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ABSTRACT 
 

The ever-increasing use of Artificial Intelligence applications has made apparent that the quality of the 

training datasets affects the performance of the models. To this end, Federated Learning aims to engage 
multiple entities to contribute to the learning process with locally maintained data, without requiring them 

to share the actual datasets. Since the parameter server does not have access to the actual training 

datasets, it becomes challenging to offer rewards to users by directly inspecting the dataset quality. 

Instead, this paper focuses on ways to strengthen user engagement by offering “fair” rewards, 

proportional to the model improvement (in terms of accuracy) they offer.  Furthermore, to enable objective 

judgment of the quality of contribution, we devise a point system to record user performance assisted by 

blockchain technologies. More precisely, we have developed a verification algorithm that evaluates the 

performance of users’ contributions by comparing the resulting accuracy of the global model against a 

verification dataset and we demonstrate how this metric can be used to offer security improvements in a 

Federated Learning process. Further on, we implement the solution in a simulation environment in order 

to assess the feasibility and collect baseline results using datasets of varying quality. 
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1. INTRODUCTION 
 

Federated Learning (FL) is a subfield of Machine Learning, first introduced by Google in 2016 

[1]. It allows participants to collaboratively engage in model training while not requiring them to 
move data to a central location. This alone offers significant privacy improvements, since the 

data remains on the user’s device, allowing for many more use cases and helps overcome 

restrictions imposed on data usage by regulations such as GDPR [2] and HIPAA [3]. 
 

Considering that an overabundance of data is generated at end devices (e.g., smartphones), it is 

often preferable to perform training at the edge. Bearing in mind that many newer mobile devices 
are equipped with dedicated hardware for machine learning, training at the edge is becoming very 

efficient. Organizations may be motivated to participate in FL, knowing that a collectively built 

model will perform better than one trained with only locally generated data. If this motivation is 

not enough, rewarding schemes can be designed, in order to incentivize users to contribute using 
their data. One such example is Google Keyboard [4] which offers an improved typing 

experience to users that contribute using data created on their device (i.e. through typing). In the 

simplest and most popular form of FL, the datasets that belong to participating entities have 
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similar feature sets. This is the case when organizations have related operations such as datasets 
of customers belonging to Bank A and Bank B respectively. In this example it is desired that the 

sample spaces do not overlap between datasets. This type of FL is referred to as horizontal FL 

[5]. Vertical FL can be performed in the case that the datasets do not share same feature-sets but 

at least share some common sample-space. 
 

In a FL environment, the joint global model evolves through the continuous contributions of 

participating parties, usually in the form of model weights [1], [6]. These updates are created 
when local training is performed on end devices. However, the server that maintains the 

parameters does not have access to the actual training data, and therefore cannot assess its 

correctness and quality. Thus, a new attack surface is created, whereas a malicious actor could 
either attack the training data, the training process, or the resulting model updates. In all of these 

cases, the intention of the attacker would be to make the global model deviate as much as 

possible from its intended direction. Two popular attacks are label-flipping [7], [8] and backdoor 

formation [9], [10]. 
 

The label-flipping attack involves manipulating the training data set. In particular, training labels 

are intentionally altered, while the data remains unchanged. Let’s consider the following 
example: The popular MNIST database of handwritten images is used for a typical digit 

classification application, and an attacker is motivated to make the machine learning model 

classify the handwritten number 3 as the number 8. The attacker would then craft a malformed 
training data set which would include handwritten images of number 3 but would falsely labeled 

as 8. In a federated learning setup, the resulting model updates would hinder the performance of 

the global model and depending on the scale of the attack, the configured learning rate and the 

averaging algorithm used, could even render the model unusable and lead to a denial-of-service 
attack. 

 

Backdoor-based attacks involve the installation of a hidden feature in the machine learning 
model. The machine learning model initially appears to function correctly, until the attacker uses 

a specific pattern to trigger the backdoor, at which point the model’s behavior is altered. For this 

attack to be successful, the attacker trains the model so that a certain prediction is made when a 

specific pattern appears as an input. In the case of an image classifier, the attacker would for 
example embed an image pattern (e.g., a watermark), or in the case of a word predictor, a certain 

sequence of words would be used as the trigger. 

 
Several attempts have been made in order to fuse blockchain with federated learning so as to 

offer advantages, such as protection against model poisoning attacks and the possibilities for 

rewards, as described in more detail in section 2. Our solution is based on a smart contract 
architecture and enables the allocation of fair rewards to participants, while at the same we show 

that it is able to protect against label-flipping attacks. We design a reward mechanism, intended 

to be run inside a smart contract, which offers rewards to participants based on the quality of 

contributions (Section 3) and specify the requirements of the smart contract in term of functions 
and storage structure (Section 4). Later on, we setup a suitable testing environment in order to 

verify the feasibility of the solution and collect results in simulations with honest participants that 

own high quality datasets, honest participants that own lesser quality datasets, and adversaries 
that aim to poison the global model (Section 5). 
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2. POTENTIAL BENEFITS OF FL COORDINATION THROUGH A BLOCKCHAIN 

NETWORK – RELEVANT WORK 
 

Distributed Ledger Technologies are a type of distributed databases collaboratively built (many 
entities contribute data) and replicated in a number of nodes (replicas of the whole database are 

kept in many nodes). In essence, they provide a shared and consistent data store. In contrast to 

traditional databases, the individual data records cannot be updated or deleted and are usually 
cryptographically interconnected. Most common categories of DLTs are Blockchains and 

Directed Acyclic Graphs (DAG). Although both of these technologies record transactions in the 

distributed ledger, they do so in different ways. In a blockchain network, the blocks form a linear 
chain of transactions in a chronological order [11]. By comparison, new transactions in a DAG 

network can link to multiple previous transactions. When this link is established, the previous 

transactions get verified. Due to this branching of existing transactions, the DAG usually 

resembles a tree. Furthermore, variants of DLT technologies can be further classified as 
permissioned or permission-less and public or private. 

 

The concept of smart contracts first appeared in 1997 [12] as a way to formalize and secure 
relationships on public networks. They are formed by machine-executable code which is able to 

release digital assets to untrusted parties when certain pre-defined rules have been met. Although 

first generation blockchain networks such as Bitcoin [11] are not designed for such use cases, 

later public and private blockchain technologies such as Ethereum [13] and HyperLedger Fabric 
are designed to support the development and execution of customized smart contracts [14]. 

Figure 1 depicts how users of a blockchain network do not directly interact with the distributed 

ledger; instead, a smart contract is used in order to make queries or add/append data to it. 
 

In the sequel, we analyze the benefits that result when the FL process is coordinated within a 

smart contract. In this section we use the term “blockchain” as this is widely used to refer to DLT 
technologies in total. It is anticipated that these solutions offer advancements in the following 

areas:  

 

Data integrity: Federated Learning describes a process for collaboratively improving a shared 
model and does not deal with security aspects. In its basic implementation, the process is 

coordinated from a single central server. The entity hosting the solution, could alter the data, 

either with malicious intent or unintentionally. Blockchain networks on the other hand are a 
proven technology that is inherently secure. All blocks are cryptographically interconnected, so 

in the case that a block is altered, this would be easily identifiable. In addition to this, due to the 

decentralized nature of blockchain technologies, the original data will continue to be accessible 
from the rest of the healthy nodes. 

 

 
 

Figure 1. Smart contract operation principle. 
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Reliability: Since a blockchain network is decentralized, full copies of the ledger are maintained 
by multiple nodes. For this reason, there is no single point of failure since the ledger will be 

available elsewhere in case of a node failure. This is not the case with a minimal FL setup when 

only one parameter server is used. Instead, a suitable failover design would need to be 

implemented. Such failover solutions involve the deployment of redundant servers (VMs, 
Kubernetes), and mechanisms for data replication. We anticipate that the use of a BC network in 

a FL process will offer improvements in terms of reliability. 

 
Trust: In many cases, the participants in an FL setup might be corporations that wish to work 

collaboratively to build AI models in either a horizontal or vertical federated learning system. In 

a Horizontal Federated Learning System, the entities contribute with data of the same structure 
such as banks contributing with their client lists for fraud detection or the case of hospitals 

contributing with patient data. In the case of Vertical Federated Learning, the entities contribute 

with datasets containing different features, as in the case of a bank and an e-commerce company. 

As a part of the fourth industrial revolution, Industry 4.0 embraces data exchange and the creation 
of digital twins. Therefore, it is very likely that FL will become a priority for manufacturing 

industries. Both of the above learning systems usually require a trusted third party to coordinate 

the FL process and create the model. A blockchain is a good candidate to act as a trusted 
coordinator, because of its security and traceability properties. Blockchain solutions make use of 

a consensus algorithm, which guarantees that all nodes in a distributed ledger will reach an 

agreement and converge. 
 

Potential for incentives or rewards: In a Federated Learning setup, it is important to incentivize 

users that contribute with quality data. This is crucial as the accuracy of the global model is 

directly proportional to the quality of the training data. Blockchain is the perfect medium to 
provide incentives in the form of tokens, which can be exchanged for services or financial 

rewards. 

 
Auditability - Traceability – Accountability: Every time a piece of data on a blockchain network 

is updated, this is stored as a new transaction in a separate block. Previous blocks cannot be 

altered (or deleted). In the context of FL, this can be beneficial, especially in applications that 

require a high level of trust on AI decisions such as in the military sector. Since the blocks on the 
network include the signature of the user initiating the transaction, the user cannot deny the 

authorship of this transaction. This property known as non-repudiation, can be used for 

accountability. 
 

H. Kim et al [15] have proposed a solution (BlockFL), where a blockchain network is used 

instead of a central server to facilitate sharing of model updates from client devices. The 
proposed consensus algorithm is based on Proof of Work (PoW). The blocks on the network 

contain the model updates and miners are used to verify them and add them to the network. The 

advantages include incentives for devices that contribute to the training process with larger 

amounts of data, as well as solving the single point of failure in the case of a central server 
outage. They also study the effects of a miner’s malfunction, imposed energy constraints and 

number of participating devices in respect to end-to-end latency and robustness. This work has 

been extended to offer rewards to valuable updates with smart contracts, using a Cross-Sampled 
Validation-Error Scheme (CSVES) [16]. 

 

U. Majeed et al [17] have proposed a similar architecture (FLchain) that includes features from 
Hyperledger Fabric and Ethereum, in which a separate fabric channel is used for each global 

learning model. The global model state is calculated after each new block generation. The 

suggested consensus algorithm is a modified version of Practical Byzantine Fault Tolerance 
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(pBFT) and Proof-of-Word (PoW). The main focus in this solution is to improve auditability and 
governance. 

 

D. Preuveneers et al [18] have implemented Federated Learning on a blockchain solution for 

intrusion detection systems in computer networks, in order to explore auditability and 
accountability. Their setup relies on a permissioned block-chained network, in order to 

orchestrate machine learning models using federated learning. These models are then used to 

classify traffic for Intrusion Detection. The non-repudiation property of the blockchain network 
allows for enhanced accountability of contributing parties. The implementation is based on 

MultiChain, an opensource blockchain platform. The calculated overhead of the proposed 

solution in relation to traditional FL is estimated between 5%-15%. 
 

More recently, similar research was performed by J. Weng et al [19] who implemented a 

blockchain assisted Federated Learning setup that focuses on incentive mechanisms and 

auditability. The setup is implemented on Corda V3.0 (a blockchain network sharing features of 
Bitcoin and Ethereum) and uses a custom consensus protocol based on the work of Algorand[20]. 

The learning environment is based on TensorFlow and the results show how the training accuracy 

increases with more participating parties. 
 

Kang et al [21] have proposed a reputation-based approach that acts as an incentive mechanism in 

a FL setup. A reputation blockchain network is utilized in order to store weighting reputation 
opinions from recommenders. Based on these reputation weights and contract theory, an 

incentive mechanism is designed in order to motivate high reputation workers. 

 

FedCoin[22] has been recently proposed by Liu et al, where a blockchain network is used in 
order to offer incentives for miners that verify blocks on the network. Specifically, a proprietary 

consensus protocol is developed based on Shapley Values, in order to promote high quality data 

from participants, and provide incentives. 
 

Han Yu et al [23] have approached the problem of model update evaluation by measuring the 

accuracy against a reference model and propose a dynamic payoff-sharing scheme. The work 

emphasizes on different profit-sharing schemes but does not focus on the mechanism which 
creates the quality metric, nor does it analyze the effectiveness of the approach in the presence of 

malicious users. 

 
In a study by Xiaoyu Cao et al [24], a mechanism for protection against malicious clients has 

been proposed in the context of Federated Learning. In this approach, an algorithm creates 

multiple global models from a random subset of clients. A majority vote between the clients is 
then used to select the next model version. Image recognition simulations against public database 

MNIST show that they can achieve 88% model accuracy when 20% of the users are malicious. 

Results in section 5 of our paper show a higher model accuracy convergence (more that 90%) in 

the presence of 30% malicious users. However, ourapproach relies on a verification dataset and 
for this reason results cannot be directly compared. 

 

Although researchers are focusing on methods to offer incentives to participants [15], [19], [21], 
[22], these are not calculated based on the actual value of model updates. The work of I. Martinez 

et al. [16] calculates rewards based on the performance of contributions, however the scheme 

used (CSVES) offers the same rewards to all users that achieve a performance above a specific 
threshold. The solution proposed in this paper, is able to adjust the size of the reward based on 

the improvement that it offers to the joint global model and to our knowledge is unique. 
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The main contributions of this paper can be summarized as follows: a) It extends the capabilities 
of our (previous) model update verification algorithm (presented in [25]) in order to provide a 

metric proportional to the model update contributions and therefore increase fairness in reward 

allocation. b) it describes the implementation of the aforementioned verification algorithm in a 

simulation environment in order to verify feasibility and provide baseline results, based on 
previous work regarding the specifications of executing a Federated Learning process within a 

smart contract [26]. 

 

3. THE REWARDING ALGORITHM 
 

Building upon previous work [25],[26], we design a rewarding algorithm in order to provide 

incentives and therefore promote participants with higher quality data. Although our motivation 

is in line with related work analyzed in section 2, we approach this directly from the standpoint of 
a smart contract so that consensus will be required among multiple nodes. The benefits are 

twofold: first, the security aspect of the verification algorithm is enforced by all blockchain nodes 

and trust of the verification algorithm decision is enhanced due to the distributed nature of the 
architecture.  In more detail, we anticipate that the proposed solution will offer advantages in the 

following areas:  

 
Security enhancements: It is possible that a threat actor may be actively pursuing to degrade the 

performance of the global model, by either training with malformed data, or by transmitting 

malicious model updates. The solution proposed assumes that a known-good verification dataset 

is readily available on each blockchain node. Then, we can compute the effectiveness of each 
model update in terms of accuracy against the verification dataset and conclude whether the 

individual contribution should be taken into account. We demonstrate that the approach is highly 

effective against label-flipping attacks, and we intend to assess its performance against other 
types of attacks (such as backdoor-based attacks or data-poisoning). 

 

Reward calculation on multiple nodes: We propose that the reward calculation is executed inside 
a smart contact. Depending on the blockchain solution used, this process will take place most 

likely on multiple nodes which will need to reach consensus regarding the reward calculation. 

Since the rewards will represent the effort of each individual in a FL system, and in some use-

cases might be exchanged for money or other services, it is imperative for a user to rest assured 
that no single network node can alter the ledger where the rewards are kept (either intentionally 

or due to an error). 

 
Rewards proportional to quality of contributions: Since the parameter server in FL does not have 

access to the actual data, there is no practical and secure way to acquire the dataset in order to 

assess its size. In real use cases we cannot assume that a user is honest and will provide the server 

with a number representing the real amount of data owned, as is assumed in other works. 
Moreover, larger training datasets do not necessarily lead to better models. Instead, we measure 

the efficiency of each model update by comparing the accuracy of the resulting model against a 

verification dataset which is used for reference, in order to measure the improvement of the 
global model performance. The main objective of the rewarding algorithm is to offer fair rewards 

to participating entities of federated learning, i.e., analogous to the quality of their model updates. 

 

3.1. Principle of Operation 
 

The steps involved in the federation process and the operation of the algorithm are outlined in 0. 
The training is performed in rounds. At the beginning of each training round, the current model 

weights are distributed among all participants. As a result, the participants are able to use the 
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model and perform training using locally available data. During a predefined time, participants 
are expected to share the derived model weights with the blockchain network. 

 

At this stage, all model updates are verified individually in order to calculate rewards. The main 

steps involved in the process are a) the model weights are fused with the global model weights, b) 
the derived model weights are evaluated against a verification data set and the difference of 

accuracy is recorded for reward calculation, c) if the accuracy increases, the specific model 

update is saved, otherwise it is discarded. Saved contributions are used during global averaging - 
a process that prepares the model weights for the next global model version. This next global 

model version is in turn redistributed in the next training round. This process is repeated for all 

subsequent training rounds, until a predefined condition is met (e.g., a number of training rounds 
has elapsed, or the global model accuracy is above a threshold). At the end of the learning 

process, the metrics stored for each user are normalized, in order to aid reward allocation. 

 

 
 

Figure 2. Principle of Operation 

 
The Algorithm 1 (shown in the sequel) depicts a high-level representation of the FL process using 

stochastic gradient descent (SGD). Before the training rounds start, the global model weights w0 

as well as the table holding user rewards R, are initialized. During each training round t, the 
current model weights wt are distributed to all participating users k, that perform local training, 

resulting in individual model updates 𝑟𝑡+1
𝑘 . By using a learning rate λ, the individual model 

weights are averaged with the global model, and form temporary model weights 𝑝𝑡+1. The 

accuracy of this temporary model is evaluated (using AccImp) against the accuracy of the global 

model wtand the difference is integrated in table R. Federated Averaging (FedAvg) is then 
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performed, and the model weights 𝑤𝑡+1 are prepared for the next training round. Once all 
training rounds are completed, the rewards table R is normalized. 

 

3.2. Algorithm 1 – Reward Calculation inside the FL process 
 

The following notation is used in the pseudo-code: w0 is the initialized model weights, λ is the 

learning rate of the global model, η is the learning rate of the local model, K contains all Clients, 
Pk contains all data samples of user k, Rk holds reward points for user k, B is the local batch size 

and GetAccuracy is a function which returns the accuracy of the specified model against the 

verification dataset. 

 
procedure Server 

initialize w0 

initialize R 
 for each round t = 1,2,… do 

  for each client k in parallel do 

   𝑟𝑡+1
𝑘 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑤𝑡) 

   𝑅𝑡+1
𝑘 = AccImp(𝑤𝑡 ,𝑟𝑡+1

𝑘 )  

   If 𝑅𝑡+1
𝑘 > 0 then  

    𝑤𝑡+1
𝑘 = 𝑟𝑡+1

𝑘   

   end if 

   𝑅𝑘 = 𝑅𝑘 + 𝑅𝑡+1
𝑘  

  end for 

  𝑤𝑡+1 = 𝜆𝑤𝑡 + (1 − 𝜆)∑
1

𝐾
𝐾
𝑘=1 𝑤𝑡+1

𝑘  

end for 

normalize(R) 

end procedure 

procedureClientUpdate(w) 

 B ← split Pk to smaller sets 

 for all b ∈ B do 

  W←w-η∇f(w,b) 

 end for 

 return W 

end procedure 

procedureAccImp(𝑤𝑡 ,𝑟𝑡+1
𝑘 ) 

 𝑝𝑡+1 = 𝜆𝑤𝑡 + (1 − 𝜆)𝑟𝑡+1
𝑘  

 a = GetAccuracy(𝑝𝑡+1) 

 b = GetAccuracy(𝑤𝑡) 

return a-b 

end procedure 

 

Normalization is performed in order to better differentiate between user performamce. During 

training, it is possible that the reward points collected by a user have a negative value. This can 
occurif the submitted model updates were determined to affect the global model in a negative 

way. During our testing, we have opted to zero out these negative values. The following formula 

has been used for normalization: 
 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
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4. SMART CONTRACT SPECIFICATIONS 
 
In the blockchain part of the proposed solution, the users could either be user owned devices 

(such as mobile phones), machines operating autonomously (for example in industries), or data 

providers (organizations that are willing to make use of their data in order to assist the training 

process). The blockchain network further comprises of the smart contract and distributed ledger. 
 

 
 

Figure 3. Relationships and Operations. 

 

Furthermore, 0 depicts in greater detail the relationships between users, the smart contract and the 

distributed ledger, for the implementation of the three main processes that occur in a training 
round, when federated learning is executed inside a blockchain solution. In order to support these 

main processes, the following three smart contract functions have been considered accordingly. 

When describing the smart contract functions below as well as the structure of the distributed 

ledger, we might use some terminology that is specific to HyperLedger Fabric (an opensource 
private blockchain solution). However, these are included for completeness and should be 

substituted if implemented on different blockchain technologies. 

 
The first function enables users to asynchronously ask for and retrieve the current model version. 

Upon being triggered by the user, the function GetLatestModelParameters() queries the 

distributed ledger for the weights of the current model version, which are in turn returned to the 

user. It is expected that this function will be executed once for every participating user. Since 
only a query operation is performed against the distributed ledger, the operation is not expected 

to require many resources. 

 
The next function is responsible for evaluating and storing verified model updates. The function 

SubmitModelWeights() is once again triggered by the user, as soon as local training is complete. 

The smart contract at this point invokes the verification algorithm and receives the result. 
Depending on the result, the smart contract will need to either store the individual contribution in 

the ledger or to discard it. It is a possibility for failed contributions to be recorded in the ledger, 

even in the case that they are not used in the next model version, in order to conform with use 

cases requiring increased auditability and accountability. This will, however, incur performance 
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costs, as changes made to the ledger will need to be propagated and agreed upon by all network 
nodes. 

 

The last function is required in order to end the training round and prepare the model weights for 

the next round. Rather than being triggered by a user, the function CalculateNextModelVersion() 
is triggered by an event. Events are predefined criteria such as when a certain number of 

contributions is reached, or a predefined time has elapsed or a combination of these two 

conditions. When the function is triggered, the ledger is queried, and all useful contributions are 
retrieved. Federated Averaging [1]  is then performed and the resulting weights are stored in the 

distributed ledger. The process of federated averaging is executed once per training round, and 

therefore it is not anticipated that it will incur a large overhead. 
 

In order to support the aforementioned functionality, some values need to be stored inside the 

ledger. For this reason, we assume a key-value pair database which is common in many private 

and public blockchain network solutions and we describe its structure. In this type of database, 
each value is referred to by a unique key (0). The first key-value pair is required in order to store 

the weights of the current model version. It is a multi-dimensional array, it is preset before the 

first training round starts, and it is updated at the end of each training round. In the scope of the 
FL process, it is referenced by the GetLatestModelParameters() function and is updated when  

CalculateNextModelVersion()  is invoked. 

 
Table 1.  Distributed Ledger Structure 

 

Key  Value  

ModelWeights Multidimensional matrix containing weights 

for current model version 

ModelUpdate(identity) Multidimensional matrix containing weights 
(one for each [identity]) 

Reward(identity) Value proportional to quantity/quality of user 

contribution (one for each [identity]) 

 

Another key-value pair is defined in order to store contributions from participants. Since the 
number of received contributions is dynamic, we define it as an array. This array does not need to 

be persistent across training rounds. It can either be deleted or preserved according to specific use 

case requirement. In order to calculate user ratings, we need another array which will keep a 
count of all contributions per user or a value that is proportional to the quality of each user’s 

contributions. This key can be used in order to offer rewards, e.g., in the form of tokens to be 

exchanged for services. 
 

 
 

Figure 4. Distributed Ledger operations 



International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.6, November 2021 

47 

For some use cases, it might be desirable to limit access to individual functions beforehand, so 
only specific users have access. This will most likely increase security and can apply to both 

private and public blockchain technologies. However, this implies that a central administrating 

authority will be required in order to select the identities that are able to participate. The 

following authorization levels are supported: 
 

 No Access – The user is not able to access any smart contract function, and therefore 

cannot use the global model nor participate with model updates. 

 Model use only – The user is granted access to GetLatestModelParameters() function, 

but is denied access to SubmitModelWeights(). Therefore, he is able to download the 
weight of the current model version and use it offline. It is not possible for the user to 

contribute with model updates. 

 Full Access – Access is allowed to all functions and therefore the user is able to use 

and improve the shared global mode. 
 

It is also possible for the authorizations to be assigned dynamically depending on varying 

attributes. One of these could be user performance. In this scenario, the verification algorithm 

may be used in order to keep count of the contributions of each user thereby creating a rating. 
Subsequently, the rating can be used in order to maintain access to the global shared model. For 

instance, a user may initially have full access, but because he has not participated in the last 

predefined number of training rounds, he may have his access revoked. As a consequence, he will 
lose access to newer versions of the global model. In other words, this can support use cases 

where a user is permitted to use the global model as long as he makes meaningful contributions. 

In a commercial environment, access can be granted on a subscription basis in exchange for 
money. 

 

5. TESTBED 
 

This section includes a description of the tools used for simulating the FL process and collecting 
measurements. In order to simulate the federated learning process, we have developed scripts in 

Python language in order to implement algorithm 1 with the aid of open-source frameworks and 

libraries such as TensorFlow and Kerasas well as publicly available reference datasets from the 
MNIST database. Before the process starts, the model is configured using the open-source Keras 

libraries and is initialized with random values. Model initialization needs to be performed only 

once, before the first training round, however, the next steps described here are repeated for each 

subsequent training round. The MNIST database consists of 70,000 images of handwritten digits. 
The images are 28 by 28 pixels in size and are in grayscale. The images belong to 10 classes 

representing the ten numerical digits 0-9 and are commonly used as benchmarking datasets 

during training and validation. This database is publicly available and used by machine learning 
developers and researchers in order to record baseline performance. 

 

The developed scripts simulate the federated learning process as depicted in figure 2, support all 

functions of algorithm 1, and are initially used to collect baseline resultsusing the MNIST 
database. They also handle necessary functions such as model initialization, model training and 

the model update aggregation (Federated Averaging [1]). In more detail, the model used 

throughout this paper is initialized using the Keras libraries, has an input layer of 28x28 in order 
to receive the handwritten digit images, a dense layer of size 128 with ReLU (rectified linear 

unit) activation and an output layer of size 10, used as the classifier. 

 
The experiment is run in the following sequence: First, we carry out performance measurements 

using a simple federated learning process (also known as vanilla FL i.e., without any 
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modification to the algorithm) in the presence of adversaries and we collect baseline results 
(Figure 5). We then use algorithm 1 and repeat the process. We later discuss improvements 

regarding the security of the global model (Figure 6), as well as show how the point system 

works (Figure 9) and how it can be used to offer rewards.  

 
We first concentrate on the defense against the malicious nodes. For this reason, during this 

specific simulation, a federated learning process (against the MNIST database) was first run for a 

duration of 10 training rounds and a varying percentage of malicious participants (following 
similar strategies applied in other contexts [27]). 0 and 0 show how the global model performs in 

the presence malicious participants when protections are disabled and enabled respectively. Not 

surprisingly, when malicious updates are taken into account during model aggregation (0), the 
rate of accuracy improvement decreases. Most importantly, in the presence of 20% or more 

adversarial activity, the model accuracy is not able to converge. This can be attributed to the fact 

that in label-flipping attacks, the attacker is actively training the model with incorrect labels i.e., 

aiming to change the direction of the global model predictions. 
 

 
 

Figure 5. Performance with traditional FL algorithm in the presence of adversaries 

 

When the verification algorithm is configured to discard useless model updates (0) we can 
observe that it is able to effectively differentiate between useful/harmful model updates and 

therefore offer a substantial protection against this type of attack. 



International Journal of Network Security & Its Applications (IJNSA) Vol.13, No.6, November 2021 

49 

 
 

Figure 6. Performance with model update protection in the presence of adversaries. 

 

Then, we turn our attention to the evaluation of rewards, analogous to the model improvement 
brought by each entity. A simulation of algorithm 1 has been run using the tools described earlier 

in this section. In this particular setup, 10 participants join an FL process which lasts 10 training 

rounds. With respect to the training and validation data, we use the popular MNIST database of 
handwritten images. The training data is then further split into smaller chunks, which are 

allocated to the participants. In order to simulate varying levels of data quality, we create 

distorted images for training data (0). In this simulation, participant 1 receives unmodified 

training images, whereas participants 2-7 receive images with varying levels of gaussian noise. 
The variance of the noise ranges between 0.45 and 1.2 and a mean of 0. Participants 8-10 perform 

label-flipping attack as described in section 1 and are actively trying to degrade the performance 

of the model. 
 

 
 

Figure 7. Training images with gaussian noise applied 

 

0 depicts the difference in accuracy between the evaluation model (temporary model 𝑝𝑡+1 in 

algorithm 1) and the global model i.e., the result of function AccImp. Even in this extreme 

simulation consisting of mixed types of participants, the accuracy of the resulting model is still 
able to reach more that 90% accuracy. In the graph, we can distinguish two different trends. The 
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higher ones show the performance of the honest participants, while the lower ones (overlapping 
each other) show the performance of the threat actors (participants 8-10). 

 

 
 

Figure 8. Difference in accuracy of each contribution 

 

In more detail, we can also extract the following information:  

 

 We can observe that the accuracy gains (in terms of accuracy difference against the 
validation dataset) is high for participants 1-7 during the first training rounds and tend 

to level off during the end. This curve matches the inverse typical curve of machine 

learning, i.e., accuracy gains are higher when a machine learning model is untrained 

and tend to decrease when the performance of the model is higher.  

 Even participants that used very noisy data (such as 6 and 7) contribute positively to 
the FL process as evident by the high performance shown in the figure during at least 

the first 4 rounds. In further rounds, and as the model has become more mature, the 

model updates of the least performing participants (e.g., participants 6-7) become 
redundant, the accuracy improvement becomes negative (in terms of the AccImp 

function) and, as a consequence, are discarded during model aggregation. 

 Participants with the healthiest data (such as participants 1-2), contributed positively 

until the last training round. Their contributions improved the accuracy of the global 

model in respect to the verification dataset, which was correctly identified by the 
verification algorithm (AccImp function returned positive numbers) and as a 

consequence, all model updates of these participants were used during model 

aggregation. 

 Participants 8-10 on the other hand only have zero and negative values. This is 
attributed to the fact that their model updates test badly against the verification set. So 

as the global model accuracy improves, the difference in accuracy (AccImp function) 

becomes negative. 

 The performance difference between participants 1-7 is not readily distinguishable in 
the above figure. For this precise reason, we opt to perform normalization of all values 

after the training process. 

 

0 depicts the points accumulated by each participant, after the values have been normalized on a 
scale of 0-1. The best performing participant (participant 1) is awarded the highest value 1, while 
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the worst performing participant (participant 7) is assigned the lowest value 0. Participants 2-6 
have values in-between, proportional to their contribution.  What is interesting here, is that these 

results correctly correlate to the quality of the training data used. Conveniently, adversaries have 

been correctly identified (result of AccImp function is negative) and have received no rewards. 

The malicious model updates were not used during the generation of the global model since this 

would require the satisfaction of the condition (𝑅𝑡+1
𝑘 > 0). Such a fair reward scheme is necessary 

both for consumer owned devices and industrial organizations owned devices where the current 

challenge is to collaboratively train digital twin models of the industrial processes (as discussed 

in [28]). 

 

 
 

Figure 9. Normalized values, used for rewards 

 

6. CONCLUSIONS 
 
The work presented in this paper involves an FL model update assessment algorithm, designed in 

a way to be able to run inside of a smart contract. Its functionality has been extended so that it 

can differentiate between different data quality levels with respect to the datasets provided by 
users during training. The challenge in real FL use cases is that the coordinator is unable to 

measure the quality of the training data directly since it is generated and kept at edge devices. 

Contrary to related work, the algorithm presented in this research does not make any assumptions 

regarding the presence of this data, nor does it rely on the honesty of participating users. Instead, 
it measures the performance of the resulting model in terms of its accuracy against a verification 

dataset. In order to assess its effectiveness and response to the presence of malicious users, a 

public dataset of training images was modified so that they now contain varying levels of 
gaussian noise. In this image recognition use case, results show improvements in the following 

two areas: First, a metric is assigned to each user that represents the quality of the training data 

used. The authors anticipate that this metric can be used as-is in order to provide incentives to 
well-behaving users, for example by transferring tokens inside the blockchain network. Secondly, 

results show that the algorithm successfully protects the global model from malicious behavior by 

discarding malformed model updates. At the same time, the malicious users can be penalized by 

recording a low (or negative) performance value on the distributed ledger. As future work, the 
authors intend to implement the algorithm in a private blockchain network in order to 

automatically pay out users in the form of blockchain tokens and to further examine the potential 

of the security protection scheme against different types of attacks. 
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