportion of malicious codes, the accuracy is higher. When the percentage of benign data is 

high, the ability to distinguish malicious codes is increased, and the value of the learned threshold 

parameter is correspondingly small. The threshold parameter also serves as a configuration 

parameter and can be downregulated in some cases to increase the accuracy of the model. 
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