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ABSTRACT 
 

Distributed Denial of Service (DDoS) attacks seriously threaten network security. Most countermeasures 

perceive attacks after the damage has been down. This paper thus focuses on the detection of DDoS 
attacks, and more importantly, victim identification as early as possible, so asto promote attack reaction in 

time. We present a resource-efficient collaborative DDoS detection system, called F-LOW. Profiting from 

bitwise-based hash function, split sketch, and lightweight IP reconstruction, F-LOW can defeat 

shortcomings of principle component analysis (PCA) and regular sketch. With a certain number of 

distributed detection nodes, F-LOW can detect DDoS attacks and identify victim IPs before the attack 

traffic arrives victim network. Outperforming previous work, our system fits all Four-LOW properties, low 

profile, low dimensional, low overhead and low transmission, of a promising DDoS countermeasure. 

Through simulation and theoretical analysis, we demonstrate such properties and remarkable efficacy of 

our approach in DDoS mitigation. 
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1. INTRODUCTION 
 

As cloud computing becomes ubiquitous on the Internet, it opens the door to many serious 

attacks, particularly Distributed Denial of Service (DDoS) attack. As one of the most serious 
threats to cloud security, DDoS attack affects cloud and datacenter service even worse than to 

regular Internet service. Regarding cloud and datacenter as an inherent multi-tenant 

infrastructure, DDoS attack against a single customer is against all customers in the infrastructure 
[1]. In recent years, DDoS attacks evolve both in the quantity and the destructive power of a 

single attack. The peak bandwidth of the largest DDoS attack in 2021 exceeds 3Tbps [2]. DDoS 

attacks in such scale can easily breakdown arbitrary online services and incur huge financial 

losses. Cloud providers need to do more to ensure the availability of their cloud services. 
 

Attention is thereby devoted to countermeasures against DDoS attacks towards online services 

such as could computing. This paper is concerned with detection, and more importantly, victim 
identification of network-wide DDoS attacks, so that outcomes can contribute to quick reaction to 

such devastating attacks. The challenging is, the two countermeasures suffer from the increasing 

link bandwidth of current Internet as well as inconspicuous sources of DDoS attacks. From this 

perspective, a promising DDoS countermeasure system must have the following Four-LOW 
properties. (1) low profile: the system should have the capability of detecting low-profile network 

anomaly, so that DDoS attacks can be detected as early as possible; (2) low dimensional: in order 

to identify victim IPs of DDoS attacks, dimensional reduction mechanism is necessary for 

https://airccse.org/journal/jnsa22_current.html
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processing high-dimensional data, such as per-IP flow statistic; (3) low overhead: expensive 
computational cost and memory consumption should be avoided in the system; (4) low 

transmission: if the system is distributed, collaborative nodes transmit as little data as possible, 

not exacerbating network congestion caused by an ongoing DDoS attack. 

 
Previous works make progress in DDoS detection or identification, but they do not fit all Four-

LOW properties described above. Many of them are insensitive to low-profile DDoS attacks and 

only can detect anomalies when attack traffic is aggregated conspicuously near the victims 
[3][4][5]. Lakihina et al. [6] apply PCA on origin-destination (OD) flows, the aggregations of 

traffic from a source router to a destination router. Taking advantage of PCA, this method can 

figure out malicious OD flows that includes low-profile attack traffic. However, this method 
cannot result in particular victim IPs due to coarse-grained aggregation. Applying PCA on fine-

grained per-IP flows may help to distinguish victim IPs, but the data dimensionality jumps 

sharply to a high degree that PCA cannot afford to. To tackle this problem, Li et al. [7] use sketch 

to randomly aggregate IP flows. Although this method keeps input data of PCA in low 
dimensional space, it therewith poses another high-overhead problem. That is to infer key IPs 

reversely from a number of particular buckets. This process always involves great space in 

memory for storing mapping tables, as well as high computational cost for calculate intersections 
of multiple large sets [8][9][10]. Another problem that obstructs practical application of [6] and 

[7] is too much data sharing among collaborative nodes. Original network measurements, such as 

OD flows statistic [6] and sketches [7] are transmitted over the network to a centralized device, 
challenging sparing bandwidth capability of DDoS-compromised links. Recently, software-

defined DDoS detection methods are proposed to confront DDoS attacks [15, 16] for cloud and 

datacenters. 

 
To conquer above challenges, this paper proposes a collaborative DDoS detection and victim 

identification system, called F-LOW. Our system can satisfy all Four-LOW properties, thus being 

a promising countermeasure against network-wide DDoS attacks. Our main contributions are 
summarized as follows. 

 

 We pioneerly propose split sketch which divides a sketch structure into pieces and deploy 

them on distributed network devices. In this way, network measurements all over the 
network seems to be in a sketch and can be treated relevantly, even without being sent to a 

centralized device. 

 We formally define bitwise-based hash function and adopt it into split sketch for traffic 
aggregation. The aggregation mechanism not just significantly reduces data dimensionality 

in local detection, but also makes victim identification easy-to-implement. 

 We extend existing PCA-based anomaly detection algorithm to detect multiple anomalous 
flows, suiting the needs of practical situations. Heuristic rules are presented to improve 

computational cost. 

 We present a lightweight IP reconstruction algorithm to identify victim IPs of DDoS attacks. 

It can accurately infer victim IPs or partial victim IP with very low computational cost. Both 
outcomes help to effectively filter attack traffic during reaction. 

 We demonstrate Four-LOW properties of our approach through simulation and theoretical 

analysis. When compared with the most relevant work, our approach has much lower 
overhead and greater scalability. We experimentally show that outcomes of our system, even 

being partial victim IPs, can help to filter DDoS traffic in reaction. The false positive rate is 

less than 3%. 
 

The rest of this paper is organized as follows: Section 2 briefly introduces background knowledge 

and practical issues.Section 3 presents overview of the F-LOW system and Section 4 anatomizes 
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the design of F-LOW. We evaluate our F-LOW system in Section 5 and draw a conclusion in 
Section 6. 

 

2. BACKGROUND 
 

In this section, we briefly introduce two building blocks, sketch structure and Principle 
Component Analysis (PCA), that are widely used in the domain of network anomaly detection. 

We also discuss practical issues that obstruct these two methods from achieving great progress in 

DDoS detection and victim identification. 
 

2.1. Sketch 
 
Sketch is a sublinear space data structure capable of summarizing high-dimensional data streams. 

A sketch structure, in the form of an𝐻 × 𝑀  matrix, is composed of hash tables of 𝐻 different 

hash functions. Normally, these functions are selected from a universal family of hash 

functions.𝑀is the size of hash table. An element in a sketch is called bucket. If we refer to a 

sketch as 𝑆𝐾 , then SK[i][j] represents the bucket in i-th row and j-th column of SK. When 

summarizing a data stream using a sketch, a bucket is regarded as a counter for counting the 

number of items that are mapped to it. In a data stream, each item is a two-tuples (key, value). 

When an item arrives, the sketch updates as follows. Let ℎ0, ℎ1, … , ℎ𝐻be 𝐻 hash functions. For a 

particularℎ𝑖 , calculate the bucket index 𝑗 = ℎ𝑖(𝑘𝑒𝑦) . Then the bucket SK[i][j]  is updated to 

SK[i][j]+ value. For each item, 𝐻 buckets are updated, one in each hash table. After compressing 

a data stream into a sketch, fundamental queries about the data stream can be approximately 
answered very quickly based on the sketch [11]. 

 

2.2. Principle Component Analysis 
 

PCA is an efficient dimension reduction method. It projects raw high-dimensional data into a 

lower dimensional space, while keeping as most relevant variances of original data as possible 
[12].  

 

Let X be an 𝑛 × 𝑚 data matrix. Each row of X is viewed as a point in an m-dimensional space. 

PCA projects points in X into an 𝑟 -dimensional space ( 𝑟 < 𝑚 ) and finds projections that 

maximize the variance of  𝑛 points. The first principal component is the direction along which 

projections of these points have the largest variance. By analogy, the 𝑟-th principal component is 

the orthogonal direction that has maximum variance with respect to previous 𝑟 − 1components. 
Before performing PCA, a mean of zero is needed for each column so as to find a basis that 

minimizes the mean square error.  Let Y be the zero-meaned matrix of X. Then we can calculate 

the r-th principal component vr as follow. 
 

vr= arg max
‖x‖=1

‖(Y- ∑ Yvjvj
T

r-1

j=1

) x‖ 

 

The vector x=(x1,x2,…,xm)T in the above equation satisfies ‖x‖=1. Let 𝐯1, 𝐯2, … , 𝐯𝑟  represent the 

first  𝑟 principal components. The original data X can be approximately represented by the low-

dimensional matrix 𝐏 = [𝐯1, 𝐯2, … , 𝐯𝑟] that captures dominant variance of X. On the contrary, the 

last 𝑚 − 𝑟 components contain most random fluctuation.  
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2.3. Practical Issues 
 

Sketch is commonly used to summarize network traces for network anomaly detection. It 

compresses high-volume traffic into a relatively small space, thus reducing computational 
complexity in anomaly detection. However, due to sketch, one has great difficulty in reversely 

deriving original keys from a number of anomalous buckets. In terms of DDoS reaction, much 

more memory space (storing mapping tables for each buckets) and computations is needed to 
identify victims of DDoS attacks.  

 

PCA can highlight differences in data, such as low-profile traffic anomaly caused by DDoS 

attacks.  The sensitivity to data dimensionality yet obstructs PCA from being applied to identify 
victims of DDoS attacks. The computational complexity and spacer equirement of PCA are 

O(nm2)  and O(nm)  respectively. For the purpose of victim identification, IP-based traffic 

isolation is necessary. In high-speed network, numerous distinct IPs appear even in a short time 

interval, causing an extremely large m . In this context, PCA yields to the expensive 

computational cost of anomaly detection in such large-scale data.  

 

In this paper, we use a piece of sketch to aggregate traffic, thus reducing the data dimensionality, 
so that anomalous aggregation can be found in reasonable time using PCA. To conquer the 

drawback of sketch and derive victims of DDoS attacks, we design a special family of hash 

functions, which can be used to compose of a sketch and make the reversing mission fairly easy 
and lightweight. 

 

3. F-LOW OVERVIEW 
 

F-LOW is a distributed framework for DDoS detection and victim identification. It consists of 
global detectors (GD) and local detectors (LD). LDs are wildly deployed all over the network. 

For simplicity, we consider a classic distributed architecture as shown in Figure 1, which is 

adopted in many literatures [6][7]. In the F-LOW system, GDs communicate with each other and 
LDs using reliable channels. 

 

In general, LDs detect traffic anomaly based on measurements of local traffic, while the GD 
confirms whether reported anomalies arise from network-wide DDoS attacks, and infers victim 

IPs (or partial victim IPs) based on local detection results. Particularly, an LD performs 
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Figure 1. The architecture of FLOW system 

 
a piece of a sketch, that is, a hash table of a special designed bitwise hash function; in this way 

the LD aggregates packets into bitwise flows according to certain bits in their destination IPs 

(dstIP). The aggregation significantly reduces the scale of time-series measurement data of 
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network traffic.  LDs thus can detect when network anomalies occur and identify flows that 
involves these anomalies, using a PCA-based anomaly detection method. The method is like [6] 

and extended for identifying more than one anomalous flow. LDs send very little data to the GD 

including IDs of Anomalous Flows (AF). In view of the whole F-LOW system, all hash tables 

performed by LDs constitute a virtual sketch, called split sketch. The GD integrates flow IDs into 
split sketch and determines anomalies pervading all over the network as DDoS attacks. Taking 

advantage of bitwise hash functions, the GD can reconstruct (partial) victim IPs of DDoS attacks 

reversely with much lower computational cost and smaller space requirement than previous work 
[8][9][10]. 

 

There are three principles behind the F-LOW system, making it scalable and practical in network-
wide DDoS detection and identification. 

 

Principle 1: Flow aggregation based on bitwise information. Aggregating packets according 

to certain bits in their destination IPs, on one hand, reduces data dimensionality to yieldPCA-
based method. On the other hand, since flow ID reifies part of victim IP, it benefits determination 

of victim IP. 

 

Principle 2:  Combination of distributed traffic monitoring and minimum data 

transmission. Considering the nature of DDoS attacks, F-LOW leverages pieces of a sketch on 

different LDs to gather network-wide measurements. Meanwhile, without sending original 
measurements, F-LOW greatly reduces the amount of transmitted data between nodes, respecting 

limited link bandwidth.  

 

Principle 3: Lightweight reconstruction of victim IP based on popularity. As a profit from 
bitwise hash functions, F-LOW provides a lightweight way to infer victim IPs of DDoS attacks, 

having no use of storing mapping tables and calculating intersection of large sets of IPs like 

reverse sketch [10].  Determining a bit in victim IPs relies on the popularity of the bit being 
reified as “0” or “1”, in accordance with the multi-source feature of DDoS attacks. 

 

4. ANATOMY OF F-LOW 
 

Our F-LOW system achieves desirable Four-LOW properties through four essential components: 
bitwise-based flow aggregation, split sketch structure, PCA-based local detection method, and 

novel IP reconstruction algorithm. In this section, we present details of these components. 

 

4.1. Bitwise-based Flow Aggregation 
 

In F-LOW, LDs aggregate packets into flows according to certain bits in their dstIPs rather than 
whole dstIPs, thus obtaining much fewer flows. The principle of bitwise-based flow aggregation 

is, specifying k bit positions in an L-length IP address (e.g. L=32 in IPv4), packets whose dstIPs 

have identical bits in the same positions are assigned to the same flow. 
 

Let us define a function F(ip,mask), where ip is an IP address and mask indicates which k bits are 

specified. mask is viewed as an L-length bit string in which specified bits are set to“1”while 

others are set to “0”. F(ip,mask) combines selected bits in ip orderly and results in a k-length 

string. Let 𝑖𝑝1 and 𝑖𝑝2 be two different IPs. Then we assign packets that are destined for 𝑖𝑝1 and 

𝑖𝑝2 into the same bitwise flow if and only if 

 

𝐹(𝑖𝑝1, 𝑚𝑎𝑠𝑘) = 𝐹(𝑖𝑝2, 𝑚𝑎𝑠𝑘) 
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To identify flows, F(ip,mask) is viewed as flow ID. Figure 2 illustrates an example of bitwise-
based flow aggregation. IP_1 ~ IP_4 are different dstIPs of packets. Specifying five bit positions 

in an IP address, packets destined for IP_1 ~ IP_4 thus are divided into three flows, identified by 

“010011”, “011010” and “110110”, respectively. Given a fixed k, there are at most 2k bitwise 

flows. LDs thus can achieve an affordable space overhead by varying k. 

 

 .  .  .   0  1  .  . .  1  0  1  .  .  .  0 

IP_1

IP_2

IP_3

IP_4

 .  .  .   0  1  .  . .  0  0  1  .  .  .  1 

 .  .  .   1  1  .  . .  0  1  1  .  .  .  0 

 .  .  .   0  1  .  . .  0  0  1  .  .  .  1 

AggID

0 1 0  0  1 1 

 0 1 1  0  1 0 

1 1 0  1  1 0 
 

 
Figure 2. An example of bitwise-based flow aggregation 

 

Considering functionality of bitwise-based flow aggregation, we then regard F(ip,mask) as a 

particular hash function, called bitwise hash function. Accordingly, mask is the seed. In the 
following, we explain how to use such hash function to generate a split sketch and show the 

remarkable benefits obtained from our novel design. 

 

4.2. Split Sketch 
 

In this section, we present the deployment of split sketch for network-wide traffic measurement. 
The split sketch is a virtual sketch structure that is divided into pieces and deployed on multiple 

LDs in F-LOW. In split sketch, bitwise hash functions are adopted instead of regular universal 

hash functions. 
 

Imagine a sketch that consists of hash tables of N bitwise hash functions. Each hash table is a 

piece of the sketch puzzle and each LD only performs one piece. An LD generates its own 

bitwise hash function independently, by randomly choosing k integers from 0 to L-1. These 
integers correspond to selected bit positions in an IP address. Then the LD allocates memory 

space to keep a hash table of size2𝑘. Since our F-LOW system uses traffic volume as a feature to 

detect DDoS attacks, each bucket in the hash table is a counter for counting the number of 

packets that are mapped into the bucket. Although many other features can be adopted in our 
system, we choose the simplest but promising one, so as to simplify traffic measurement as well 

as reduce computational cost. When a packet arrives, the LD updates the bucket with index 

F(dstIP,mask) by adding one. Since each LD independently determines bitwise hash function, 
their choices may clash. However, the probability that two LDs select the same hash function is 

(1 𝐿⁄ )𝑘. It is extremely small when k=10 and L=32. We thus say hash functions used in a split 

sketch are different. 

 
Split sketch does not actually gather traffic measurements all over the network into a centralized 

device. In fact, each row of split sketch presents statistic of different traces. We thus let LDs 

detect network anomaly based on their own pieces of split sketch. On the other hand, local 

detection results (anomalous flow IDs) are integrated into a whole sketch and processed at GDs 
to confirm DDoS attacks and infer their victim IPs. 

 

4.3. Extended PCA-based Local Detection 
 

At LDs, we adopt PCA-based local detection method to detect potential DDoS attacks and 

identify abnormal traffic aggregates, which is similar with subspace method in [6]. Unfortunately, 
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subspace method in [6] only obtains the first AF that causes greatest anomalous change among all 
candidate flows. In practice, it is possible that more than one anomaly occurs simultaneously, 

legitimate or malicious. Furthermore, to reduce false negative, it is essential to capture as many 

AFs as possible. We thus extend identifying part in [6] to find a set of primary AFs.  

 
Through a piece of split sketch performed by an LD, packets are naturally aggregated into bitwise 

flows. The LD obtains a time-series measurement of local traffic, forming an 𝑛 × 𝑚 matrix D, 

where n is the number of time intervals and m the size of hash table, 𝑚 = 2𝑘.Applying PCA on 𝐃 

results in a low-dimensional matrix 𝐏 that includes domain variance of  𝐃.  Let 𝐲 represent a row 

of D, which is viewed as the traffic fingerprint at a particular time. Like [6], we extract normal 

component y
𝑛

 and abnormal component 𝐲𝑎 of any 𝐲 based on P.  

 

y𝑛=PPTy = 𝐂𝒏y 

𝐲𝑎 = (𝐈 − 𝐏𝐏𝐓)𝐲 = 𝐂𝒂𝐲 

 

In general, the large change of  𝐲𝑎  implies network anomaly. Thus an alert arises when the 

squared prediction error (SPE) of 𝐲𝑎 exceeds a preset threshold𝜃. 

 

SPE ≡  ‖𝐲𝑎‖2 =  ‖𝐂𝒂𝐲‖2 > 𝜃(1) 
 

Until now, we find an anomalous𝐲, which corresponds to the time when the anomaly occurs or a 

DDoS attack starts. Next step is to identify AFs that are responsible for the detected anomaly.  

 
We extend identifying part in [6] to find a set of primary AFs. The key principle is greedily 

choosing flows that cause greatest anomalous change in the residual ones. The first AF can be 

find as [6] does (assuming there is only one anomalous flow). The anomalous 𝐲  can be 
represented by 

 

𝐲 =  𝐲𝑖
∗ +  Δ𝑖                  (2) 

 

where 𝐲𝑖
∗represents the sample vector for normal traffic conditionsand Δ𝑖 representsthe amount of 

change due to flow 𝐹𝑖. See [6] for best estimates of     Δ𝑖 and  𝐲𝑖
∗. By minimizing the objection of  

𝐲𝑖
∗ on abnormal space, we can obtain the first AF.  

 

AF1 =  𝐹𝑗  ,   𝑗 = arg min
𝑖

‖𝐂𝑎𝐲𝑖
∗‖ (3) 

 

To find the residual AFs, we eliminate the change caused by previous found AFs. Let 𝛀 be the 

set of previous found AFs. Each flow in 𝛀 corresponds to a four-tuple 〈𝑠𝑛, 𝐹𝑖 , ỹ𝒊
∗, �̃�𝑖〉, where𝑠𝑛 

represents the order of flow 𝐹𝑖  being found. ỹ𝒊
∗and  �̃�𝑖  are best estimate of 𝐲𝑖

∗  and Δ𝑖  and are 

calculated in the procedure to find 𝐹𝑖.(see details in [6]). Then we can construct a new traffic 

fingerprint𝒚′, getting rid of effects of AFs that have been verified to be anomalous. 

 

𝒚′ = 𝒚 − ∑ �̃�𝒊𝑭𝒊∈𝜴  (4) 

 

In terms of𝒚′, the next AF can be found using the same method as [6] does. The procedure is 

repeated until the change caused by any residual flow does not exceed a threshold. 

 

‖𝒚𝒏 − �̃�𝒊‖ < 𝜌 (5) 
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In view of traffic increase that accompanies nearly all flooding-based DDoS attacks, we improve 
above local detection method in two greedy ways: 1) Further compress D to D'. The latter only 

consists of columns having increased amounts along the time axis in D. Accordingly, P is 

generated based on D'. 2) Measure the amount of packets that arrive in each time interval, and 

perform anomaly detection upon y, only if the increasing scale of packet amount in the 
corresponding interval exceeds certain threshold. 

 

Local detection results in a set of AFs (or a set of flow IDs). According to the design of bitwise-
based hash function, a flow ID reifies some bits in an IP address and mask indicates which bits 

they are. Namely, if an AF includes DDoS traffic, segments of victim IP of the DDoS attack is 

fixed by the flow ID. In the next subsection, we explain how the GD infers victim IPs based on 
such incomplete IP segments. 

 

4.4. Alert-burst-based Global Detection 
 

When a DDoS attack is launched, the malicious attack traffic accessing the attack target is 

relatively concentrated. From the point of view of distributed attack detection, the traffic 
abnormal alarm generated by each local detection device should also have time correlation. 

Therefore, when the global detection device finally determines the DDoS attack, it should 

consider the time when the abnormality occurs. If many abnormal traffic alarms occur in a short 

time, it can be considered that a large-scale DDoS attack has occurred in the network. As showed 
in Figure 3, a DDoS attack can be confirmed when LD0, LD1 and LD2 all reports local anomaly 

alerts nearly in the same time.   

 

Assuming the number of abnormal alerts generated in an observation window T is 𝑁𝑎𝑙𝑒𝑟𝑡 , the 

abnormal alert density (DAA) is defined as the number of abnormal alarms generated in a unit 

time, 

 

𝐷𝑒𝑛𝑠(𝑇) =  
𝑁𝑎𝑙𝑒𝑟𝑡

𝑇
 

 

If the observation window 𝑡, the number of abnormal alarms generated by the local detection 

equipment LD is 𝑁𝑎𝑙𝑒𝑟𝑡 , and the abnormal alert density is 𝐷𝑒𝑛𝑠(𝑡)  Expand the observation 

window along any direction of the time axis to obtain a new observation window 𝑡′, let the 

abnormal alert density in 𝑡′ be 𝐷𝑒𝑛𝑠(𝑡′) . If 𝐷𝑒𝑛𝑠(𝑡′) < 𝐷𝑒𝑛𝑠(𝑡)  is always true, then the 

observation time 𝑡 is called the abnormal burst period (BPA). 
 

The determination process of abnormal burst period starts from the two abnormal alarms with the 

closest time interval. The initial observation window is set as τ and then slide the observation 
window to cover the above two abnormal alarms. Stretch the observation window along the two 

directions of the time axis then the first abnormal burst period of the local detection equipment 

can be obtained. As the network environment is complex and changeable, security threats occur 
all the time, each local detection device may have multiple abnormal outburst periods. The above 

operation is repeated until the initial observation window is greater than the threshold τ0. 

Threshold τ0 is the maximum relevant abnormal time interval, and 10 times the sampling interval 

is fine. 
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Figure 3. An outbreak period of local anomaly alerts 

 
Based on the abnormal burst period of each local detection device, the global detection device 

finally determines DDoS attack in the network. DDoS attack sources are distributed all over the 

network, and the attack traffic triggers an abnormal alarm at multiple local detection devices. 
Therefore, a concentrated abnormal burst period of multiple local detection devices in a short 

time means a large-scale DDoS attack. By comparing the abnormal outbreak period of each local 

detection equipment, if the number of equipment whose abnormal burst period overlap in time is 

greater than a threshold n, then global detection confirm a DDoS attack in the network. As shown 
in Figure3, three local detection devices detect a large number of network traffic abnormalities at 

almost the same time (abnormal outburst periods T1, T3, T4), so it can be judged that there are 

large-scale DDoS attacks in the network. Local detection devices LD0 and LD2 also have 
anomaly alert burst in T2 and T5 respectively. However, since no global traffic anomaly is found 

by other detection devices in the network, these alerts do not conform to the distributed 

characteristics of DDoS attacks. 
 

4.5. Victim IP Reconstruction 
 
In order to confirm ongoing DDoS attacks and figure out victim IPs, GDs reconstruct anomalous 

dstIPs based on detection results obtained from LDs. In a DDoS attack, tens of thousands of hosts 

all over the network generate attack traffic simultaneously. The intuition thus is that a dstIP being 
widely regarded as anomalous indicates a network-wide DDoS attacks towards the dstIP.  

Following this lead, we show how GDs reconstruct victim IPs in details. Benefiting from bitwise 

hash function used in split sketch, our IP reconstruction algorithm has very low memory 

requirement and computational cost. 
 

Let us begin with formatting outcomes of LDs. Through local detection, LDs obtain a number of 

AFs, which are sent to the GD in the form of (timestamp, flowID, mask). flowID is the ID of AF. 
timestamp represents the time when the anomaly occurs. mask implies the particular bitwise-

based hash function adopted by an LD. If an LD report more than one AF to the GD, mask is 

only sent once. Combining flowID and mask, we can extract an L-length vector, in which bits 
specified by mask are set to “0” or “1”, according to flowID. We call the vector Discrete Segment 

of IP (DSIP). Figure 4 shows a simple example of DSIP which gives a partial segment of the 

destination IP address. L is the length of the IP address. If the IPv4 address is used in the 

network, L= 32. 
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DSIP

mask 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 

 1    0   1      0  0   0       0     0

FlowID =    1   0   1   0   0   0   0   0

 
 

Figure 4. An example of DSIP 

 

Regarding IP reconstruction as a vote for bits in victim IPs, then DSIP is the ballot. The GD first 

creates an empty vector B of length L to imitate an IP address (victim IP), and then deduces the 
IP bit-by-bit on the basis of amounts of DSIPs which set the bit to “0” and “1”. IP reconstruction 

consists of three steps: eliminate noise DSIPs, decide bit statuses and reduce uncertainty. As a 

visual representation of IP reconstruction, we illustrate an example in Figure 5. In the example, 

DSIP3 is a noise DSIP and eliminated in the first step. After other two steps, a partial victim IP is 
obtained, in which two bits are undetermined. In the rest of this subsection, we present details of 

the three steps. 

 

 
 

 
Figure 5. An example of IP reconstruction. Only the first and forth byte of an IP address are illustrated due 

to space limitation. Marks 0, 1 , c and × represent zero, one, amphibious and unknown statuses, 

respectively. 

 

Eliminate noise DSIPs. We define DSIPs that comport with real victim IPs of DDoS attacks are 

majority DSIPs, and others are noise DSIPs. The latter DSIPs probably arise from some local 

network changes, rather than network-wide DDoS attacks. We thus consider a DSIP as a noise 

DSIP if it sets some bits just in contrast to what most other DSIPs do. Let Γ be the set of DSIPs 

received from LDs. For each bit in 𝚩, we count the numbers 𝑞0,𝑖 and  𝑞1,𝑖 of DSIPs that reify the 

bit as “0” and “1” respectively. The much smaller number between them implies corresponding 

bit (“0” or “1”) is unpopular. Each DSIP reifies 𝑘 different bits. If a DSIP reifies at least one 

unpopular bit, we consider it as a noise DSIP. We can obtain a more reliable set  𝚪′  by 

eliminating noise DSIPs from  Γ. Note that the input set Γ only includes DSIPs whose timestamps 
fall in the same time period (about several time intervals). Because network anomaly appears 

around the same time are more likely to be consequence of DDoS attacks.  

 

Decide bit statuses. Based on the new set  𝚪′ of DSIPs, we endow each bit in 𝚩 with one of the 

following statuses: (1) zero: a great proportion of DSIPs reify the bit into “0”; (2)one: a great 

proportion of DSIPs reify the bit into “1”; (3) amphibious: the proportions of DSIPs that reify the 

bit into “0” and “1” both exceed a preset threshold, which may be caused more than one victim 
IPs; (4) unknown: the number of DSIPs reifying the bit is too small to determine the bit. 

Algorithm 1 shows the procedure of deciding bit statuses. The threshold 𝑇𝑞 in Algorithm 1 varies 

0 1  1  1  1  0. . .DSIP2

0   0 1   1 0  0  . . .DSIP3

0 1 1 0    0 1. . .DSIPn
. . .

0 c 0 1 1 1 0 1 1 1  1 0 0 0 1. . .B

reconstructing

0   1  1  1 0 0. . .DSIP1
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according to the number 𝑁 of LDs. It is set to 1 when 𝑁 is small to the extent that each bit in an 
IP address is probabilistically covered once by LDs.  

 

Algorithm 1. Decide bit statuses  

Input:  𝚪′,  𝑇𝑞,  𝛼,  𝛽𝛼 > 𝛽 

Output: 𝚩 

1 Initialize an empty vector 𝚩 of length𝐿. 

Let 𝑏𝑖 represent status of the i-th bit in 𝚩. 

2 for 𝑖 from 0 to 𝐿 − 1 
3   calculate 𝑞0,𝑖 and 𝑞1,𝑖 based on 𝚪′ 

4   if 𝑞𝑖 = 𝑞0,𝑖 +  𝑞1,𝑖 < 𝑇𝑞 

5    set 𝑏𝑖 to unknown 

6   else if  
𝑞0,𝑖

𝑞𝑖
> 𝛼  and 

𝑞1,𝑖

𝑞𝑖
> 𝛼 

7 set 𝑏𝑖 to amphibious 

8           else if  
𝑞1,𝑖

𝑞𝑖
< 𝛽 

9 set 𝑏𝑖 to zero 

10                  else   set 𝑏𝑖 to one 
11 end for 

 

Reduce uncertainty. To reduce the uncertainty in resultant victim IPs, we compare all DSIPs in 

𝚪′ with 𝚩 and reify unknown and amphibious bits as many as possible. Let 𝑑𝑖 and 𝑏𝑖 represent 

the i-th bits in a DSIP and 𝚩 , respectively. We say 𝑑𝑖  matches with 𝑏𝑖 under the 

followingconditions: (a) 𝑑𝑖 = 0, 𝑏𝑖 = zero; (b)  𝑑𝑖 = 1,  𝑏𝑖 = one ; (c) 𝑑𝑖 = 0 or 𝑑𝑖 = 1,  𝑏𝑖 =
amphibious. If most reified bits in a DSIP match with 𝚩, we believe the DSIP is truely part of a 
victim IP. Other refied bits are unmatched only because no enough LDs select these bits in their 

hash functions. We thus can adjust statuses in 𝚩  according to unmatched bits in the DSIP, 

reducing unknown bits. For amphibious bits, such mostly matched DSIPs help to decompose 𝚩 

intotwo or more vectors. Each vector corresponds to a distinct victim IP. 
 

As a result, the GD obtains a number of victim IPs (or partial victim IPs), which also proves 

ongoing DDoS attacks. If there are enough LDs participating in the F-LOW system, the GD can 
identify whole victim IPs accurately. Even in lacking adequate LDs, partial victim IPs is still 

efficient as filtering rules in DDoS reaction. Our IP reconstruction algorithm infers victim IPs 

without storing mapping tables and calculating intersection of large sets, thus having low 

computational cost and memory requirement. We evaluate our algorithm and compare its 
overhead with previous work in the next section. 

 

5. EVALUATION 
 
In this section, we evaluate the performance of F-LOW system through simulation and theoretical 

analysis. The low-profile property of F-LOW is achieved through PCA-based anomaly detection 

method. Since the capability of the method has been thoroughly verified in many previous works 

[6] [7] [13], we lay particular emphasis on global detection of our approach. The focal point of 
evaluation is accuracy of IP reconstruction. We also measure the overhead of LDs and GDs, in 

order to demonstrate scalability of proposed approach. 
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5.1. Coverage Rate 
 

We first measure an important metric, coverage rate of selected bits by LDs in an IP address, 

which is relevant to performance of IP reconstruction. IP reconstruction relies on flow IDs 
reported by LDs. Namely, GD deduces a victim IP based on LDs' reification on every bit of IP. 

Therefore, the more bits are selected by LDs, more precise the reconstructed victim IP is. 

 
We define coverage rate as the proportion of bits in an IP address that are selected by LDs at least 

once. Each LD chooses k bits in an IP address to generate its own bitwise hash function. The 

probability of a bit being selected by an LD is k/L. Suppose N LDs exits in the network. Then, 

for a bit, it is not selected by any LDs with the probability𝑞 = (1 − 𝑘/𝐿)𝑁. 
 

 
 

Figure 6. The numerical and experimental coverage rates with respect to the number of LDs 

 

 
 

Figure 7. The numerical and experimental coverage rates with respect  

to the number of selected bits in an IP 

 
Accordingly, the theoretical expected coverage rate is 1-q. We also calculate the coverage rate in 

the simulation. As we can see in Figure 4 and 5, the numerical and experimental coverage rates 

perfectly match with each other. When k=10, L=32, and N=10, the coverage rate is more than 
97%. Uncovered bits in an IP address are no more than one. Namely, only 10 LDs participating 

in the F-LOW system can cover almost whole IP address, thus potentiating precise IP 

reconstruction. 
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5.2. Accuracy of IP reconstruction 
 

To demonstrate the performance of our IP reconstruction algorithm, we first analyze the efficacy 

of noise DSIP elimination. In the simulation, we use settled 𝐿 = 32 and 𝑘 = 10, and vary 𝑁 from 
5 to 25. In order to see how the accuracy of local detection influences victim IP identification, we 

purposely increase false positive of local detections, varying the following proportion ω from 0.2 

up to 5.  
 

ω =
the number of noise DSIPs

the number of mojority DSIPs
 

 

The simulation result in Figure 8 leads us to two important conclusions. First, the accuracy of 

noise DSIP elimination increases with 𝑁 . This suggests us to deploy LDs widely for better 

performance. Second, when 𝑁 exceeds a certain threshold like 20, our algorithm maintains a high 

accuracy, even though there are five times noise DSIPs in the result of local detection. That 

means our approach is robust to false positive of PCA-based local detection. Therefore, adjusting 

parameters of local detection to report as many anomalous flows as possible, our F-LOW system 
can capture low-profile DDoS attacks.  

 

 
 

Figure 8. The accuracy of minority elimination 

 

Since our approach may result in partial victim IPs, it is difficult to evaluate its accuracy in DDoS 

detection and victim identification. We thus incarnate the performance in an indirect but 
persuasive way. That is to evaluate the efficacy of outcomes of our F-LOW system in filtering 

traffic towards victims (distinguishing attack packets from normal packets towards victims is 

beyond the scope of this paper). 
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Figure 9. The comparison between partial and whole IPs 

 

Figure 9 shows the proportions of partial IPs and whole IPs in the identification result. As 𝑁 

increases, the probability that our approach extracts whole victim IPs increases rapidly. 
Interestingly, most of partial victim IPs only has one indeterminate bit. Using them as rules, we 

can still successfully filter attack packets of DDoS attacks, with a false positive rate of less than 

3%. We show the simulation result in Figure 10. In our simulation, all traffic toward victims can 

be captured as their destination IPs still matches with partial IPs. 
 

 
 

Figure 10. The false positive of filtering  

 

5.3. Accuracy of DDoS Detection 
 

We compare our F-LOW system with three existing approaches with respect to system overhead: 

sketch subspace (SS) [7], two-level sketch (TS) [8], and reverse sketch (RS) [10], which are 
closely related to our approach. These three methods all take the identification of the IP address 

(DDoS attack victim) causing the network anomaly as the final target of detection, and all reduce 

the statistical data dimension with the help of the summary data structure (sketch). 
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Figure 11. Accuracy of DDoS Detection 

 

Figure 11 shows the experimental statistical results. Where FP represents false positive rate and 
FN represents false negative rate. Since RS is only a method of inversely deriving the IP address 

corresponding to the abnormal sketch entry, and there is no specific anomaly detection process, 

RS is used to replace bit hash based sketch in F-LOW system to compare the accuracy of RS and 

F-LOW in victim identification. In addition, the SS method is a single point detection algorithm, 
10 points are selected in the experimental topology to deploy SS. As shown in Figure 11, F-LOW 

performs better than other methods in all aspects. The victim identification FN of F-LOW system 

is slightly higher than that of RS method because only the number of complete IP addresses is 
calculated when the experimental data are counted. 

 

5.4. Overhead Comparison 
 

Finally, we qualitatively compare our F-LOW system with three existing approaches [7][8][10], 

to demonstrate the advantages of our approach in computational complexity, space requirement 
and Communication overhead. 

 

When comparing computational complexity, we consider two aspects: the cost to update 
corresponding structures, which can be approximately reflected through the Number of 

calculating Hash Value per Packet (NHVP); the cost to identify victim IPs after detecting 

anomaly (COIV). We leave the overhead of PCA for this moment, as three of four approaches 

adopt PCA to detect network anomaly. Since all compared approach use sketch, we thus separate 
space requirement for sketch structure (sketch size) with other storage in the comparison. 

Communication overhead, represented by the amount of transmitted data between nodes, exists 

only in collaborative systems. Thus, reverse sketch has no communication overhead. 
 

In F-LOW, each collaborative node maintains only one hash table of size M. One of the major 

differences between our approach with the other three is the way to map packets in a sketch. Our 
approach uses special designed bitwise-based hash while others use random hash in sketches, 

which induces completely different method to identify victims. Most COIV of our approach 

arises from counting DSIPs and comparing every DSIP with the vector B, so the cost increases 

with the number 𝑛𝑑𝑠𝑖𝑝 of received DSIPs proportionally.  
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Table 1. The overhead comparison. 

 

 
 

We summarize the comparison result in Table 1, in which 𝑛𝑓𝑙𝑜𝑤  represents the number of distinct 

flows that SS needs to store states, and 𝑛𝑑𝑖𝑝  represents the number of anomalous destination 

IPs.H is the number of hash functions in a sketch. L is the length of an IP address. The parameter 

q = 4 in [10]. 𝐿𝑏𝑓,𝐻𝑏𝑓,𝐻𝑏𝑐and 𝑀𝑏𝑐 are defined in [8].Considering the number of DDoS attacks or 

victim IPs, the number 𝑛𝑑𝑠𝑖𝑝 is much smaller than M and 𝑛𝑓𝑙𝑜𝑤 . In this context, our F-LOW 

system outperforms SS in all three aspects. Relatively, TS has lowest cost O(1) during victim 

identification at the expense of space. Even though approaches TS and RS are slightly better than 

F-LOW in some aspects, they all require much more memory to store statistic of network traffic. 

 

6. CONCLUSION 
 

In this paper, we study countermeasures against DDoS attacks and present F-LOW, a 

collaborative system that can detect DDoS attacks and identify victim IPs of these attacks. 
Innovative bitwise-based hash function and split sketch are designed to digest network traffic. 

Meanwhile, an efficient IP reconstruction is proposed to reversely calculate anomaly IPs. 

Benefitting from those innovations, F-LOW system can accurately detect network anomaly 

caused by DDoS attacks and infer victim IPs, thus contributing to quick and efficient DDoS 
reaction. In summary, F-LOW has Four LOW-characteristics: low profile, low dimensional, low 

overhead, and low transmission, while previous DDoS countermeasures only fit parts of them. 

The outcome of F-LOW can help to filter attack traffic with very low false positive. This paper 
proposes a promising approach against DDoS attacks. Since the F-LOW system is a collaborative 

system which involves plenty of cooperative detection nodes in the network, it is very difficult to 

apply and deploy. In the future, a flexible cooperation mechanism should be put on the agenda, to 

provide a practicable collaboration platform for F-LOW system.  
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