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ABSTRACT 
 

Android is the most widely used operating system today and occupies more than 70% share of the 

smartphone market. It is also a popular target for attackers looking to exploit mobile operating systems for 

personal gains. More and more malware are targeting android operating system like Android Banking 

Trojans (ABTs) which are widely being discovered. To detect such malware, we propose a prediction 

model for ABTs that is based on hybrid analysis. The feature sets used with the machine learning 

algorithms are permissions, API calls, hidden application icon and device administrator.  Feature 

selection methods based on frequency and gain ratio are used to minimize the number of features as well 
as to eliminate the low-impact features. The proposed system is able to achieve significant performance 

with selected machine learning algorithms and achieves accuracy up to 98% using random forest 

classifier. 
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1. INTRODUCTION 
 
In the last decade (2011-2021), Android has overtaken both Symbian OS and iOS to become the 

most popular mobile operating system in use occupying more than 70% of the smartphone 

market share [1]. The widespread use of android also means that more than 90% of the malware 
targeting smartphones are specific to android operating system [2]. Malware or malicious 

software is a program that is designed to gain illegal access or to cause damage to systems and 

their users [3]. Android Banking Trojans (ABTs) occupy a significant portion of android malware 

ecosystem with other major malware classes like spyware, ransom-ware and adware [4]. ABTs 
are designed to steal banking credentials of the users. For that purpose, they employ a range of 

tactics that include intercepting text messages and phone calls, hiding their presence once 

installed and creating fake overlays for legitimate banking applications [5]. 
 

Traditionally, malware detection systems use signatures to identify malware. Signature of a 

malware is a piece of string that is extracted from the malware and is unique. One major 
drawback of signature-based detection system is that it is very easy to alter the signature of a 

malware with minor modifications to escape detection [6]. Hence, commercial anti-virus products 

are moving towards the adoption of machine learning techniques to detect malware [7]. The 

features used to build the machine learning models can be obtained through static analysis, 
dynamic analysis or a combination of both [8]. In static analysis, the contents of a malware are 

analysed without executing it whereas in case of dynamic analysis, a malware is executed to 

examine its behaviour and its features are extracted. In hybrid analysis, features from static and 
dynamic analysis are combined. The features are then used with detection methods to classify 

malware. Our proposed system uses hybrid analysis with machine learning algorithm to design a 
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detection system for ABTs. We extract four feature sets - permissions, API calls, icon hiding and 
device administrator and use them with multiple machine learning algorithms to see their 

behaviour towards the detection of ABTs. Two features - permissions and API calls are extracted 

through static analysis whereas icon hiding and device administrator features are extracted 

through dynamic analysis. 
 

The rest of this paper is organized as follows: In Section 2, we present the related works which is 

followed by methodology in Section 3. In Section 3, we introduce the proposed system and 
elaborate on techniques used for data collection and selection of features. The results of the 

research are presented in Section 4 and the analysis of the results is presented in section 5. 

Finally, the conclusion and future works are presented in Section 6. 
 

2. RELATED WORK 
 

The In this section, previous research works related to the static, dynamic and hybrid analysis of 

malware are presented. DroidAnalytics [6] is a signature based detection system that defines a 
three level signature generation which is robust against obfuscation. Other prominent work in the 

field of android malware detection include DroidAPIMiner [9], which uses API calls to predict 

android malware. Peiravian et al. [10] on the other hand, uses both permission and API call 
features to build detection models for android malware and shows that a combination of 

permissions and API calls is more effective than using either of the features separately. SigPID 

[11] uses a reduced permission set to detect android malware with significant accuracy reducing 

the analysis time. Both Drebin [12] and [13] use wide range of feature sets such as system 
commands, permissions and API calls extracted by static analysis for building prediction models. 

For prediction model based on dynamic analysis, [14] and [15] use system call as feature. In the 

work of [16], system call along with other behavioural features such as cryptographic operation, 
network operation and information leaks extracted using DroidBox tool are used for detecting 

android malware. Aside from system calls, Arora et al. [17] and Chen et al. [18] studied network 

traffic-related parameters to build the prediction model. 
 

Much work in android malware detection is based on hybrid analysis that combines both static 

analysis and dynamic analysis for better detection accuracy. Raghuraman et al. [19] extract and 

use permissions and network protocols whereas Kabakus et al. [20] use permissions and network 
log of applications using various machine learning algorithms to detect android malware. 

Similarly, Surendran et al. [21] extract API calls, permissions and system calls of android 

applications and use Tree Augmented Naive Bayes (TAN) to identify android malware. 
 

Little research has focused on specific category of malware like banking trojans. One such work 

[5] focuses on analysis of banking trojan BadAccents which infected thousands of Android users 

in the year 2014-2015. DroydSeuss [22] is a mobile banking trojan tracker that analyses an 
application both statically and dynamically to extract and examine strings related to 

communication endpoints. DBank [23] defines a novel concept called Triadic Suspicion Graph 

(TSG) based on android package information which is used to extract TSG features. The authors 
used TSG features in conjugation with other static and dynamic features like manifest, API 

package and API class to detect ABTs with high accuracy of and low false positive rate. 

 
Most of the studies in android malware detection do not separate different categories of malware. 

Malware analysis targeting a specific type of malware is relatively less explored. An advantage of 

analysing only a specific category malware is that it can reveal previously unknown traits which 

may be significant in their detection. Our work addresses this gap in the detection of android 
malware as it deals exclusively with android banking trojans. A significant work [23] in this field 

uses novel TSG features which is different from the features we use in our work. 
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Our proposed framework uses four feature sets obtained through hybrid analysis to distinguish 
between malicious and non-malicious applications, specially focusing on ABTs. The four 

features include permissions and API calls as static features and icon hiding and device 

administrator as dynamic features. The combination of feature sets used in this work is unique 

because the dynamic features are less explored as compared to features like system calls and 
network traffic. 

 

The studies related to our work in the past 5 years and their details have been summarized in 
Table 1. 

 
Table 1.  Summary of related works. 

 
Author Year Title Significant Contribution 

Li et al. [11] 2018 Significant Permission 

Identification for 
Machine-Learning-

Based Android 

Malware Detection 

The authors achieve significant 

detection using reduced feature set 
while reducing the analysis time by 

4 to 32 times. 

Kabakus et al. [20] 2018 An In-Depth Analysis 

of Android Malware 

Using Hybrid 

Techniques 

Analyze the static and dynamic 

characteristics of android malware 

and benign applications to see the 

difference in the type of 

permissions and network 

connection they request. 

Feng et al.[16]  2018 A Novel Dynamic 

Android Malware 

Detection System With 

Ensemble Learning 

Take application behavior into 

account along with system calls for 

designing the detection model and 

use ensemble learning algorithms 

for prediction models. 

Chen et al. [18] 2018 Machine Learning 

Based Mobile Malware 

Detection Using Highly 

Imbalanced Network 

Traffic 

Propose a prototype system to 

address the imbalance in benign 

and malicious network traffic data 

when used with classification 

algorithms. 

Bai et al. [23] 2019 Dbank: Predictive 

Behavioral Analysis of 

Recent Android 

Banking Trojans 

Introduce novel Triadic Suspicion 

Graph (TSG) features and show 

that the detection accuracy 

obtained by TSG features is 

comparable with traditional 

features like manifest and API 

package. TSG features when 

combined with traditional features 
can achieve high detection of 

android banking trojans. 

Raghuraman et al. 

[19] 

2020 Static and Dynamic 

Malware Analysis 

Using Machine 

Learning 

Use Principal Component Analysis 

(PCA) to reduce the number of 

features and increase the accuracy 

of classifier model significantly. 

Surendran et al. 

[21] 

2020 A Tan Based Hybrid 

Model for Android 

Malware Detection 

Propose a novel TAN (Tree 

Augmented naive Bayes) based 

detection mechanism which 

addresses the conditional 

dependencies between static and 

dynamic features to improve the 

accuracy of the classifier. 
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3. METHODOLOGY 
 
This section presents the methodology used in this study. It elaborates on the various stages of the 

proposed system like data collection, feature extraction, feature selection and learning algorithms. 

The performance metrics used to evaluate the algorithms are also presented in this section. 

 

3.1. Proposed System 
 
Selected android applications (banking trojans and good-ware) are statically and dynamically 

analyzed to extract respective features as shown in Figure 1. Each application is in an apk format 

which is an archive file that consists of all the essentials of an android application. An apk 

contains of a single manifest file and one or more DEX files. All the permissions needed by an 
android application are listed in the Manifest file whereas the DEX files contain the source code 

of the application [24]. An apk file needs to be decompiled to extract the features from Manifest 

and DEX files. Once the features are extracted, Feature selection algorithms are used to create a 
reduced set of features that is used with various machine learning algorithms to build prediction 

models. A reduced set of features is preferable because using few relevant features instead of all 

available features has positive impact on the analysis time and accuracy of the prediction model 

[11] [19] [25]. 
 

3.2. Data Collection 
 

The dataset is prepared using 2182 android applications out of which 1087 are Android Banking 

Trojans and 1095 are goodware (non-malicious applications). The banking trojan samples are 

collected from various malware repositories that provide malware samples for research such as 
VirusShare [26], Contagio [27], Virusign [28] and Koodous [29]. All these repositories are web-

based and accessible through web browser. The malware samples belong to banking trojan 

familes Cerberus, Anubis, Faketoken, Spitmo, Svpeng, Wroba, Zitmo, Fakebank, Marcher, 
Asacub, Xbot and ZertSecurity. The goodware samples on the other hand, are collected from 

APKPure [30]. The good-ware samples consist of android applications belonging to business, 

communication, education, events, lifestyle, medical and productivity categories. All the malware 
samples are identified as malicious and the good-ware samples were identified as non-malicious 

by VirusTotal [31]. Virustotal is a online service that provides analysis on files and URLs using 

more than 70 commercial and open source antivirus software. 

 

3.3. Feature Extraction 
 
Feature extraction for static analysis is performed using Androguard tool. The extracted features - 

permissions and API calls are then stored as log files for further analysis. We extract a total of 

1761 API calls and 1280 permissions (including custom permissions) from the applications 

initially. Likewise for dynamic analysis, we execute each application in a Nexus 5X API 23 
Android Virtual Device [32] and observe the behaviour of the application. Monkeyrunner [33] 

simulates the user interaction with the installed applications. The log from the monkeyrunner is 

analysed to observe whether the application requests activation of device administrator feature or 
not. Likewise the icon hiding behaviour is examined before and after interacting with the 

application. 
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Figure 1.  Proposed System 

 

3.4. Feature Selection 
 

Two feature selection algorithms are used to determine the distinguishing features for building 
the prediction model for banking trojans. The motivation behind using two feature selection 

algorithms is to see if different selection algorithms have significant differences on the 

performance of the prediction models. They feature selection algorithms used in this study are: 

 
i. Frequency Based Selection 

ii. Gain Ratio Based Selection 

 

3.4.1. Frequency Based Selection 

 

Frequency Based Selection is based on the previous studies by [9] and [10]. In frequency based 
selection, the features with highest frequency difference between good-ware and malware are 

considered and the features with low frequency difference are eliminated. Ten (10) permissions 

with highest frequency difference between banking trojans and good-ware are listed in Table 2. 
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Table 2.  Top 10 permissions with highest frequency difference. 

 
SN Permission Frequency Difference 

1. RECEIVE_SMS 1004 

2. READ_SMS 963 

3. SEND_SMS 945 

4. READ_CONTACTS 786 

5. READ_PHONE_STATE 768 

6. SYSTEM_ALERT_WINDOW 679 

7. WRITE_SMS 655 

8. CALL_PHONE 645 

9. RECEIVE_BOOT_COMPLETED 618 

10. BIND_GET_INSTALL_REFERRER_SERVICE 588 

 

From Table 1, we can see the permissions with largest frequency difference between banking 

trojans and good-ware are related to SMS and phone calls. Android banking trojans generally 
request more permissions related to SMS and phone calls. Similarly, the ten API calls with 

highest frequency difference between banking trojans and good-ware are listed in Table 3. 

 
Table 3.  Top 10 API calls with highest frequency difference. 

 
SN API Calls Frequency Difference 

1. android/content/Context->createPackageContext() 947 

2. android/os/Handler->removeMessages()  941 

3. java/net/HttpURLConnection->setInstanceFollow 

Redirects() 

937 

4. android/content/pm/PackageManager->getPackage 

Installer() 

932 

5. java/net/HttpURLConnection->getHeaderField() 931 

6. android/os/Handler->obtainMessage() 928 

7. android/content/Intent->getBooleanExtra() 925 

8. android/content/pm/PackageManager->hasSystem 

Feature()  

924 

9. android/content/Intent->putExtra() 911 

10. android/os/Bundle->putDouble() 904 

 

3.4.2. Gain Ratio Based Selection 

 

Further In gain ratio based selection, the features are ranked based on their gain ratio and 

insignificant features with lower gain ratio are eliminated. We select thirty-eight (38) features 
with gain ratio greater than 0.5 to use because the threshold value of 0.5 provides the best 

detection rate. For our dataset, both increasing and decreasing the threshold value of gain ratio 

decreases the accuracy of the prediction models. The list of ten features with largest gain ratio is 

presented in Table 4. 
 

Table 4.  Features ranked by Gain Ratio Evaluator. 

 
SN Feature 

1. android.permission.RECEIVE_SMS 

2. android.permission.READ_SMS 

3. android.permission.SEND_SMS 

4. android/os/Handler->removeMessages() 

5. android/content/Context->createPackageContext() 

6. android/content/pm/PackageManager->getPackage Installer() 
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7. android/os/Handler->obtainMessage() 

8. java/net/HttpURLConnection->setInstanceFollow Redirects() 

9. java/net/HttpURLConnection->getHeaderField() 

10. android/content/Intent->getBooleanExtra() 

 
From Table 3, we can see that the features with largest gain ratio are permissions related to SMS 

and API calls related to ‘android/os’, ‘android/content’ and ‘java/net’ packages. Furthermore, no 

dynamic features are selected through this process because the gain ratios of both dynamic 

features are less than 0.5 as shown in Table 5. 
 

Table 5.  Gain Ratio of dynamic features. 

 

SN Feature Gain Ratio 

1. Icon hiding 0.37857 

2. Device Administrator 0.16265 

 

3.5. Dataset Preparation 
 

Once the features are selected, we prepare the dataset for the prediction model. Each feature is a 
binary attribute and can have value of 0 or 1. The value 0 indicates the absence of a feature in an 

application and the value 1 indicates the presence of a feature. The class value to be predicted has 

two labels - trojan and good-ware. An instance in the dataset with 39 attributes is represented in 

the vector form as: 
 

[1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,trojan] 

 

3.6. Classification 
 

Once the The proposed system classifies android banking trojans and good-ware. The four 
classification algorithms used in this work are Support Vector Machine, Decision Tree, Random 

Forest and Neural Network. The classification algorithms have been selected based on their 

performance in previous related works [12] [23]. 
 

* Support Vector Machine (SVM): 

 

In SVM, the different classification groups are divided by a hyper-plane such that the data points 
on each side are at a maximum distance from the hyper-plane [34]. 

 

* Decision Tree (DT): 
 

Decision tree represents the decision process in the form of a tree. The root node is the feature 

which can optimally divide the data set and the leaf nodes are classification labels. The non-leaf 
nodes are composed of other features and the braches represent the value associated the features 

[34]. 

 

* Random Forest (RF): 
 

Random Forest is a classification algorithm that combines multiple decision trees. For this 

purpose, the algorithm splits the training data into multiple data sets which are then used to train 
multiple decision trees [35]. 

 

* Neural Network (NN): 



International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022 

34 

Neural Network is a classification algorithm that is based on human brain. Multiple layers of 
nodes are interconnected to mimic the behavior of neurons in human brain. The initial input is 

provided in the input layer and output is obtained from the output layer. Between these two 

layers, there can be multiple hidden layers where the actual processing of the input takes place 

[34].  
 

The classification is performed using Waikato Environment for Knowledge Analysis (WEKA) 

tool [36]. The model is trained using 10 fold cross validation and evaluated using following 
metrics: 

 

* Accuracy: Accuracy is the ratio of true instances to the total number of instances in a data set. 
 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 
 

* Precision: Precision of a classifier is the ratio of true positive instances to the total number of 
positive instances. 

 

Precision = (TP)/(TP+FP) 
 

* Recall: Recall is the ratio of the true positive instances to the total number of actual positive 

instances. 

 
Recall = (TP)/(TP+FN) 

 
* F1 score: F1 score is the harmonic mean between precision and recall. 

 

F1 score = 2*(Precison*Recall)/(Precison+Recall) 
 

* False Positive Rate (FPR): False Positive Ratio is the ratio of false positive instances to the total 

number of actual negative instances. 

 
FPR = (FP)/(TN+FP) 

 

The values of the performance metrics, precision, recall, f1-score and false positive rate used in 
this work are weighted average of the positive class (android banking trojan) and negative class 

(good-ware). Weka calculates the weighted metrics by calculating individual precision, recall, f1-

score and false positive rate of each class and averaging the values with weight equal to the 

proportion of the data present in each class [37]. Weighted metrics are considered when both 
class values are relevant for classification. Hence, this research work uses weighted precision, 

recall, f1 score and false positive rate to compare the performance of the selected classifiers. 

 

4. RESULTS 
 

Prior to feature selection, we analyse the performance of various classification algorithms for all 

3043 features (1761 API calls, 1280 permissions and 2 dynamic features). The accuracy, 

precision, recall, F1 score and false positive rate of the algorithms is presented in Table 6. 
 

 

 
 

 
 



International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022 

35 

Table 6.  Performance metrics of classifiers without feature selection. 

 

Algorithm Accuracy Precision Recall F1 score FPR 

SVM 95.3% 95.3% 95.3% 95.3% 4.7% 

Decision Tree 97.3% 97.3% 97.3% 97.3% 2.7% 

Random Forest 97.4% 97.4% 97.4% 97.4% 2.6% 

 

4.1. Frequency Based Selection 
 
In Frequency based selection, we use the features with largest frequency difference as attributes 

for the classifier. The variation of accuracy in different classifiers with the frequency of 

permissions is presented in Figure 2. Similarly, the variation of accuracy in different classifiers 

with the frequency of API calls is presented in Figure 3. 

 

 
 

Figure 2.  Accuracy of classifiers for permission related features 
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Figure 3.  Accuracy of classifiers for API calls related features 

 
From Figures 2 and 3, we can see that the accuracy of all the classifiers increase rapidly initially 

with increase in the number of features but the change in accuracy slows down as the number of 

features keep on increasing. Having a large number of features can lead to over-fitting which 

negatively impacts the performance of the prediction model. 
 

The accuracy of the classifiers with respect to the combined features (permissions, API calls and 

dynamic features) is presented in Table 7. In the table, the notation `P' represents number of 
permissions, `A' represents number of API calls and `D' represents number of dynamic features. 

 
Table 7.  Accuracy of classifiers for combined features. 

 

Number of features SVM RF DT NN 

12(5P+5A+2D) 96.6% 96.9% 96.7% 97.1% 

22(10P+10A+2D) 96.9% 97.3% 96.3% 97.4% 

32(15P+15A+2D) 96.8% 97.6% 96.3% 97.6% 

42(20P+20A+2D) 96.8% 97.7% 96.9% 97.7% 

52(25P+25A+2D) 97.1% 97.8% 96.8% 97.3% 

62(30P+30A+2D) 97.2% 98.1% 96.7% 97.5% 

72(35P+35A+2D) 97.1% 97.9% 96.7% 97.5% 

82(40P+40A+2D) 97.1% 97.9% 96.7% 97.3% 

 
For combined features, the best accuracy is obtained with Random Forest with 62 features - 30 

permissions, 30 API calls and 2 dynamic features. 

 

4.2. Gain Ratio-Based Selection 
 
Gain Ratio Based Selection uses gain ratio to determine the features with are most relevant to the 

prediction model. Gain Ratio of an attribute (feature) is defined as the ratio of Information gain of 

the attribute to its entropy. Thirty-eight (38) features with gain ratio greater than 0.5 are used with 
various classifiers and their performance is analysed. The performance of the classifiers in terms 

of accuracy, precision, recall, F1 score and False Positive Rate (FPR) is presented in Table 8. 
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Table 8.  Performance metrics of classifiers with gain ratio based selection. 

 

Algorithm Accuracy Precision Recall F1 score FPR 

SVM 96.3% 96.5% 96.3% 96.3% 3.7% 

Decision Tree 96.3% 96.4% 96.3% 96.3% 3.7% 

Random Forest 97.9% 97.9% 97.9% 97.9% 2.1% 

Neural Network 97.1% 97.1% 97.1% 97.1% 2.9% 

 

For gain ratio based selection, random forest classifier has the best detection rate with an 

accuracy of 97.9%. 
 

5. ANALYSIS OF RESULT 
 
Among all the learning algorithms, Random Forest shows the best performance for both feature 

selection methods with highest accuracy around 98%. The slightly better performance of Random 

Forest can be attributed to the fact that it is an ensemble learning based classifier and combines 
output from multiple decision trees. Apart from Random Forest, other three learning algorithms 

also achieve detection accuracy above 95%. 

 

Comparing the performance of the classifiers before and after the feature selection (Table 5 and 
Table 7), it can be seen that the accuracy of Random Forest and Support Vector Machine 

classifiers increase from 97.4% to 97.9% and from 95.3% to 96.3% respectively. By using feature 

selection, we were able to eliminate less relevant features and decrease the number of features 
from 3043 to 38 (gain ratio) while maintaining some improvement in the accuracy of the 

prediction models. Reduction in the number of features means a better runtime performance for 

the models which can be significant when huge amount of data is used [11]. 
 

6. CONCLUSION AND FUTURE WORK 
 

With the rising number of mobile banking application users, banking trojans targeting such 

mobile platforms are also increasing. The proposed system combines hybrid analysis and 
machine learning techniques to build a prediction model for android banking trojans. A 

combination of permissions, API calls, icon hiding and device administrator features is used with 

four different machine learning algorithms- Random Forest, Decision Tree, SVM and Neural 
Network to build the classifiers. Feature selection techniques are used to rank and select the most 

significant features. All the classifiers achieve good accuracy with Random Forest performing the 

best with an accuracy up to 98%. 

 
As for future work, we will use ensemble machine learning techniques with the proposed system 

and study their performance in detecting ABTs. 
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