
International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.3, May 2022

DOI: 10.5121/ijnsa.2022.14302 11

DETECTING MALWARE IN

PORTABLE EXECUTABLE FILES USING
MACHINE LEARNING APPROACH

Tuan Nguyen Kim1, Ha Nguyen Hoang2 and Nguyen Tran Truong Thien3

1School of Computer Science, Duy Tan University, Da Nang, Vietnam
2University of Sciences, Hue University, Vietnam

3Cybersecurity Center, Duy Tan University, Da Nang, Vietnam

ABSTRACT

There have been many solutions proposed to increase the ability to detection of malware in executable files

in general and in Portable Executable files in particular. In this paper, we rely on the PE header structure

of Portable Executablefiles to propose another approach in using Machine learning to classify these files,

as malware files or benign files. Experimental results show that the proposed approach still uses the

Random Forest algorithm for the classification problem but the accuracy and execution time are improved

compared to some recent publications (accuracy reaches 99.71%).

KEYWORDS

PE file, PE header, Feature, Malware, Random Forest Algorithm.

1. INTRODUCTION

The term “malicious malware”, or malware, is used to refer to computer softwares that is

developed for illegal purposes such as stealing data, corrupting data, damaging computers and

computer systems of certain individuals and organizations. Malwares can hide/attach in any file,
device on computers, and computer networks. In this article, we only focus on the types of

malware hidden in executable files on the Windows operating system environment.

In recent years, malware has become a significant threat to security in cyberspace. Malware may

survive on terminals, migrate over networks, or be attached to/hidden in executable files,
particularly Windows PE files. Currently, there are two methods for detecting malware [1-2].

Despite its high accuracy, signature-based detection confronts several challenges due to the

diversity and morphing capabilities of today's malware. This difficulty may be solved using non-
signature-based detection approaches, which are frequently employed to detect "unknown"

malware variants, which are potentially hazardous. When used in combination with a machine

learning approach, this technology helps to classify and detect malware with high efficiency

today [3-4].

PE (Portable Executable) files are executable files for the Windows operating system. These files

can either be executable or contain binary code that can be used by other executable files. The
format information area of PE files contains the information that the operating system needs to

regulate the execution of the files once they've been loaded into main memory [5]. Because all PE

files have the same structure and number of fields in the PE header, we can use these fields as
input features in the process of utilizing Machine Learning algorithms to construct malware

classification models for these files.

https://airccse.org/journal/jnsa22_current.html
https://doi.org/10.5121/ijnsa.2022.14302

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.3, May 2022

12

As we all know, the Windows operating system uses a standardized structure for the information
included in the PE header of benign PE files. If a PE file has data in its PE header fields that is

"different" from data found in benign PE files, it is almost certainly a malware. By looking at the

data contained in the fields of a PE file's header, we could identify it as whether malware or

benign. In addition, the number of fields in the PE header is large, the data in the fields is also
related to each other, and most of the fields can be "different" at various levels. Therefore, the

Malware Detection challenge should be approached utilizing Machine Learning algorithms to

achive the highest possible accuracy.

We can collect many PE header samples of benign and malicious files, extract the characteristics

of each field, and compare the results to discover the most significant differences between the
benign and malicious files, which can then be used to classify the files. This is the method we use

in this article to experiment and propose.

Although this study is only aimed at detecting malware hidden in executable files in the Windows
operating system environment, this approach can be applied to executable files on other operating

system environments such as: Linux, Mac, Android, and so on if we know the header structure of

these files and have a trusted data set.

2. RELATED WORKS

There are many approaches to the malware classification problem using machine learning

techniques. In this section, we will analyze the results of recently published approaches in terms
of accuracy, detection rate, and training speed.

 In [5], Rushabh Vyah and partners proposed a procedure to detect malware in PE files on the

network environment. They applied four different supervised learning algorithms, Decision
Tree, K-NN, SVMs, and Random Forest, on the same data set, with only 28 static features.

Vyas chose the Random Forest model in his research. The average malware detection rate for

backdoor, virus, trojan, and worn of this model is 98.7% and the positive detection rate of that
is 1.8%.

 Jinrong Bai and partners proposed an approach for malware detection in PE files by mining

the format information of these files [6]. The “in-depth analysis” skill was chosen to analyze

the format information field of PE files. Firstly, they extract 197 features from this format

information field, then perform feature selection to reduce the number to 19 or 20 features.
Then, the selected feature set will be trained by fours classification algorithms J48, Random

Forest, Bagging, and Adaboost. Experimental results show that this approach achieved the

highest accuracy of 99.1% when using the Random Forest classification algorithm.

 The approach proposed by Hellal and Lotfi Ben Romdhane [7] is a combination of two
techniques which are static analysis and graph mining. They have proposed a new algorithm

that can automatically extract common and distinct, but repeatable, patterns of malware

behavior from suspicious files. This proposal is concerned with saving memory space and
reducing scan time by generating a limited number of signatures, which is distinctive from

existing methods. The approach in [7] achieved high recognition rate and low false positive

rate with 92% accuracy.

 The author group then extracted the icons from the PE file to identify the most prevalent and

misleading ones in the malware. Yibin Liao [8] examined the proposed approach on a dataset
of 6875 samples, which included 5598 malicious and 1237 benign executable file header

samples. The results showed that in less than 20 minutes, this method obtained a detection rate

of more than 99% with fewer than 0.2% false positives. According to the author, malware can
be detected by examining a few major features/fields in the PE header of PE files or by

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.3, May 2022

13

looking at the common icons, which are false symbols encoded in these files. This reduced the
time taking to identify malware in PE files.

Currently, we have not found a method, an approach or a model that is considered to be the most

generic and optimal for detecting and classifying malware using Machine learning with the
highest accuracy. Therefore, we propose a different approach, focusing on the high-impact fields

in the PE header of PE files, as a small contribution to this research direction.

3. THE PROPOSED APPROACH

Our proposed approach is evaluated on a huge dataset, which includes 140,297 PE header

samples, 44,214 malware samples, and 96,083 benign samples. We collected this data from the
virusshare.com website and benign PE files on the Windows operating system.

We apply machine learning algorithms such as AdaBoost, Gradient Boosting, Decision Tree,

Extra Tree, and Random Forest to develop classification models of PE files - malware or benign
files - from this dataset based purely on the majority of the variables in the PE headers. The

purpose of the experiment is to find a machine learning classification model with high accuracy

and an acceptable training time.

We deleted the fields least affected by malware, such as LoaderFlags, NumberOfRvaAndSizes,

SizeOfHeapCommit, SizeOfHeapReserve..., from the dataset using the information gained from

surveying the fields in the PE Header section of these files, keeping only 44 fields. This is
completely consistent with the results obtained using the Random Forest and Extra Tree methods

to assess the influence of fields, specific features, in the PE headers of 140,297 PE samples in the

dataset. According to Random Forest, the following table illustrates the influence of fields:

Table 1. The Influence of Fields in PE headers of PEs files according

to Random Forest algorithms

 Fields in PE header Level of affect

1 ImageBase 0.193689

2 SizeOfStackReserve 0.103419

3 VersionInformationSize 0.075304

4 MinorImageVersion 0.065888

5 ResourcesMinSize 0.058338

6 Characteristics 0.052923

7 ExportNb 0.052831

8 Subsystem 0.049870

9 MajorOSVersion 0.045429

10 ResourcesNb 0.037733

… … …

44 ImportsNbOrdinal 0.001600

45 LoadConfigurationSize 0.001275

46 FileAlignment 0.001175

47 SectionAlignment 0.001167

48 SizeOfHeaders 0.001088

49 SizeOfUninitializedData 0.001036

50 BaseOfCode 0.000832

51 SizeOfHeapReserve 0.000401

52 SizeOfHeapCommit 0.000225

53 NumberOfRvaAndSizes 0.000008

… … …

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.3, May 2022

14

Reducing some fields of each PE header sample helps to reduce the size of the dataset, then
resulting in a reduction in system resources used in the classification model building program.

This reduction of fields also leads to a reduction in model training time, 13.04s and 12.52s for 54

features and 44 features, respectively.

The remaining part of our approach is conducted in the order of the four experiments listed in the

following section.

4. EXPERIMENTAL RESULTS

4.1. Experiment 1

We randomly divide the dataset into 2 parts, 80% is the training set (Training set) and 20% is the

test set (Test set). These two data sets are used to evaluate the accuracy and training time of

Machine learning models according to 5 different algorithms. The results are given in Table 2.

Table 2. The accuracy and training time of Mlmodels

Algorithm Accuracy Training time

AdaBoost 99.12% 12.83 s

GradientBoosting 99.30% 30.76 s

DecisionTree 99.34% 0.98 s

ExtraTree 99.69% 9.74 s

RandomForest 99.71% 13.17s

This experiment shows that the model built by the Random Forest algorithm gives the highest

accuracy, up to 99.71%, as compared to the other 4 algorithms, with the average training time.

The Extra Trees model achieves a faster training time, but lower accuracy than the Random

Forest model. The Decision Tree algorithm for the model has a very high training speed, but the
accuracy is not as expected.

4.2. Experiment 2

Although the method of randomly dividing the data set into two parts as in experiment 1 is not

complicated, the model's accuracy may be affected if overfitting occurs. To tackle the
overfit/unoverfit problem in this experiment, we apply the k-fold technique [9], with K = 10.

Table 3 displays the acquired results.

Table 3. The accuracy of k-fold ML models with K = 10

Algorithm Average accuracy Min accuracy Max accuracy

AdaBoost 99.11% 99.05% 99.17%

GradientBoosting 99.31% 99.24% 99.37%

DecisionTree 99.34% 99.26% 99.42%

ExtraTree 99.71% 99.67% 99.75%

RandomForest 99.72% 99.66% 99.76%

From the results obtained in Experiment 1 and Experiment 2, we choose the Random Forest
algorithm to build a classification model for our proposal, because the accuracy it provides is the

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.3, May 2022

15

highest (99.71% and 99.72%) and with a reasonable training time.

4.3. Experiment 3

In this experiment, we will find out whether increasing the number of Trees in the Random Forest

model improves accuracy, and if so, how many Trees are needed for the model to work faster and

with higher accuracy.

We first try to create 10 Random Forest models with only one tree, then gradually increase to 500

trees, for each increase we will average the accuracy and training time of 10 models. The results

are shown in 2 charts below (Fig. 1a and Fig. 1b):

Fig. 1a. The training time when increasing the number of trees

Fig. 1b. The accuracy when increasing the number of trees

The accuracy when the number of Trees is less than 20 is very low. After the Trees number

reaches 50 starts, the accuracy starts eventually increasing. When the number of Trees obtain
100, the training time increases with that number. This illustrates that we only need a suficient

number of Trees (100 in this case) for the model to achieve a high accuracy. The reduction in the

number of trees reduces training time and saves system resources. This is something to be

reconised.

4.4. Experiment 4

By selecting only 44 features, equivalent to 44 fields in the PE header of PE files, our

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.3, May 2022

16

RandomForest machine learning classification model has an average accuracy rate and
remarkable training time, 99.72% and 13.17s, respectively. We experiment to further reduce the

number of selected features, to see if the accuracy rate and model training time are changed. The

results are as follows, when the number of features is selected between 13 and 15, the average

accuracy rate is 99.63% and the training time is 3.88s.

As it is shown in this experiment when reducing the number of features as much as possible, the

average accuracy rate decreases only by a negligible amount, 0.09%, but the reduction in training
time is remarkable, 9.29s (70%), compared to the original. Reducing the number of features also

reduces the size of the dataset, reduces the time it takes to extract fields from the PE header of PE

files, speeds up malware detection, and increases system performance.

Fig. 2. Comparison between the accuracy in this proposal and that of a recent research

Thus, our approach to classifying malware based on the E header of PE files has achieved the
recorded accuracy compared to some recent publications (Figure 2).

In the future, we will conduct experiments similar to the approach described in [10-11].

5. CONCLUSION

This article proposes a different approach for malware detection on PE files. Our proposal is

tested on a huge dataset, including headers of 149,297 PE files that consist of 44,214 malware
files and 96,083 benign files. As the experimental results show, even without evaluating total

fields in the header and removing the least influential fields, the Random Forest algorithm still

provides pretty high accuracy as compared to 4 other algorithms.

This accuracy is calculated to be up to 99.71%, with a training average of 13.17s. In addition, the

experiments also figure that the accuracy of Random Forest is determined by selecting the
appropriate number of Trees rather than a large number of Trees. Finally, the reduction of the

number of Trees and their moval of the less important fields improved the model training speed

(70% reduction), malware detection speed, and system resources.

In the future, we will research and propose more advanced solutions to improve the accuracy and

speed of malware detection on various file types.

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.3, May 2022

17

REFERENCES

[1] Priya A., Singh K., Tiwari R., (2016) A Review on Malware Analysis by using an Approach of

Machine Learning Techniques, Smart Moves Journal Ijosthe, vol. 3, no. 5, pp. 1-5.

[2] Souri A., Hosseini R., (2018) A state-of-the-art survey of malware detection approaches using data

mining techniques, Human-centric Computing and Information Sciences, vol. 8,

pp. 1-6.

[3] Fabio, Troia D., (2020) Machine learning classification for advanced malware detection. PhD thesis,

Kingston University, Section 5-7.
[4] Rosli N. A., Yassin W., Faizal M. A., Selamat S. R., (2019) Clustering Analysis for Malware

Behavior Detection using Registry Data, IJACSA, vol. 8, iss. 12, pp. 95–120.

[5] Vyas, Luo R., McFarland X., Justice N., (2017) Investigation of malicious portable executable file

detection on the network using supervised learning techniques, IFIP/IEEE Symposium on Integrated

Network and Service Management (IM), pp. 941–946.

[6] Bai J., Wang J., Zou G., (2014) A Malware Detection Scheme Based on Mining Format Information,

The Scientific World Journal, vol.2014, Article ID 260905, pp.1-11.

[7] Hellal A., Romdhane L. B., (2016) Minimal Contrast Frequent Pattern Mining for Malware

Detection, Computers & Security, vol.62, pp.19-32.

[8] Liao Y., (2012) Pe-Header-Based Malware Study and Detection, Security & Privacy Workshop, San

Francisco, CA, U.S.A.
[9] Anguita D., Ghelardoni L., Ghio A., Oneto L. and Ridella S., (2012) The ‘K’ in K-fold Cross

Validation, European Symposium on Artificial Neural Networks, Computational Intelligence and

Machine Learning, Bruges (Belgium), pp.25-27.

[10] Kumara A., Kuppusamya K. S., Aghilab G., (2019) A learning model to detect maliciousness of

portable executable using integrated feature set, Journal of King Saud University - Computer and

Information Sciences, vol.31, iss.2, pp.252-265.

[11] Roseline S. A., S. Geetha S., Kadry S., Yunyoung N., (2020) Intelligent Vision-Based Malware

Detection and Classification Using Deep Random Forest Paradigm, IEEE Access, vol.8, pp.206303-

206324.

AUTHORS

Tuan Nguyen Kim (First Author) was born in 1969, and received B.E, and M.E from

Hue University of Sciences in 1994, and from Hanoi University of Technology in 1998.

He has been a lecturer at Hue University since 1996. From 2011 to the present (2021) he

is a lecturer at the School of Computer Science, Duy Tan University, Da Nang,

Vietnam. His main research interests include Computer Network Technology and

Information Security.

Ha Nguyen Hoang (Corresponding Author) was born in 1976 in Vietnam. Working in

the Faculty of Information Technology, Hue University of Sciences. 1995-1999

Bachelor of Science (B.S) in Science (majoring in COMPUTER SCIENCE), Hue

University of Sciences. 2003-2005 Master of Science (M.S) in Computer Science, Hue

University of Sciences.2012-2017 Doctor of Science (D.S) in Computer Science, Hue
University of Sciences. His main research interests include Cloud Computing, parallel

processing, and distributed processing.

Nguyen Tran Truong Thien was born in 1997, and received B.E from Duy Tan

University in 2020. He has been a security researcher at Duy Tan University since

February 2021. His main research interests include is Network Security, Information

Security, and Machine learning for Cybersecurity.

https://thesai.org/Downloads/Volume10No12/Paper_13-Clustering_Analysis_for_Malware_Behavior_Detection.pdf
https://thesai.org/Downloads/Volume10No12/Paper_13-Clustering_Analysis_for_Malware_Behavior_Detection.pdf
https://www.sciencedirect.com/science/article/pii/S1319157817300149#!
https://www.sciencedirect.com/science/article/pii/S1319157817300149#!
https://www.sciencedirect.com/science/article/pii/S1319157817300149#!
https://www.sciencedirect.com/science/journal/13191578
https://www.sciencedirect.com/science/journal/13191578
https://www.sciencedirect.com/science/journal/13191578/31/2
https://www.sciencedirect.com/science/journal/13191578/31/2

