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ABSTRACT 
 
This study combines research in machine learning and system engineering practices to conceptualize a 

paradigm-enhancing trustworthiness of a machine learning inference pipeline. We explore the topic of 

reversibility in deep neural networks and introduce its anomaly detection capabilities to build a framework 

of integrity verification checkpoints across the inference pipeline of a deployed model.  We leverage 

previous findings and principles regarding several types of autoencoders, deep generative maximum-
likelihood training and invertibility of neural networks to propose an improved network architecture for 

anomaly detection.  We hypothesize and experimentally confirm that an Invertible Neural Network (INN) 

trained as a convolutional autoencoder is a superior alternative naturally suited to solve that task. This 

remarkable INN’s ability to reconstruct data from its compressed representation and to solve inverse 

problems is then generalized and applied in the field of Trustworthy AI to achieve integrity verification of 

an inference pipeline through the concept of an INN-based Trusted Neural Network (TNN) nodes placed 

around the mission critical parts of the system, as well as the end-to-end outcome verification.  This work 

aspires to enhance robustness and reliability of applications employing artificial intelligence, which are 

playing increasingly noticeable role in highly consequential decision-making processes across many 

industries and problem domains.  INNs are invertible by construction and tractably trained simultaneously 

in both directions.  This feature has untapped potential to improve the explainability of machine learning 

pipelines in support of their trustworthiness and is a topic of our current studies. 
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1. INTRODUCTION 
 
This concept paper is inspired by a rapidly increasing role of machine learning in the decision-

making process across a wide spectrum of domains, which brings to the forefront the importance 

of detecting anomalies and verifying the integrity of end-to-end inference flow, so the outcome of 
the system can be trusted.  We propose that the general solution architecture paradigm for any 

mission critical decision support system, which leverages machine learning components, 

incorporates a layer of integrity verification around a running model to ensure trustworthiness of 

the pipeline.  Our technique is applicable to machine learning inference flows significant enough 
to be protected by an extra security layer. 

 

We build upon the concept of a Trusted Neural Network (TNN) [1], which leverages the 
revolutionary approach to achieve reversibility in neural networks introduced by Dinh [2] and 

subsequently incorporated into the Invertible Neural Network (INN) architecture by Ardizone 

[3].  An INN, which is invertible by construction, offers a remarkable data reconstruction 
capability that can be leveraged to validate that the inference flow pipeline is intact and that the 

output of it can be trusted.  The result of that assessment in the form of the Inference Integrity 
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Score can be reported in real time and acted upon to safeguard system integrity by suppressing 
suspicious outcomes. The implementation of our inference verification paradigm employs the 

TNN-based test nodes comprising an AI-firewall layer offers a pragmatic approach to protecting 

machine learning pipelines and does not require any intricate intervention into the models 

themselves to handle adversarial inputs.   
 

The remainder of this paper is organized as follows:  Section 3 briefly reviews related work 

pertaining to safeguarding machine learning inference pipelines.  It then elaborates on anomaly 
detection techniques [8] and Invertible Neural Networks touching upon normalizing flows [2] - 

the theory underlying the reversibility of deep neural networks. We also introduce the Framework 

for Easily Invertible Architectures (FrEIA) previously established by Ardizone [3], which 
provides an SDK to construct custom INN configurations to make it quick and approachable.  We 

then discuss the remarkable ability of an Invertible Neural Network to reconstruct data from its 

compressed latent representation, outperforming traditional autoencoder architecture.  In Section 

4 we look at the Trusted Neural Network API and learn how a TNN node can be incorporated 
into a verification-based inference protection layer.  Section 5 summarizes the study and offers 

our conclusion. 

 

2. DEPENDENCIES AND LIMITATION 
 

The anomaly detection solution presented in this work is based on the revolutionary Invertible 

Neural Network architecture, which was first introduced by Dinh [2] in 2016.   The experiments 

leverage a concrete INN implementation described in [3] wrapped by the Framework 
for Easily Invertible Architectures, which offers an API mechanism to stack the infused with 

bijective functions invertible network nodes to achieve reversible deep learning.  

 

3. RELATED WORKS 
 

3.1. Machine Learning System Robustness 
 
Machine learning system robustness, defined as building the reliable, secure, and fault-tolerant 

machine learning systems, is an active area of research.  Much attention is given to strengthen 

adversarial resilience of the deep learning models themselves, but a verification-driven approach 
to validate the inference pipeline every step of the way provides an effective scheme to improve 

system robustness, while narrowing the gap between machine learning research and practice. As 

described by Apruzzese in “Real Attackers Don’t Compute Gradients” [4], every risk related to 

the inference pipeline’s loss of integrity can be effectively mitigated with a verification layer 
suitable for a given use case. 

 

3.2. Trusted Neural Network 
 

The diagram in Fig. 1 below depicts a conceptual template of a system comprising a Trusted 

Neural Network conceptualized in [1], where the output, in addition to the predicted result, 
includes an Inference Integrity Score to help assess trustworthiness of the outcome. It leverages 

the capability of an Invertible Neural Network deal with inverse problems and to reconstruct an 

input from an output, in their respective domains.  
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Figure 1. TNN Context Diagram [1] 

 

A TNN is a general solution architecture paradigm and the concrete implementations reflecting 

the needs of specific problem domains can be derived from there.   

 
Current methodologies employed to verify the integrity of Artificial Neural Networks leverage 

sampling strategies, which operate in the outer perimeter of the network.  The TNN concept, 

however, incorporates the integrity measure as an integral part of the system.  We propose that 

the inference flow is augmented with the inverse output-to-input verification steps, and that the 
INN-based Trusted Neural Network stackable nodes assume this responsibility – trained on the 

respective datasets, they are tasked with detecting and suppressing suspicious out-of-distribution 

data anomalies along the pipeline. 
 

3.3. Anomaly Detection 
 
Anomaly detection is a process of identifying data that does not fit into a pattern of what is 

expected.  As described in [5] and depicted in Figure 2, abnormal patterns in the phenomena 

characterized by low dimensionality can be easily discovered with an algorithmic approach based 
on acceptable value ranges, with simple clustering techniques, or even assessed visually.   

Giannoni [5] and subsequently Yin [6] put anomaly detection methods in several categories, such 

as statistical-based methods, probability-based methods, similarity-based methods, and most 

recently prediction-based methods. 
 

 

 
 

Figure 2. Anomalies visualized [5] 

 
The high dimensional scenarios surrounding systems with machine learning components highly 

dependent on integrity of the data, however, require more sophisticated multivariate statistics 

methods based on probability distributions and deep learning techniques. They are exemplified 
by generative neural networks, such as several classes of autoencoders, including novel INN-

based autoencoders described [8] based on Invertible Neural Networks trained for anomaly 

detection.  
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3.4. Autoencoders  
 

Autoencoders belong to the family of unsupervised deep learning neural network models well 

suited for dimensionality reduction and have been described extensively in numerous works, such 
as [5] and [6], then referenced in [7].  The general idea around this type of neural network is to 

extract the most relevant features from input data and then learn how to reconstruct the original 

data from its compressed representation.  For unexpected inputs, which the model has not seen 
during training, the reconstruction error should be higher, and crossing a configurable threshold, 

dependent on a problem domain, constitutes an anomaly. 

  

 

 
Figure 3.   Classic Autoencoder [7] 

 

As described in [7] and shown in Fig. 3, a classic autoencoder consists of an encoder and a 
decoder, implemented as fully connected neural networks.  The encoder compresses the network 

input x into a lower dimensional latent representation z defined by the bottleneck.  The decoder 

takes the output of the encoder and decodes the latent representation back to the original input x̂. 
The information preserved in hidden neurons is considered as the encoded features. The learning 

process is based on minimizing the reconstruction error, which is assessed by comparing the 

reconstructed input with the original one. The learned representation corresponds to the final 

hidden state of the encoder network and acts as a summary of the input sequence. 
 

There are several variations of autoencoder architecture [7], such as a convolutional autoencoder, 

depicted in Fig. 4, which uses convolutional layers to create a compressed representations [6], or 
an LSTM autoencoder, proposed by Sutskever [9] and shown in Fig. 5, proficient in anomaly 

detection for sequential or time series data.  

 

 

 
Figure 4. Convolutional Autoencoder [7] 
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Figure 5. LSTM Autoencoder [7] 

 

Yet another interesting extension of the autoencoder architecture is a variational autoencoder 

depicted in Fig. 6.  It is capable not only of reconstructing the original input, but also enhancing it 
by generating new content based on the sampling from the learned probability density 

distribution of the input domain.   

 

 
 

Figure 6. Variational Autoencoder [7] 

 

A compress-reconstruct type of challenge reflected in the autoencoder encoder-decoder 
architecture belongs to the class of “ill-posed” inverse problems, which are characterized by 

inherent ambiguity due to the existence of an information bottleneck.  Such problems have been 

successfully addressed by the reversible neural network architecture applied in Invertible Neural 
Networks, which makes them an interesting option to help with our integrity verification 

undertaking. In this work we leverage previous findings and principles regarding several types of 

autoencoders together with reversible neural networks and apply the INN-based architecture for 

anomaly detection as a core of the TNN network integrity verification nodes. 
 

3.5. Invertible Neural Networks 
 

As explored in [7] and referenced here for context, an Invertible Neural Network is a class of 

networks suited to solve ambiguity that characterizes inverse problems, where multiple parameter 

sets can produce the same observed outcome, as depicted in Fig. 7. 
 

                  
 

Figure 7.   Forward mapping of x → y (left) and Inverse ambiguity (right) 
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To express this ambiguity, the posterior probability of the parameters’ distribution, given an 
outcome y, must be learned so the most appropriate set can be selected.  Such a model can 

perform log-density estimation of data points, leading to efficient inference and precise 

reconstruction of the inputs from the hierarchical features extracted by the model.  This 

extraordinary capability to reconstruct the inputs corresponding to the encoder-decoder 
functionality makes INN a natural candidate to help solve the problem of anomaly detection.  

An INN is trained simultaneously in the forward and reverse directions, Fig. 8.  

 

 

 
Figure 8. Invertible Neural Network Conceptual Diagram 

 
The forward learning process uses additional latent output variables to capture information 

otherwise lost, making the learning of the inverse process explicit. 

 

To solve the general inverse problem, we augment the observation space Y with a latent variable 
Z which follows a normal distribution and look for a bijective function F that can map Z back to 

X̂.  An INN learns an invertible, stable, mapping between a data distribution PX and a latent 

distribution PZ, typically Gaussian, as shown in Fig. 9. 
 

 

 
Figure 9. Reconstructing phenomenon X from observation Y 

 

Invertibility of neural networks was spearheaded by Dinh [2] as “real-valued non volume 
preserving transformations” (Real NVP) architecture, who introduced a stack of invertible affine 

coupling blocks (Fig. 10), arranged in hidden layers. 

 

 

 

Figure 10.   Real NVP Affine Coupling Block [2] 
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Given a D-dimensional input x and d < D, the output y of an affine coupling layer follows the 
following equations [2]: 

                            y1: d = x1: d                                                                           (1) 

 
                                  yd+1:D = xd+1:D ⊙ exp (s (x1: d) + t (x1: d))                            (2) 

 

where s and t are functions from Rd    RD-d, and ⊙ is the Hadamard product or element-wise 

product. 

 
Each block splits its input and output into two parts and applies transformations s (scale) and t 

(translation), which themselves do not have to be invertible – they can be quite complex and are 

often implemented as artificial neural networks, such as CNNs.  It has been proven [3] that a 

stack of such invertible blocks makes the end-to-end layout also invertible.  Based on this 
architecture, the Invertible Neural Network guarantees reversibility by its construction and solves 

the ambiguous inverse relationships directly.   

 

3.6. INN Trained as Autoencoder 
 

As demonstrated by Nguyen [8] on MNIST, CIFAR and CelebA, and recently by Schwab [7], an 
INN has superb capability for anomaly detection on any type of data.  We compared an INN-

based implementation to conventional autoencoders for different bottleneck sizes, which 

demonstrated that INN autoencoders can achieve similar or better reconstruction results.  It 
showed that the architecture restrictions on INN autoencoders to ensure invertibility do not 

negatively affect their performance, while the advantages of INNs are still preserved.  This 

entails a tractable Jacobian for both forward and inverse mapping as well as explicit computation 
of posterior probabilities.  It also provided an explanation for the saturation in reconstruction loss 

for large bottleneck sizes in classical autoencoders and concluded that an INN might not have any 

intrinsic information loss and thereby are not constrained by a maximal depth after which only 

suboptimal results can be achieved. 
 

The concept of an INN entails bijective input-output mapping, so the dimensions of input x and 

output y augmented with z must be equal.  As depicted in Fig. 11 below, an artificial bottleneck 
must be constructed to achieve autoencoder-like behaviour. It is accomplished by zeroing the 

latent z to make sure that no extra information is retained by the network in the inverse process of 

representation learning.  
 

 
 

Figure 11.   INN as Autoencoder [7] 

 
To easily create a fully invertible neural network, the solution leveraged FrEIA [3] to build a 

stack of invertible affine coupling blocks, depicted in Fig. 12. 
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Figure 12. INN Autoencoder Sample Network Layout [7] 

 
A sample configuration in [7] consisted of three affine coupling layers leveraging convolutional 

transformations, followed by a fully connected coupling node. A multiplexing Haar wavelets 
transformation layer was applied to split each channel into 4 channels, with half the width and 

half the height. The experiments studied various approaches [10][11][12][13][14] and were 

conducted on two different time series datasets: an ECG diagnostics dataset [15] and the 
predictive maintenance (PdM) Airbus helicopter accelerometer dataset [16].   

 

The reconstruction loss, indicative of healthy or abnormal samples, depicted in Fig.13 
demonstrated the visible difference in the ability of the network to reconstruct the inputs it was 

trained on versus the data it has not seen.   

 

  

 
Figure 13. Reconstruction loss on the ECG (left) and the PdM (right) dataset 

 

The reconstruction loss on the anomalous samples was an order of magnitude greater as 

compared to the reconstruction error on the healthy validation data.  The INN-autoencoder 

architecture also shows excellent performance [7], which renders it as an effective tool for 
inference integrity verification task. 

 

4. PROPOSED SCHEME FOR INFERENCE VERIFICATION 
 

4.1. Solution Architecture 
 

We propose a novel type of test-driven approach to ensure ML integrity, depicted in Fig. 14, 
which leverages the TNN nodes to protect against adversarial data at any given step of the 

inference pipeline, and thus guarding its integrity. 
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Figure 14. A TNN node for input integrity verification 

 

The solution employs one or more Trusted Neural Network node(s) with INN at its heart 

configured for data reconstruction, so that the inputs of the modules comprising a pipeline can be 

subjected to a test, as indicated in Fig. 15 steps 1-6. Input and outputs of a module may or may 
not be in the data domain, which is the strength of Invertible Neural Networks, as compared to 

the classic autoencoder architecture.   

 
A TNN [1] used as the module integrity verification node is composed of several high-level 

building blocks, each of which is independently defined, can be independently improved, and 

empirically tuned to fit the needs of any individual application use case.    
 

 
 

Figure 15. TNN Architecture [1] 

 
The integrity measure is computed by comparing an original input sample with the sample 

reconstructed by the Invertible Neural Network component embedded inside the TNN, and if too 

low, the overall prediction shall be discarded. 
 

The similarity measure and the thresholds would vary per use case, and thus they must be 

designed specifically for any given domain. 
 

                               || Xinverted – Xoriginal|| < Reconstruction Error Margin                               (3) 

 

The Trusted Neural Network [1] design pattern comes with REST API [17], depicted in Fig. 16, 
which in addition to the prediction outcome also returns the Inference Integrity Score.  
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Request: 

 

url = 'http://api.tobeornottobe.com/' 

params ={'query': 'to be or not to be'} 

response = requests.get(url, params) 
response.json() 

Response: 

 

Output:  

{'confidence': 0.567, 'prediction': 'to be',‘  

Inference Integrity Score': 0.987} 
 

 
Figure 16.    TNN API Request and Response  

   
The proposed standard [1] would add the Integrity Score parameter to the ML API response 

payload as an integrated workflow security measure. 

 

4.2. Output-Input Reconstruction  
 

Several experiments were conducted to verify various INN configurations with respect to 
reconstructing the most probable input given an output.  Described in [1], they followed the 

implementation examples provided in [3] using synthetic 2D coordinates points dataset, as well 

the MNIST dataset, which tested successfully as well (Fig. 17).  It used batch size of 256, 

AdamW optimizer, and a variable learning rate adjusted halfway of the 100k iterations.   
     

 
 

 
Figure 17.    MNIST Experiment 

 
The forward pass through the invertible network gives us a latent image Z, which fed to the 

network in the reversed flow outputs a regenerated X, noted as Xinverted. 

 

                                  Z = INNforward (Xoriginal)                                                          (4) 

 
                                 Xinverted = INNreverse(Z)                                                                  (5) 

 

The difference between the original input X entering the TNN and its counterpart Xinverted 

regenerated by the network in the reverse flow is negligible:  

 

                                             || Xinverted – Xoriginal|| < 1e – 5                                             (6) 
 

A result like that which would be reflected in a high value of Inference Integrity Score and 

provide a successful test for a TNN node at a given step of the inference flow. 
 

 

http://api.tobeornottobe.com/'
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5. CONCLUSION 
 
This work proposes an easy to implement pragmatic scheme to enhance robustness of ML-driven 

systems through a test-driven inference flow verification layer based on the Trusted Neural 

Network nodes and their API abstraction.  It leverages the Invertible Neural Network architecture 

and an open-source framework to construct the INN-based state-of-the-art anomaly detector.  The 
paradigm is generalizable across problem domains and aspires to become a useful practice in 

drafting robust high level solution architectures for systems which incorporate machine learning 

capabilities and can benefit from additional measures of trustworthiness.  
 

INNs are invertible by construction and tractably trained simultaneously in both, forward and 

reverse, directions.  This feature has untapped potential to improve explainability of machine 

learning pipelines in support of their trustworthiness and is a topic of our current studies. 
.   
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