
International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

DOI: 10.5121/ijnsa.2022.14603 27

A FRAMEWORK FOR THE DETECTION OF

BANKING TROJANS IN ANDROID

Subarna Adhikari, Sushil Nepal and Rabindra Bista

Dept. of Computer Science & Engineering, Kathmandu University, Dhulikhel, Nepal

ABSTRACT

Android is the most widely used operating system today and occupies more than 70% share of the

smartphone market. It is also a popular target for attackers looking to exploit mobile operating systems for

personal gains. More and more malware are targeting android operating system like Android Banking

Trojans (ABTs) which are widely being discovered. To detect such malware, we propose a prediction

model for ABTs that is based on hybrid analysis. The feature sets used with the machine learning

algorithms are permissions, API calls, hidden application icon and device administrator. Feature

selection methods based on frequency and gain ratio are used to minimize the number of features as well
as to eliminate the low-impact features. The proposed system is able to achieve significant performance

with selected machine learning algorithms and achieves accuracy up to 98% using random forest

classifier.

KEYWORDS

Malware Detection, Android Banking Trojans, Hybrid Analysis, Machine Learning.

1. INTRODUCTION

In the last decade (2011-2021), Android has overtaken both Symbian OS and iOS to become the

most popular mobile operating system in use occupying more than 70% of the smartphone

market share [1]. The widespread use of android also means that more than 90% of the malware
targeting smartphones are specific to android operating system [2]. Malware or malicious

software is a program that is designed to gain illegal access or to cause damage to systems and

their users [3]. Android Banking Trojans (ABTs) occupy a significant portion of android malware

ecosystem with other major malware classes like spyware, ransom-ware and adware [4]. ABTs
are designed to steal banking credentials of the users. For that purpose, they employ a range of

tactics that include intercepting text messages and phone calls, hiding their presence once

installed and creating fake overlays for legitimate banking applications [5].

Traditionally, malware detection systems use signatures to identify malware. Signature of a

malware is a piece of string that is extracted from the malware and is unique. One major
drawback of signature-based detection system is that it is very easy to alter the signature of a

malware with minor modifications to escape detection [6]. Hence, commercial anti-virus products

are moving towards the adoption of machine learning techniques to detect malware [7]. The

features used to build the machine learning models can be obtained through static analysis,
dynamic analysis or a combination of both [8]. In static analysis, the contents of a malware are

analysed without executing it whereas in case of dynamic analysis, a malware is executed to

examine its behaviour and its features are extracted. In hybrid analysis, features from static and
dynamic analysis are combined. The features are then used with detection methods to classify

malware. Our proposed system uses hybrid analysis with machine learning algorithm to design a

https://airccse.org/journal/jnsa22_current.html
https://doi.org/10.5121/ijnsa.2022.14603

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

28

detection system for ABTs. We extract four feature sets - permissions, API calls, icon hiding and
device administrator and use them with multiple machine learning algorithms to see their

behaviour towards the detection of ABTs. Two features - permissions and API calls are extracted

through static analysis whereas icon hiding and device administrator features are extracted

through dynamic analysis.

The rest of this paper is organized as follows: In Section 2, we present the related works which is

followed by methodology in Section 3. In Section 3, we introduce the proposed system and
elaborate on techniques used for data collection and selection of features. The results of the

research are presented in Section 4 and the analysis of the results is presented in section 5.

Finally, the conclusion and future works are presented in Section 6.

2. RELATED WORK

The In this section, previous research works related to the static, dynamic and hybrid analysis of

malware are presented. DroidAnalytics [6] is a signature based detection system that defines a
three level signature generation which is robust against obfuscation. Other prominent work in the

field of android malware detection include DroidAPIMiner [9], which uses API calls to predict

android malware. Peiravian et al. [10] on the other hand, uses both permission and API call
features to build detection models for android malware and shows that a combination of

permissions and API calls is more effective than using either of the features separately. SigPID

[11] uses a reduced permission set to detect android malware with significant accuracy reducing

the analysis time. Both Drebin [12] and [13] use wide range of feature sets such as system
commands, permissions and API calls extracted by static analysis for building prediction models.

For prediction model based on dynamic analysis, [14] and [15] use system call as feature. In the

work of [16], system call along with other behavioural features such as cryptographic operation,
network operation and information leaks extracted using DroidBox tool are used for detecting

android malware. Aside from system calls, Arora et al. [17] and Chen et al. [18] studied network

traffic-related parameters to build the prediction model.

Much work in android malware detection is based on hybrid analysis that combines both static

analysis and dynamic analysis for better detection accuracy. Raghuraman et al. [19] extract and

use permissions and network protocols whereas Kabakus et al. [20] use permissions and network
log of applications using various machine learning algorithms to detect android malware.

Similarly, Surendran et al. [21] extract API calls, permissions and system calls of android

applications and use Tree Augmented Naive Bayes (TAN) to identify android malware.

Little research has focused on specific category of malware like banking trojans. One such work

[5] focuses on analysis of banking trojan BadAccents which infected thousands of Android users

in the year 2014-2015. DroydSeuss [22] is a mobile banking trojan tracker that analyses an
application both statically and dynamically to extract and examine strings related to

communication endpoints. DBank [23] defines a novel concept called Triadic Suspicion Graph

(TSG) based on android package information which is used to extract TSG features. The authors
used TSG features in conjugation with other static and dynamic features like manifest, API

package and API class to detect ABTs with high accuracy of and low false positive rate.

Most of the studies in android malware detection do not separate different categories of malware.

Malware analysis targeting a specific type of malware is relatively less explored. An advantage of

analysing only a specific category malware is that it can reveal previously unknown traits which

may be significant in their detection. Our work addresses this gap in the detection of android
malware as it deals exclusively with android banking trojans. A significant work [23] in this field

uses novel TSG features which is different from the features we use in our work.

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

29

Our proposed framework uses four feature sets obtained through hybrid analysis to distinguish
between malicious and non-malicious applications, specially focusing on ABTs. The four

features include permissions and API calls as static features and icon hiding and device

administrator as dynamic features. The combination of feature sets used in this work is unique

because the dynamic features are less explored as compared to features like system calls and
network traffic.

The studies related to our work in the past 5 years and their details have been summarized in
Table 1.

Table 1. Summary of related works.

Author Year Title Significant Contribution

Li et al. [11] 2018 Significant Permission

Identification for
Machine-Learning-

Based Android

Malware Detection

The authors achieve significant

detection using reduced feature set
while reducing the analysis time by

4 to 32 times.

Kabakus et al. [20] 2018 An In-Depth Analysis

of Android Malware

Using Hybrid

Techniques

Analyze the static and dynamic

characteristics of android malware

and benign applications to see the

difference in the type of

permissions and network

connection they request.

Feng et al.[16] 2018 A Novel Dynamic

Android Malware

Detection System With

Ensemble Learning

Take application behavior into

account along with system calls for

designing the detection model and

use ensemble learning algorithms

for prediction models.

Chen et al. [18] 2018 Machine Learning

Based Mobile Malware

Detection Using Highly

Imbalanced Network

Traffic

Propose a prototype system to

address the imbalance in benign

and malicious network traffic data

when used with classification

algorithms.

Bai et al. [23] 2019 Dbank: Predictive

Behavioral Analysis of

Recent Android

Banking Trojans

Introduce novel Triadic Suspicion

Graph (TSG) features and show

that the detection accuracy

obtained by TSG features is

comparable with traditional

features like manifest and API

package. TSG features when

combined with traditional features
can achieve high detection of

android banking trojans.

Raghuraman et al.

[19]

2020 Static and Dynamic

Malware Analysis

Using Machine

Learning

Use Principal Component Analysis

(PCA) to reduce the number of

features and increase the accuracy

of classifier model significantly.

Surendran et al.

[21]

2020 A Tan Based Hybrid

Model for Android

Malware Detection

Propose a novel TAN (Tree

Augmented naive Bayes) based

detection mechanism which

addresses the conditional

dependencies between static and

dynamic features to improve the

accuracy of the classifier.

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

30

3. METHODOLOGY

This section presents the methodology used in this study. It elaborates on the various stages of the

proposed system like data collection, feature extraction, feature selection and learning algorithms.

The performance metrics used to evaluate the algorithms are also presented in this section.

3.1. Proposed System

Selected android applications (banking trojans and good-ware) are statically and dynamically

analyzed to extract respective features as shown in Figure 1. Each application is in an apk format

which is an archive file that consists of all the essentials of an android application. An apk

contains of a single manifest file and one or more DEX files. All the permissions needed by an
android application are listed in the Manifest file whereas the DEX files contain the source code

of the application [24]. An apk file needs to be decompiled to extract the features from Manifest

and DEX files. Once the features are extracted, Feature selection algorithms are used to create a
reduced set of features that is used with various machine learning algorithms to build prediction

models. A reduced set of features is preferable because using few relevant features instead of all

available features has positive impact on the analysis time and accuracy of the prediction model

[11] [19] [25].

3.2. Data Collection

The dataset is prepared using 2182 android applications out of which 1087 are Android Banking

Trojans and 1095 are goodware (non-malicious applications). The banking trojan samples are

collected from various malware repositories that provide malware samples for research such as
VirusShare [26], Contagio [27], Virusign [28] and Koodous [29]. All these repositories are web-

based and accessible through web browser. The malware samples belong to banking trojan

familes Cerberus, Anubis, Faketoken, Spitmo, Svpeng, Wroba, Zitmo, Fakebank, Marcher,
Asacub, Xbot and ZertSecurity. The goodware samples on the other hand, are collected from

APKPure [30]. The good-ware samples consist of android applications belonging to business,

communication, education, events, lifestyle, medical and productivity categories. All the malware
samples are identified as malicious and the good-ware samples were identified as non-malicious

by VirusTotal [31]. Virustotal is a online service that provides analysis on files and URLs using

more than 70 commercial and open source antivirus software.

3.3. Feature Extraction

Feature extraction for static analysis is performed using Androguard tool. The extracted features -

permissions and API calls are then stored as log files for further analysis. We extract a total of

1761 API calls and 1280 permissions (including custom permissions) from the applications

initially. Likewise for dynamic analysis, we execute each application in a Nexus 5X API 23
Android Virtual Device [32] and observe the behaviour of the application. Monkeyrunner [33]

simulates the user interaction with the installed applications. The log from the monkeyrunner is

analysed to observe whether the application requests activation of device administrator feature or
not. Likewise the icon hiding behaviour is examined before and after interacting with the

application.

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

31

Figure 1. Proposed System

3.4. Feature Selection

Two feature selection algorithms are used to determine the distinguishing features for building
the prediction model for banking trojans. The motivation behind using two feature selection

algorithms is to see if different selection algorithms have significant differences on the

performance of the prediction models. They feature selection algorithms used in this study are:

i. Frequency Based Selection

ii. Gain Ratio Based Selection

3.4.1. Frequency Based Selection

Frequency Based Selection is based on the previous studies by [9] and [10]. In frequency based
selection, the features with highest frequency difference between good-ware and malware are

considered and the features with low frequency difference are eliminated. Ten (10) permissions

with highest frequency difference between banking trojans and good-ware are listed in Table 2.

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

32

Table 2. Top 10 permissions with highest frequency difference.

SN Permission Frequency Difference

1. RECEIVE_SMS 1004

2. READ_SMS 963

3. SEND_SMS 945

4. READ_CONTACTS 786

5. READ_PHONE_STATE 768

6. SYSTEM_ALERT_WINDOW 679

7. WRITE_SMS 655

8. CALL_PHONE 645

9. RECEIVE_BOOT_COMPLETED 618

10. BIND_GET_INSTALL_REFERRER_SERVICE 588

From Table 1, we can see the permissions with largest frequency difference between banking

trojans and good-ware are related to SMS and phone calls. Android banking trojans generally
request more permissions related to SMS and phone calls. Similarly, the ten API calls with

highest frequency difference between banking trojans and good-ware are listed in Table 3.

Table 3. Top 10 API calls with highest frequency difference.

SN API Calls Frequency Difference

1. android/content/Context->createPackageContext() 947

2. android/os/Handler->removeMessages() 941

3. java/net/HttpURLConnection->setInstanceFollow

Redirects()

937

4. android/content/pm/PackageManager->getPackage

Installer()

932

5. java/net/HttpURLConnection->getHeaderField() 931

6. android/os/Handler->obtainMessage() 928

7. android/content/Intent->getBooleanExtra() 925

8. android/content/pm/PackageManager->hasSystem

Feature()

924

9. android/content/Intent->putExtra() 911

10. android/os/Bundle->putDouble() 904

3.4.2. Gain Ratio Based Selection

Further In gain ratio based selection, the features are ranked based on their gain ratio and

insignificant features with lower gain ratio are eliminated. We select thirty-eight (38) features
with gain ratio greater than 0.5 to use because the threshold value of 0.5 provides the best

detection rate. For our dataset, both increasing and decreasing the threshold value of gain ratio

decreases the accuracy of the prediction models. The list of ten features with largest gain ratio is

presented in Table 4.

Table 4. Features ranked by Gain Ratio Evaluator.

SN Feature

1. android.permission.RECEIVE_SMS

2. android.permission.READ_SMS

3. android.permission.SEND_SMS

4. android/os/Handler->removeMessages()

5. android/content/Context->createPackageContext()

6. android/content/pm/PackageManager->getPackage Installer()

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

33

7. android/os/Handler->obtainMessage()

8. java/net/HttpURLConnection->setInstanceFollow Redirects()

9. java/net/HttpURLConnection->getHeaderField()

10. android/content/Intent->getBooleanExtra()

From Table 3, we can see that the features with largest gain ratio are permissions related to SMS

and API calls related to ‘android/os’, ‘android/content’ and ‘java/net’ packages. Furthermore, no

dynamic features are selected through this process because the gain ratios of both dynamic

features are less than 0.5 as shown in Table 5.

Table 5. Gain Ratio of dynamic features.

SN Feature Gain Ratio

1. Icon hiding 0.37857

2. Device Administrator 0.16265

3.5. Dataset Preparation

Once the features are selected, we prepare the dataset for the prediction model. Each feature is a
binary attribute and can have value of 0 or 1. The value 0 indicates the absence of a feature in an

application and the value 1 indicates the presence of a feature. The class value to be predicted has

two labels - trojan and good-ware. An instance in the dataset with 39 attributes is represented in

the vector form as:

[1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,trojan]

3.6. Classification

Once the The proposed system classifies android banking trojans and good-ware. The four
classification algorithms used in this work are Support Vector Machine, Decision Tree, Random

Forest and Neural Network. The classification algorithms have been selected based on their

performance in previous related works [12] [23].

* Support Vector Machine (SVM):

In SVM, the different classification groups are divided by a hyper-plane such that the data points
on each side are at a maximum distance from the hyper-plane [34].

* Decision Tree (DT):

Decision tree represents the decision process in the form of a tree. The root node is the feature

which can optimally divide the data set and the leaf nodes are classification labels. The non-leaf
nodes are composed of other features and the braches represent the value associated the features

[34].

* Random Forest (RF):

Random Forest is a classification algorithm that combines multiple decision trees. For this

purpose, the algorithm splits the training data into multiple data sets which are then used to train
multiple decision trees [35].

* Neural Network (NN):

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

34

Neural Network is a classification algorithm that is based on human brain. Multiple layers of
nodes are interconnected to mimic the behavior of neurons in human brain. The initial input is

provided in the input layer and output is obtained from the output layer. Between these two

layers, there can be multiple hidden layers where the actual processing of the input takes place

[34].

The classification is performed using Waikato Environment for Knowledge Analysis (WEKA)

tool [36]. The model is trained using 10 fold cross validation and evaluated using following
metrics:

* Accuracy: Accuracy is the ratio of true instances to the total number of instances in a data set.

Accuracy = (TP+TN)/(TP+TN+FP+FN)

* Precision: Precision of a classifier is the ratio of true positive instances to the total number of
positive instances.

Precision = (TP)/(TP+FP)

* Recall: Recall is the ratio of the true positive instances to the total number of actual positive

instances.

Recall = (TP)/(TP+FN)

* F1 score: F1 score is the harmonic mean between precision and recall.

F1 score = 2*(Precison*Recall)/(Precison+Recall)

* False Positive Rate (FPR): False Positive Ratio is the ratio of false positive instances to the total

number of actual negative instances.

FPR = (FP)/(TN+FP)

The values of the performance metrics, precision, recall, f1-score and false positive rate used in
this work are weighted average of the positive class (android banking trojan) and negative class

(good-ware). Weka calculates the weighted metrics by calculating individual precision, recall, f1-

score and false positive rate of each class and averaging the values with weight equal to the

proportion of the data present in each class [37]. Weighted metrics are considered when both
class values are relevant for classification. Hence, this research work uses weighted precision,

recall, f1 score and false positive rate to compare the performance of the selected classifiers.

4. RESULTS

Prior to feature selection, we analyse the performance of various classification algorithms for all

3043 features (1761 API calls, 1280 permissions and 2 dynamic features). The accuracy,

precision, recall, F1 score and false positive rate of the algorithms is presented in Table 6.

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

35

Table 6. Performance metrics of classifiers without feature selection.

Algorithm Accuracy Precision Recall F1 score FPR

SVM 95.3% 95.3% 95.3% 95.3% 4.7%

Decision Tree 97.3% 97.3% 97.3% 97.3% 2.7%

Random Forest 97.4% 97.4% 97.4% 97.4% 2.6%

4.1. Frequency Based Selection

In Frequency based selection, we use the features with largest frequency difference as attributes

for the classifier. The variation of accuracy in different classifiers with the frequency of

permissions is presented in Figure 2. Similarly, the variation of accuracy in different classifiers

with the frequency of API calls is presented in Figure 3.

Figure 2. Accuracy of classifiers for permission related features

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

36

Figure 3. Accuracy of classifiers for API calls related features

From Figures 2 and 3, we can see that the accuracy of all the classifiers increase rapidly initially

with increase in the number of features but the change in accuracy slows down as the number of

features keep on increasing. Having a large number of features can lead to over-fitting which

negatively impacts the performance of the prediction model.

The accuracy of the classifiers with respect to the combined features (permissions, API calls and

dynamic features) is presented in Table 7. In the table, the notation `P' represents number of
permissions, `A' represents number of API calls and `D' represents number of dynamic features.

Table 7. Accuracy of classifiers for combined features.

Number of features SVM RF DT NN

12(5P+5A+2D) 96.6% 96.9% 96.7% 97.1%

22(10P+10A+2D) 96.9% 97.3% 96.3% 97.4%

32(15P+15A+2D) 96.8% 97.6% 96.3% 97.6%

42(20P+20A+2D) 96.8% 97.7% 96.9% 97.7%

52(25P+25A+2D) 97.1% 97.8% 96.8% 97.3%

62(30P+30A+2D) 97.2% 98.1% 96.7% 97.5%

72(35P+35A+2D) 97.1% 97.9% 96.7% 97.5%

82(40P+40A+2D) 97.1% 97.9% 96.7% 97.3%

For combined features, the best accuracy is obtained with Random Forest with 62 features - 30

permissions, 30 API calls and 2 dynamic features.

4.2. Gain Ratio-Based Selection

Gain Ratio Based Selection uses gain ratio to determine the features with are most relevant to the

prediction model. Gain Ratio of an attribute (feature) is defined as the ratio of Information gain of

the attribute to its entropy. Thirty-eight (38) features with gain ratio greater than 0.5 are used with
various classifiers and their performance is analysed. The performance of the classifiers in terms

of accuracy, precision, recall, F1 score and False Positive Rate (FPR) is presented in Table 8.

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

37

Table 8. Performance metrics of classifiers with gain ratio based selection.

Algorithm Accuracy Precision Recall F1 score FPR

SVM 96.3% 96.5% 96.3% 96.3% 3.7%

Decision Tree 96.3% 96.4% 96.3% 96.3% 3.7%

Random Forest 97.9% 97.9% 97.9% 97.9% 2.1%

Neural Network 97.1% 97.1% 97.1% 97.1% 2.9%

For gain ratio based selection, random forest classifier has the best detection rate with an

accuracy of 97.9%.

5. ANALYSIS OF RESULT

Among all the learning algorithms, Random Forest shows the best performance for both feature

selection methods with highest accuracy around 98%. The slightly better performance of Random

Forest can be attributed to the fact that it is an ensemble learning based classifier and combines
output from multiple decision trees. Apart from Random Forest, other three learning algorithms

also achieve detection accuracy above 95%.

Comparing the performance of the classifiers before and after the feature selection (Table 5 and
Table 7), it can be seen that the accuracy of Random Forest and Support Vector Machine

classifiers increase from 97.4% to 97.9% and from 95.3% to 96.3% respectively. By using feature

selection, we were able to eliminate less relevant features and decrease the number of features
from 3043 to 38 (gain ratio) while maintaining some improvement in the accuracy of the

prediction models. Reduction in the number of features means a better runtime performance for

the models which can be significant when huge amount of data is used [11].

6. CONCLUSION AND FUTURE WORK

With the rising number of mobile banking application users, banking trojans targeting such

mobile platforms are also increasing. The proposed system combines hybrid analysis and
machine learning techniques to build a prediction model for android banking trojans. A

combination of permissions, API calls, icon hiding and device administrator features is used with

four different machine learning algorithms- Random Forest, Decision Tree, SVM and Neural
Network to build the classifiers. Feature selection techniques are used to rank and select the most

significant features. All the classifiers achieve good accuracy with Random Forest performing the

best with an accuracy up to 98%.

As for future work, we will use ensemble machine learning techniques with the proposed system

and study their performance in detecting ABTs.

REFERENCES

[1] Wallen, J. (2021). Why is android more popular globally, while ios rules the us?.

https://www.techrepublic.com/article/why-is-android-more-popular-globally-while-ios-rules-the-us/

[2] Proske, S. (2017). Another reason 99% of mobile malware targets androids. https://blog.f-

secure.com/another-reason-99-percent-of-mobile-malware-targets-androids/
[3] Or-Meir, O., Nissim, N., Elovici, Y., & Rokach, L. (2019). Dynamic malware analysis in the modern

era—a state of the art survey. ACM Computing Surveys (CSUR), 52 (5), 1–48.

[4] Chebyshev, V. (2020). Mobile malware evolution 2019. https://securelist.com/mobile-malware-

evolution-2019/96280/

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

38

[5] Rasthofer, S., Asrar, I., Huber, S., & Bodden, E. (2015). An investigation of the android/badaccents

malware which exploits a new android tapjacking attack. Technical report, Technische Universitt

Darmstadt.

[6] Zheng, M., Sun, M., & Lui, J. C. (2013). Droid analytics: A signature based analytic system to

collect, extract, analyze and associate android malware. 2013 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, 163–171.

[7] Marques, P., Rhode, M., & Gashi, I. (2021). Waste not: Using diverse neural networks from

hyperparameter search for improved malware detection. Computers & Security, 108, 102339.

[8] Tam, K., Feizollah, A., Anuar, N. B., Salleh, R., & Cavallaro, L. (2017). The evolution of android

malware and android analysis techniques. ACM ComputingSurveys (CSUR), 49 (4), 1–41.

[9] Aafer, Y., Du, W., & Yin, H. (2013). Droidapiminer: Mining api-level features for robust malware

detection in android. International conference on security and privacy in communication systems, 86–

103.

[10] Peiravian, N., & Zhu, X. (2013). Machine learning for android malware detection using permission

and api calls. 2013 IEEE 25th international conference on tools with artificial intelligence, 300–305.

[11] Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., & Ye, H. (2018). Significant permission identification

for machine-learning-based android malware detection. IEEE Transactions on Industrial Informatics,
14 (7), 3216–3225.

[12] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. (2014). Drebin:

Effective and explainable detection of android malware in your pocket. Ndss, 14, 23–26.

[13] Fereidooni, H., Conti, M., Yao, D., & Sperduti, A. (2016). Anastasia: Android malware detection

using static analysis of applications. 2016 8th IFIP international conference on new technologies,

mobility and security (NTMS), 1–5.

[14] Canfora, G., Medvet, E., Mercaldo, F., & Visaggio, C. A. (2015). Detecting android malware using

sequences of system calls. Proceedings of the 3rd International Workshop on Software Development

Lifecycle for Mobile, 13–20.

[15] Wang, C., Li, Z., Mo, X., Yang, H., & Zhao, Y. (2017). An android malware dynamic detection

method based on service call co-occurrence matrices. Annals of Telecommunications, 72 (9-10), 607–
615.

[16] Feng, P., Ma, J., Sun, C., Xu, X., & Ma, Y. (2018). A novel dynamic android malware detection

system with ensemble learning. IEEE Access, 6, 30996–31011.

[17] Arora, A., Garg, S., & Peddoju, S. K. (2014). Malware detection using network traffic analysis in

android based mobile devices. 2014 Eighth International Conference on Next Generation Mobile

Apps, Services and Technologies, 66–71.

[18] Chen, Z., Yan, Q., Han, H., Wang, S., Peng, L., Wang, L., & Yang, B. (2018). Machine learning

based mobile malware detection using highly imbalanced network traffic. Information Sciences, 433,

346–364

[19] Raghuraman, C., Suresh, S., Shivshankar, S., & Chapaneri, R. (2020). Static and dynamic malware

analysis using machine learning. First International Conference on Sustainable Technologies for

Computational Intelligence, 793–806.
[20] Kabakus, A. T., & Dogru, I. A. (2018). An in-depth analysis of android malware using hybrid

techniques. Digital Investigation, 24, 25–33.

[21] Surendran, R., Thomas, T., & Emmanuel, S. (2020). A tan based hybrid model for android malware

detection. Journal of Information Security and Applications, 54, 102483.

[22] Coletta, A., Van Der Veen, V., & Maggi, F. (2016). Droydseuss: A mobile banking trojan tracker

(short paper). International Conference on Financial Cryptography and Data Security, 250–259.

[23] Bai, C., Han, Q., Mezzour, G., Pierazzi, F., & Subrahmanian, V. (2019). Dbank: Predictive

behavioral analysis of recent android banking trojans. IEEE Transactions on Dependable and Secure

Computing.

[24] Google Developers. (n.d.). Application fundamentals. https://developer.android.com/guide/

components/fundamentals
[25] Arshad, S., Shah, M. A., Wahid, A., Mehmood, A., Song, H., & Yu, H. (2018). Samadroid: A novel

3-level hybrid malware detection model for android operating system. IEEE Access, 6, 4321–4339.

[26] Virusshare. (n.d.). Virusshare. https://virusshare.com/

[27] Parkour, M. (n.d.). Contagio mobile. http://contagiominidump.blogspot.com/

[28] Virusign. (n.d.). Virusign. https://www.virusign.com/

[29] Koodous. (n.d.). Koodous. https://koodous.com/

International Journal of Network Security & Its Applications (IJNSA) Vol.14, No.6, November 2022

39

[30] Apkpure. (n.d.). Apkpure. https://apkpure.com/

[31] Talukder, S., & Talukder, Z. (2020). A survey on malware detection and analysis tools. International

Journal of Network Security & Its Applications (IJNSA), 12.

[32] Grgurina, R., Brestovac, G., & Grbac, T. G. (2011). Development environment for android

application development: An experience report. 2011 Proceedings of the 34th International
Convention MIPRO, 1693–1698.

[33] Google Developers. (2015). Monkeyrunner. https://developer.android.com/studio/test /monkeyrunner.

[34] Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: A review of

classification and combining techniques. Artificial Intelligence Review, 26 (3), 159–190.

[35] Liaw, A., & Wiener, M. (2002). Classification and regression by random forest. R news, 2 (3), 18–22.

[36] Garner, S. R. (1996). Weka: The waikato environment for knowledge analysis.

[37] Eibe, F. (2019). Micro averages in multi-class classification. https://waikato.github.io/ weka-

blog/posts/2019-02-16-micro average.

AUTHORS

Subarna Adhikari, Recent Graduate of Master’s in Computer Engineering, Department of Computer

Science and Engineering Kathmandu University, Dhulikhel, Nepal

Sushil Nepal, Assistant Professor

Department of Computer Science and Engineering, Kathmandu University, Dhulikhel, Nepal

Rabindra Bista*, Associate Professor
Department of Computer Science and Engineering, Kathmandu University, Dhulikhel, Nepal

* - Corresponding Author

	Abstract
	Keywords
	Malware Detection, Android Banking Trojans, Hybrid Analysis, Machine Learning.

