
SPDZ-BASED OPTIMISTIC FAIR MULTI-PARTY

COMPUTATION

Chung-Li Wang

Alibaba Inc., Sunnyvale, California, USA
chung-li.wang@alibaba-inc.com

ABSTRACT

The fairness of multi-party computation has been investigated for long time. Classic results demonstrate that

fair exchange can be achieved by utilizing cryptographic tools, as most of them are based on garbled circuits.

For the secret-sharing schemes, such as SPDZ, it may incur significant overhead to simply apply a fair

escrow scheme, since it encrypts all the shares of delivered results. To address this issue, we design a two-

level secret-sharing mechanism. The escrow encryption is only for the first level of sharing and performed

in preprocessing. The second level of sharing is used for computation and always handled by plaintexts, such

that the online phase is still efficient. Our work also employs a semi-trusted third party (TTP) which provide

optimistic escrow for output delivery. The verification and delivery procedures prevent the malicious parties

from corrupting the outcome or aborting, when there is at least one honest party. Furthermore, the TTP has

no knowledge of output, so even if he is malicious and colluding, we only lose fairness. The escrow decryption

is needed only when misconduct is detected for opening the first-level shares.

KEYWORDS
Optimistic Multi-Party Computation, Secret-Sharing, Verifiability, Fairness, Semi-Trusted Third Party

1. INTRODUCTION

In recent years, secure multi-party computation (MPC) has gained widespread attention from

researchers due to its capability to securely aggregate data from multiple users and produce

powerful results. SPDZ [1] and its variants (e.g., [2]-[3]) have played significant roles in the success

of MPC. These protocols have two phases: an input-independent offline phase for preprocessing

and an input-dependent online phase that is highly efficient. However, a single malicious party can

cause the computation to fail by deviating from the protocol or providing false results. In this

scenario, honest parties are unable to learn the outcome of the computation, while the malicious

party may still gain access to it. It is investigated in [7] and proven to imply robustness assuming

a broadcast channel.

Fairness. The fairness is defined as the property that corrupted parties should not be able to prevent

honest parties from receiving their output. In general, this property can be achieved by using

cryptographic tools as in [8] and [9]. The escrow scheme [9] integrated garbled circuits and an

optimistic escrow scheme with a semi-trusted third party. However, for SPDZ-like protocols, these

similar approaches were all considered to be unaffordable, as discussed in [4]. As a consequence,

the protocols with identifiable abort in [3] and [4][4] have to publicly reconstruct the secret before

verifying the result, allowing corrupted parties to learn the output even though they cheated. The

work in [12] uses threshold-t secret-sharing to support fairness and robustness. Despite of its better

efficiency and usability, when the number of dishonest parties is not known, it is difficult to choose

appropriate design parameters. For example, in its design only t server parties are needed to corrupt

to obtain the secret without public opening. As a result, even with identifiable abort and

verifiability, if a malicious majority is assumed, having fairness is still an open problem for some

of secret-sharing schemes.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

DOI: 10.5121/ijnsa.2023.15502 13

mailto:chung-li.wang@alibaba-inc.com
https://airccse.org/journal/jnsa23_current.html
https://doi.org/10.5121/ijnsa.2023.15502

Our Contribution. In the standard model, it is impossible to guarantee fairness with corrupted

majority [17]. To overcome this impossibility, many protocols (e.g. [10]) have been proposed to

achieve fairness in non-standard models using a trusted third party (TTP). The proposed solution

is a public auditable MPC with identifiable abort and fairness using an optimistic escrow phase.

Similarly as in SDPZ, the framework has the offline preprocessing phase and online computation

phase. Our scheme uses a novel two-level secret sharing, the first-level is input-independent and

randomly generated in the offline preprocessing, and the second-level is used in the online

computation with correlated randomness.

Efficient Online Phase. Parties that engage in manipulating the computation can be identified by

examining their commitments. A TTP manages the escrow scheme, which is not needed if all

parties behave honestly for opening the shares. Our scheme provides better privacy than [13] as

the TTP does not participate in the outcome delivery. Besides, if the TTP is dishonest, we only lose

fairness and robustness, and the protocol is still public auditable with identifiable abort. The escrow

scheme requires cryptographic tools, but our protocol takes advantage of two-level sharing and has

the complexity overhead in the offline phase.

Verifiable Offline Phase. Our scheme improves upon the approaches in Overdrive's LowGear [5]

to compute two-level shares of random values and triples in a single, trackable routine. The

correctness and fairness of the computation is guaranteed by verifying the zero-knowledge proof

(ZKP) of encrypted shares. This creates a checkpoint and adds an extra layer of security and

auditability. In addition, our verification covers the generation of multiplicative triples and thus

does not need an additional information-theoretic check as in [3].

Related Works. Typical approaches to have fairness involves employing semi-trusted third parties

or other assumptions. [8] proposed an optimistic fair exchange using a TTP, and then it was recently

shown that fair computation can be achieved by similar techniques in [9], [10], and [14], in which

the output is encrypted and requires a third party to support a verifiable escrow scheme. As the

encryption of shares demands excessive overhead in the online phase, this way is too expensive for

SPDZ protocols. To save verification overhead, the trusted service is used in [14] but not assumed

in this paper, but our work can be adapted in that case. An MPC with identifiable abort is proposed

in [12], where fairness is obtained by t-secure secret-sharing when t or more servers are honest. A

cryptographic solution, described in [13], is suggested to achieve fairness, but it incurs high

complexity and relies on the TTP for decryption. We delay the in-depth comparisons of related

works in the last chapter.

2. OVERVIEW

2.1. Security Model

Before designing the specific implementation, we must first establish the security model. Secure

computation in the standalone model is defined through the real-ideal world paradigm. Throughout

this paper, we will consider protocols that are executed over a synchronous network with static and

rushing adversaries. In the real world, all parties communicate through the protocol Π, while in the

ideal world, the parties send their inputs to an ideal functionality ℱ, also known as the trusted party,

which computes the desired function 𝒞 and returns the result to the parties. In informal terms, the

protocol Π is considered to securely realize the functionality ℱ if, for every real-world adversary

𝒜, there exists an ideal-world adversary 𝒮 (also known as the simulator) such that the joint output

distribution of the honest parties and the adversary 𝒜 in the real world is indistinguishable from

the joint output distribution of the honest parties and 𝒮 in the ideal world.

The security requirements of the protocol are defined through the concept of ideal functionality

with Public Accountability with Output Fairness (PAOF). In this setup, there is a polynomial-time

honest party 𝑃𝐴 , that can retrieve all the output messages from the trusted party, assess their

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

14

correctness, and output the correct result and/or a set of parties 𝐿, that are deemed responsible for

any misbehavior. The output of the protocol is in the form of a 2-tuple (𝑦, ⊥), (𝑦, 𝐿), or (⊥, 𝐿).

The Ideal Model with PAOF. Assume 𝒫 = {𝑃𝑖}𝑖∈{𝑛} to be the set of computing server parties,

ℐ = {𝐼𝑘}𝑘∈{𝑚} the set of input client parties, 𝐷 ⊂ 𝒫 the set of corrupted computing parties, and

𝒟𝐼 ⊆ ℐ the set of corrupted input parties. Before the execution, the non-adaptive adversary 𝒜

decides ℒ𝐼 ⊆ 𝒟𝐼 and ℒ𝑓 , ℒ𝑝, ℒ𝑜, ℒ𝑘 ⊆ 𝒟. Let ℒ𝐼 be the set of input parties hanging or giving ill-

formed inputs, ℒ𝑝 be the set of computing parties manipulating the computation results, ℒ𝑜 be the

set of computing parties cheating with the ciphertexts of MUSS ciphers, and ℒ𝑘 be the set of

computing parties cheating with the plaintexts of MUSS ciphers. With 𝑚 ≤ 𝑛, the evaluation

function 𝒞 has 𝑚 input and 𝑚 output gates. The execution of ideal model with PAOF is denoted

as ℱOnline, which is briefly described as follows.

Inputs: The i-th party’s input is denoted by 𝑥𝑖 and 𝒙 = (𝑥1 … , 𝑥𝑛). We assume that all valid inputs

are defined in 𝔽. The adversary receives an auxiliary input 𝑧.

Initialization: The trusted party informs the adversary 𝒜 of the beginning of execution with the

parameter set (𝒞, 𝔽, 𝔾). 𝒜 sends the lists of malicious parties that corrupt the input and evaluation

outcome to the trusted party. This decision is made by 𝒜 and may depend on (𝒞, 𝔽, 𝔾) and the

auxiliary input 𝑧. If misconduct is detected, the trusted party will catch ℒ𝑓 and abort the process.

Send Inputs to Trusted Party: Any honest party 𝐼𝑖 sends its input 𝑥𝑖 to the trusted party. The

corrupted parties, controlled by 𝒜, may either send their received input or send some other input

to the trusted party. This decision is made by 𝒜 and may depend on the input from the corrupted

parties and the auxiliary input. If the invalid input is from 𝐼𝑖 ∈ ℒ𝐼, the trusted party will catch 𝐼𝑖

and abort the process.

Compute: For the i-th gate 𝑓𝑖 ∈ 𝒞, the trusted party computes 𝑦𝑖 = 𝑓𝑖(𝒙) for computation gates,

and for output gates it sets the outcome to ⊥ with replying Reject if the computation or output is

corrupted. Otherwise it replies Accept.

Trusted Party Answers Auditor: Upon the request by the auditor, the trusted party outputs ℒ𝑝 with

Reject or replies Accept if no cheating is found.

Open: Upon the request by all parties, the trusted party outputs the result 𝒚, if no misbehaviour

occurs. Or it sends out ℒ𝑜 if the ciphertexts of MUSS ciphers fail the verification, and it sends ℒ𝑘

if the plaintexts of MUSS ciphers are incorrect. Then if the TTP 𝑃𝑇 is honest, 𝒚 will be delivered

fairly to all parties. If 𝑃𝑇 actively corrupts the decryption, the ideal model only loses fairness, and

𝑃𝑇 will be identified.

The Real Model with PAOF. Let us consider the real model in which a real 𝑛-party protocol Π is

executed with the set of 𝑛 computing parties, 𝑚 input parties, and trusted honest parties 𝑃𝐴 and 𝑃𝑇.

Let 𝒟 and 𝒟𝐼 denote the set of corrupted computing and input parties, controlled by an adversary

𝒜. In this case, the adversary 𝒜 sends all messages in place of corrupted parties, and may decide

a polynomial-time strategy arbitrarily. In contrast, the honest parties follow the instructions of Π.

Then the real execution of Π on inputs 𝒙, auxiliary input 𝑧 to 𝒜, and security parameter 𝜆, denoted

by RealΠ,𝒜(𝑧),{𝒟,𝒟𝐼}(𝒙, λ), is defined as the output vector of the honest parties and the adversary 𝒜

from the real execution of Π.

With the ideal-real model, the PAOF can be defined as follows:

Definition 1 (PAOF): Let 𝒞 be a circuit with inputs 𝒙. A protocol Π is called publicly accountable

with output fairness whenever one computing party, 𝑃𝐴, and 𝑃𝑇 are honest, for every non-uniform

probabilistic polynomial-time adversary 𝒜 for the real model, there exist a non-uniform

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

15

probabilistic polynomial-time adversary 𝑆 for the ideal model ℱOnline such that for every

𝒟⊂ 𝒫, 𝒟𝐼 ⊆ ℐ, every balanced vector 𝒙 ∈ 𝔽𝑚, and every auxiliary input 𝑧 ∈ 𝔽:

IdealℱOnline,𝑆(𝑧),{𝒟,𝒟𝐼}(𝒙, λ) =𝑐 RealΠ,𝒜(𝑧),{𝒟,𝒟𝐼}(𝒙, λ)

in any sense, the following theorem will be proven in the full version by constructing a protocol in

the ℱOnline-hybrid model.

2.2. Important Blocks

Let 𝔾 be some Abelian multiplicative subgroup of order 𝑞 where the DLP is hard to solve (with

respect to a given computational security parameter λ). The protocol will evaluate a circuit 𝒞 over

𝔽 = ℤ𝑞 whereas we use the group 𝔾 to commit to the output. We let 𝑔, ℎ ∈ 𝔾 be two generators

of the group 𝔾 where 𝑔 and ℎ are chosen by some random oracle with a common reference string

(CRS) as the input.

We assume a secure point-to-point network between all parties and a broadcast functionality. We

also use the commitment functionality ℱCom, the random oracle ℱRnd for giving a random value

over 𝔽 to all parties, and the bulletin ℱBlt to handle all communication, such that nothing in the

bulletin can ever be changed or erased. These functionalities are outlined in Figure 1.

2.2.1 Novel Secret-Sharing

The online phase of the computation is conducted using the novel two-level sharing scheme,

which is defined as below:

Definition 1 (MUSS): Let x, y, e ∈ 𝔽, 𝜶 = (𝛼1, . . . , 𝛼𝑛) and then the Multiplicative-Ciphered

Secret-Sharing of x is defined as [𝑥]𝜶 = ((𝑥1, . . . , 𝑥𝑛), (�̃�1, . . . , �̃�𝑛)) , where the correlation x =

∑ 𝛼𝑖
𝑛
𝑖=1 𝑥𝑖 = ∑ �̃�𝑖

𝑛
𝑖=1 holds. Since the keys 𝜶 are fixed for the whole session, [𝑥]𝜶 can be denoted

as [𝑥] without confusion. Each player 𝑃𝑖 will hold its MUSS shares 𝑥𝑖 and �̃�𝑖 of [𝑥]. The key 𝛼𝑖 for

ℱCom

Commit: On input (𝐜𝐨𝐦𝐦𝐢𝐭, 𝑣, 𝑟, 𝑖, 𝑗, 𝑖𝑑) by 𝑃𝑖, where both 𝑣 and 𝑟 are either in 𝔽 or ⊥, and

𝑖𝑑 is a unique ID, if 𝑣 and 𝑟 are either in 𝔽 or ⊥, store (𝑣, 𝑟, 𝑖, 𝑗, 𝑖𝑑) on a list and outputs

(𝑖, 𝑖𝑑) to 𝑃𝑗. Otherwise output (⊥, 𝑃𝑖) to 𝒜.

Open: On input (𝐨𝐩𝐞𝐧, 𝑖, 𝑗, 𝑖𝑑) by 𝑃𝑖, output (𝑣, 𝑟, 𝑖, 𝑗, 𝑖𝑑) to 𝑃𝑗. If (𝐧𝐨_𝐨𝐩𝐞𝐧, 𝑖, 𝑗, 𝑖𝑑) is given

by a dishonest 𝑃𝑖 ∈ 𝒫, output (⊥, ⊥, 𝑖, 𝑗, 𝑖𝑑) to 𝑃𝑗.

ℱRnd

Let 𝔽 be a field such that there exists a PPT TM to efficiently sample value 𝑟 ∈ 𝔽 uniformly

at random.

Random sample: Upon receiving (𝐫𝐚𝐧𝐝, 𝔽) from all parties, sample a uniform 𝑟 ∈ 𝔽 and

output (𝐫𝐚𝐧𝐝, 𝑟) to all parties.

ℱBlt

Store: On input (𝐬𝐭𝐨𝐫𝐞, 𝑖𝑑, 𝑥) from 𝑃𝑖 ∈ 𝒫:

Case 1: If (𝑖𝑑, 𝑖, 𝑦) is stored, reply Reject.

Case 2: If not, send (𝑖𝑑, 𝑖, 𝑥) to 𝒜 and store it. reply Accept.

Read: On input (𝐫𝐞𝐚𝐝, 𝑗, 𝑖𝑑) from 𝑃𝑖:

Case 1: if (𝑖𝑑, 𝑗, 𝑥) is stored for some 𝑃𝑗, reply x.

Case 2: if (𝑖𝑑, 𝑗, 𝑥) is not stored, reply Reject.

Figure 1. Ideal functionalities for the commitment, random oracle, and public bulletin.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

16

𝑃𝑖 is additively shared by all players, such that every player has 𝛼𝑖𝑗 and 𝛼𝑖 = ∑ 𝛼𝑖𝑗
𝑛
𝑖=1 . Moreover,

we define [𝑥] + [𝑦] = ((𝑥1 + 𝑦1, . . . , 𝑥𝑛 + 𝑦𝑛), (�̃�1+�̃�1, . . . , �̃�𝑛+�̃�𝑛)) , 𝑒 ∙ [𝑥] = ((𝑒 ∙ 𝑥1, . . . , 𝑒 ∙

 𝑥𝑛), (𝑒 ∙ �̃�1, . . . , 𝑒 ∙ �̃�𝑛)). We say that [𝑥] ≜ [𝑦] if the shares of x, y in [𝑥], [𝑦] reconstruct to the

same value.

Obviously, MUSS is linear. If all parties agree to apply one of defined linear functions, then they

can perform these on the MUSS shares without interaction. For the addition between the MUSS

share and a public value 𝑒, one needs to open a random MUSS share (e.g. [𝑟]) as a gadget, so

[𝑒 + 𝑥] = [𝑥] + (𝑒𝑟−1) ∙ [𝑟].

Security and Privacy. Assuming the sharing of two secrets 𝑎 = 𝛾𝑑 + 𝛿𝑐 and 𝑎′ = 𝛾𝑑′ + 𝛿𝑐′, when

opening the encoded shares (𝑑, 𝑐) and (𝑑′, 𝑐′), the question is that, if there is any advantage of

guessing the secret 𝑎 and 𝑎′ . The answer is no. Since [
𝑑 𝑐
𝑑′ 𝑐′

] is a full-rank matrix with a

probability close to 1 [24], 𝑎 and 𝑎′ are indistinguishable to two independent uniform random

samples. Formally, we have the following theorem to show the security of opening encoded shares:

Theorem 1 (Perfect Secrecy): Assume a cipher ℋ = (𝔽𝑚, 𝔽𝑛, 𝐾𝐺, Φ, Ψ) with message space 𝔽𝑚

and key space 𝔽𝑛 that a probabilistic PTTM Φ: 𝔽𝑚 × 𝔽𝑛 → 𝔽𝑚𝑛 and Ψ: 𝔽𝑚𝑛 × 𝔽𝑛 → 𝔽𝑚 with

the definition Ψ (𝐃, 𝐠) → 𝐃𝐠𝑇 = 𝒂 = (𝑎1 … , 𝑎𝑚) with 𝐃 = {𝑑𝑖,𝑗}
𝑖∈{𝑚},𝑗∈{𝑛}

 and 𝐠 = (𝑔1 … 𝑔𝑛)

for m≤ 𝑛. If 𝐃 has full rank, and 𝐠 is statistically indistinguishable from samples drawn from

uniform random distribution in 𝔽𝑛 , the scheme ℋ has perfect secrecy except a negligible

probability.

Proof: We can prove perfect secrecy by showing 𝑃(𝐠 ← 𝐾𝐺: Φ(𝒂, 𝐠) = 𝐃|𝐃, 𝒂) = 𝑃(𝐠 ←
𝐾𝐺: Φ(𝒂′, 𝐠) = 𝐃|𝐃, 𝒂′), except a negligible probability. For every pair 𝒂 and 𝒂′ we always can

find a vector 𝐠1 such that 𝒂 = 𝐃 𝐠1
𝑇 and 𝐠2 such that 𝒂′ = 𝐃 𝐠2

𝑇. The probability to have such 𝐠1

is 𝑃(𝐠 ← 𝐾𝐺: Φ(𝒂, 𝐠) = 𝐃|𝐃, 𝒂) = ∑ 𝑃(𝐠1, 𝒂 = 𝐃 𝐠1
𝑇|𝐃, 𝒂)𝐠1

= ∑ 𝑃(𝐠1) = ∑ 1/𝒂=𝐃 𝐠1
𝑇𝒂=𝐃 𝐠1

𝑇

|𝔽|𝑛, which is equal to that to have 𝐠2 such 𝒂 = 𝐃 𝐠2
𝑇. It leads to perfect secrecy of ℋ. □

By the security proofs in the full version of the paper it will be demonstrated that our protocol keeps

the matrix 𝐃 full ranked except a negligible probability.

The additive sharing with MAC in SPDZ is vulnerable to corruption by two collusive parties who

lie about their shares without altering the sum. This renders Lemma 1 in [3] false, as the parties can

deviate from the protocol and still pass the check. Despite this, the corruption can still be detected

during the audit, and therefore, it does not undermine the security proof of [3]. However, the

maliciously controlled share values can reduce the security level and lead to information leakage,

which may give an advantage to an eavesdropper. Our work overcomes this issue by using random

MUSS ciphers, resulting in a negligible success probability of such cheating.

2.2.2 Commitment Scheme

The proposed protocol forces the result given by the computing parties to be bound by a public

witness. First, the parties have to commit the input by sending commitment to the bulletin. Since

the commitment scheme uses a one-way function with homomorphic property, the expected

commitment of output can be derived by a public auditor. The ways to catch the cheater include

checking if each share opens the commitments correctly (as in [3]), and letting the party provide

ZKP to prove its ability to give the correct decommitment (as in [12]). Our commitment scheme

has a similar format as in [3]: we carry both the MUSS share of secret [𝑥] as well as the MUSS

share of randomness [𝑟] of the commitment throughout the whole computation. The commitment

handle to a value 𝑥 is a Pedersen commitment 𝖤(𝑔,ℎ)(𝑥, 𝑟) = 𝑔𝑥ℎ𝑟 with 𝖤(𝑔,ℎ)([𝑥], [𝑟]) =

((𝑔𝑥1ℎ𝑟1 , … , 𝑔𝑥𝑛ℎ𝑟𝑛), (𝑔�̃�1ℎ�̃�1 , … , 𝑔�̃�𝑛ℎ�̃�𝑛)). When opening MUSS shares, we reconstruct the

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

17

secret through either 𝑥𝑖 or �̃�𝑖, and the randomness (𝑟𝑖 or �̃�𝑖) is also revealed. For simplicity, since
(𝑔, ℎ) is fixed within one session, 𝖤(𝑔,ℎ)([𝑥], [𝑟]) can be denoted as 𝖤([𝑥], [𝑟]). As discussed in

[4], the computation of commitments is excluded in the circuit evaluation and invoked only after

ΠOnline

The parties evaluate the circuit 𝒞 over 𝔽, which has νin input gates and νmul multiplication

gates. Every party is given ℱKGD , RO 𝒦 with the 𝖢𝖱𝖲 as input to choose the generator

𝑔0, 𝑔1, … , 𝑔𝑛, ℎ ∈ 𝔾 , and RO 𝒵 to verify ZKP. σ𝑓 is the offline SIMD factor. Set

 𝒈={𝑔𝑖}𝑖=(0,…,𝑛).

Initialize: On input (Init, 𝒞, 𝔽, 𝔾) from all parties.

1) The parties send (Init, 𝔽, 𝔾, 𝒈, ℎ) to ℱOffline. If ℱOffline replies Accept, 𝑃𝑇 has the global

key pair (𝑝𝑘𝑜, 𝑠𝑘𝑜). Each 𝑃𝑗 in 𝒫 randomly generates and commits to 𝜶𝑗 with randomness

𝛽𝑗 to get 𝑑𝑗.

2) The parties choose the smallest νr ≥ (2νin + 4νmul) , νtrp ≥ νmul such that σ𝑓 divides

both νr and νtrp. Then send (Single, σ𝑓 , 𝑔0, ℎ) (νr/σ𝑓) times, (Triple, σ𝑓 , 𝑔0, ℎ) (νtrp/σ𝑓)

times to ℱOffline.

3) Send (Audit, σ𝑓) (νr/σ𝑓 + νtrp/σ𝑓) times to ℱOffline.

4) If ℱOffline replies Accept, all parties have random values ⟨𝑥⟩ , ⟨𝑦⟩ (for Input) , ⟨𝑡⟩ (for

Multiply), ⟨𝜂′⟩, ⟨𝜌′⟩, and ⟨𝑡′⟩ (for ΠChkPln
t) and multiplication triple (⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩).

5) Otherwise if ℱOffline replies Reject and ℒ𝑓 , then the protocol is aborted with output (⟘,

ℒ𝑓).

Input: On input (Input, 𝐼𝑖, 𝑖𝑑(𝑢𝑖), 𝑢𝑖) from each 𝐼𝑖 ∈ ℐ , 𝑖 ∈ {𝑚} and

(Input, 𝐼𝑖, 𝑖𝑑(𝑢𝑖)) from each 𝑃𝑖 ∈ 𝒫 , with 𝑖𝑑(𝑢𝑖) a new ID and 𝑢𝑖 ∈ 𝔽 using a new

random value ⟨𝑥⟩ = ([𝑥], [𝑝], 𝜀⟨𝑥⟩) and ⟨𝑦⟩ = ([𝑦], [𝑟], 𝜀⟨𝑦⟩).

1) 𝐼𝑖 privately receives (�̃�𝑗, �̃�𝑗) and (�̃�𝑗 , �̃�𝑗) for each 𝑗 ∈ {𝑛}, and checks the commitment. It

broadcasts 𝑟𝑖 such that 𝑢𝑖 = 𝑟𝑖 ⋅ 𝑥 + 𝑦.

2) All players check if 𝑟𝑖 is valid. If not, add 𝐼𝑖 to ℒ𝐼, and then protocol is aborted by replying

(⟘, ℒ𝐼). Or get ⟨𝑢𝑖⟩= 𝑟𝑖 ∙ ⟨𝑥⟩ + ⟨𝑦⟩ and reply Accept.

Compute: On the input (𝐂𝐨𝐦𝐩𝐮𝐭𝐞, 𝒞) from all parties. If Initialize has been executed and

inputs for all input wires of 𝒞 have been assigned, evaluate every 𝑓 ∈ 𝒞 as follows:

 Add: For two values ⟨𝑥⟩, ⟨𝑦⟩ with 𝑖𝑑(𝑥) and 𝑖𝑑(𝑦).

1) All players locally compute ⟨𝑧⟩ = ⟨𝑥⟩ + ⟨𝑦⟩. Assign a new 𝑖𝑑(𝑧).

Multiply: Multiply two values ⟨𝑥⟩, ⟨𝑦⟩ with 𝑖𝑑(𝑥) and 𝑖𝑑(𝑦) using a random value ⟨𝑡⟩ and

multiplication triple ⟨𝑎⟩, ⟨𝑏⟩, and ⟨𝑐⟩. The output is ⟨𝑧⟩ with a newly assigned 𝑖𝑑(𝑧).

1) The players calculate ⟨𝜂⟩ = ⟨𝑥⟩ − ⟨𝑎⟩ and ⟨𝜌⟩ = ⟨𝑦⟩ − ⟨𝑏⟩.
2) The players reconstruct ⟨𝜂⟩ = ([𝜂], [𝜒], ε⟨𝜂⟩) , ⟨𝜌⟩ = ([𝜌], [μ] , ε⟨𝜌⟩) , and ⟨𝑡⟩ =

([𝑡], [𝑠], ε⟨𝑡⟩) by only opening (�̃�𝑖, �̃�𝑖), (�̃�𝑖, �̃�𝑖), and (�̃�𝑖, �̃�𝑖) for each 𝑖 ∈ {𝑛}. Open these

results to ℱBlt.

3) Each player locally calculates ⟨𝑧⟩ = ⟨𝑐⟩ + 𝜌 ⋅ ⟨𝑎⟩ + 𝜂 ⋅ ⟨𝑏⟩ + 𝑟 ⋅ ⟨𝑡⟩, such that 𝑟 ⋅
𝑡 = 𝜂 ⋅ 𝜌.

Output: The output is ⟨𝑧𝑘⟩ with an already assigned id(𝑧𝑘) for each 𝑘 ∈ {𝑚}.

1) The parties open the shares of ⟨𝑧𝑘⟩ toward ℱBlt.

2) Run ΠChkPln
𝑡 for the previously opened ⟨𝑥1⟩, … ⟨𝑥𝑡⟩.

3) Run ΠChkEnc
𝑚 for {⟨𝑧𝑘⟩}𝑘∈{𝑚}. If any check fails, reply Reject. Or reply Accept.

Figure 2. ΠOnline: Protocol for the online phase (Part 1).

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

18

the failure of information-theoretic checks. This “on-demand” scheme yields favorable saving,

especially when the adversary cheats at a lower rate in a large circuit.

3. THE PROTOCOL

3.1. Online Phase

The online phase of our protocol uses ℱOffline for offline preprocessing that is demonstrated in the

full version of the paper. The commands of ℱOffline support single-instruction multiple-data

(SIMD) processing with factors σ𝑓. Taking 𝑚 inputs, the circuit 𝒞 over 𝔽 has νin input gates, νmul

multiplication gates, and 𝑚 output gates, with 𝑚 ≤ 𝑛, the number of computing parties. The online

phase is presented in Figure 2 and Figure 3, which evaluates the circuit 𝒞 of 𝑚 input gates and m

output gates. The stages Input and Compute are executed for each input and function gate of 𝒞,

respectively, and Initialization, Audit, and Open are invoked only once per circuit.

Initialization. The ideal functionality of the offline phase ℱOffline sets up the MUSS ciphers. The

commitment scheme obtains the key from the random oracle 𝒦. The public-key infrastructure

(PKI) is given by ℋ and will be elaborated in Sec. 3.3.1. The TTP publishes the global public key

𝑝𝑘𝑜. Each computing party 𝑃𝑗 privately keeps the additive shares 𝛼𝑖,𝑗 for 𝑖 ∈ {𝑛}, where we set

∑ 𝛼𝑖,𝑗 = 𝛼𝑖𝑖∈{𝑛} . With �̅�𝑗 = {𝛼𝑖,𝑗}
𝑖∈{𝑛}

, 𝑃𝑗 commits to �̅�𝑗 toward ℱBlt by 𝑑𝑗 = 𝖤(𝒈,ℎ)
(𝑛)

(�̅�𝑗, 𝛽𝑗) and

encrypts (�̅�𝑗, 𝛽𝑗) to have 𝑐𝑗 = ⟦(�̅�𝑗, 𝛽𝑗)⟧
𝑝𝑘𝑜

 along with its ZKP ζ𝑗 to show the same plaintexts of

𝑐𝑗 and 𝑑𝑗. The generation and verification of ζ𝑗 will be provided in Sec. Error! Reference source

not found.. Finally, the protocol asks the functionality ℱOffline to generate random values and

multiplication triples. ℱOffline has its own check and audit for the output to ensure each player to

have the correct share values as they committed to. If the misconduct is detected in ℱOffline, the

malicious parties will be identified as 𝐿𝑓, and the protocol will be aborted.

Input. Each input client party in 𝐼 is allowed to submit a value to the computation, where two

random values are secretly opened to it. The client can then check that the commitment is correct,

and blinds its input using the opened values. Here the protocol can only detect the blatant cheating,

Audit: On the input (𝐀𝐮𝐝𝐢𝐭, {𝑖𝑑(𝑧𝑘)}𝑘∈{𝑚}) from 𝑃𝐴.

1) Run ΠAudit for ⟨𝑥1⟩, … ⟨𝑥𝑡⟩ if ΠChkPln
𝑡 failed. Run ΠAudit for {⟨𝑧𝑘⟩}𝑘∈{𝑚} if ΠChkEnc

𝑚 failed

in Output.
2) If it passes, 𝑃𝐴 replies Accept. Or it identifies cheaters and outputs (⟘, ℒ𝑝). Stop.

Open: On the input (𝐎𝐩𝐞𝐧) from all parties. Given an RO 𝒵 to verify ZKP. Set a flag

Cheat ← ⟘.

1) 𝑃𝑗 broadcasts 𝑐𝑗 and ZKP ζ𝑗 for all other 𝑃𝑖 and 𝑃𝐴 to check, for 𝑖 ∈ {𝑛}\𝑗. If it passes,

replies Accept. Or 𝑃𝐴 identifies cheaters and outputs (⟘, ℒ𝑝), stop.

2) 𝑃𝑇 broadcasts 𝑠𝑘𝑜, and 𝑃𝑗 opens 𝜶𝑗, 𝛽𝑗, and 𝑐𝑗 toward ℱBlt. All parties check if 𝜶𝑗 and 𝛽𝑗

can correctly open 𝑑𝑗. If it fails, add 𝑃𝑗 to ℒ𝑘.

3) All parties check if 𝑠𝑘𝑜 can decrypts 𝑐𝑗 correctly. If it fails, 𝑃𝐴 sets Cheat ← ⊤.

4) The output depends on the following conditions:

4.1. If Cheat = ⟘, reply (𝒛, ℒ𝑘) to all parties.

4.2. If Cheat = ⊤ and |𝐿𝑘| > 0, reply (⟘, {ℒ𝑘 , 𝑃𝑇}) to all parties.

4.3. If Cheat = ⊤ and |𝐿𝑘| = 0, reply (𝒛, 𝑃𝑇) to all parties.

Figure 3. ΠOnline: Protocol for the online phase (Part 2).

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

19

such as hanging or ill-formed input, we cannot prevent the malicious input client from giving an

incorrect blinded input.

Compute (Add and Multiply). The protocol uses the linearity of the MUSS shares to perform linear

operations on the shared values, and multiplies two representations using the multiplication triples

from the preprocessing using the circuit randomization technique [18]. The multiplication requires

to reconstruct values, and this is done by only opening the plain shares to keep the ciphers private.

We do not check the recovered values in this stage and defer the check to the output gate.

Compute (Out). First, we check all the multiplications in the circuit by ΠChkPln
σ (Figure 6 and cf.

Sec. 3.1.2) for the opened plain shares, where checking ⟨𝜂⟩, ⟨𝜌⟩, and ⟨𝑡⟩ takes random values

⟨𝜂′⟩, ⟨𝜌′⟩, and ⟨𝑡′⟩ as additional input. Then the encoded shares of output are published, and the

correlation is checked by using the protocol ΠChkEnc
σ (Figure 4 and cf. Sec. 3.1.1). If any of them

fails, the auditor 𝑃𝐴 will invoke Audit. If both checks output Accept, all parties will invoke Open

to output the result.

Audit. There are two audit procedures in the online protocol, which will be invoked by 𝑃𝐴 when

the precedented information-theoretic checks fail. One is to check the plain shares opened in

Multiply, and the other is to check the encode shares for output delivery. If the audit passes, it

means that the encoded shares are correct, and we are still going to Open. Please be noted that we

do not identify anyone regarding the misbehavior happening in ΠChkEnc
σ and ΠChkPln

σ since it

eventually does not prevent opening.

Open. Once all the parties agree that encoded shares are correct, each computing 𝑃𝑗 will broadcast

the ciphertext 𝑐𝑗, commitment 𝑑𝑗, and ZKP ζ𝑗 to all the other parties, so all parties can verify the

correctness using an RO 𝒵 (cf. Sec. Error! Reference source not found.). If the check fails, the

process will be aborted here. If 𝑐𝑗 is correct, 𝑃𝑇 opens the global secret key, and all computing

parties release the plaintext shares 𝛼𝑖,𝑗. If 𝑃𝑇 gives the correct key, or the plaintexts are correct, the

result will be known to everyone. Otherwise 𝑃𝑇 or malicious parties that give the corrupted key,

ciphertexts, or plaintexts will be identified.

The security of ΠOnline is proven in Sec. 4.1 by the following theorem.

Theorem 2 (Online Security): In the (ℱOffline ,ℱBlt ,ℱCom, ℱKGD)-hybrid model with random

oracles 𝒦 and 𝒵, the protocol ΠOnline implements ℱOnline with computational security against

any static adversary corrupting all parties except one computing party and the auditor 𝑃𝐴 if the

DLP is hard in the group 𝔾.

Next, we introduce present how to check the correlation without opening the cipher, and how to

check the opened plain shares used in Multiply.

3.1.1 Check and Audit for Encoded Shares

In the online phase, we use a purely information-theoretic check as the first step of verification.

The advantage of checking the correlation before the audit is lower complexity for optimistic

models. Moreover, since the correctness of shares is eventually verified by the audit, we will not

identify the cheater that corrupts the correlation check. This keeps the design simple.

The MUSS correlation can be used to verify the opened shares, and thus we call this “correlation

check” and use it as the first step of the delivery, playing the same role of MAC in [4] as an effective

way to verify the output. The correlation check protocol ΠChkEnc
σ for the published encoded share

is summarized in Figure 4 which keeps the share 𝑥𝑖
(𝑘)

 and cipher key 𝛼𝑖 private. The protocol is

designed to verify σ shares simultaneously by using a random vector 𝒘. The correctness and

soundness are stated as in following lemma, and the proof is omitted due to the length limit.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

20

Lemma 1 (Correlation Check for Encoded Shares): The protocol ΠChkEnc
σ is correct, i.e. it accepts

if the encoded shares (𝑧𝑖
(𝑘)

, 𝑟𝑖
(𝑘)

) for all 𝑖 ∈ {n} and 𝑘 ∈ {σ} are correctly computed as defined in

Def. 2. Moreover, it is sound, i.e. it rejects except with probability 𝑜(1/𝑞) in case at least one

(𝑧𝑖
(𝑘)

, 𝑟𝑖
(𝑘)

) is not correctly computed, or any server deviates from the protocol.

If ΠChkEnc
σ passes, the encoded shares (𝑧𝑖

(𝑘)
, 𝑟𝑖

(𝑘)
) are verified, and 𝒛 is ready to be recovered once

the key 𝜶 is opened. If it returns Reject, we are not sure if the encoded shares are incorrect, some

parties lied on the check outcome, or both happen, so in Audit 𝑃A needs to verify the expected

commitments to find out the cause. The audit protocol is demonstrated by ΠAudit in Figure 5. If the

audit passes, the encoded shares are verified, the protocol still goes to output delivery. If both the

check and audit fail, the encoded shares are considered incorrect, and the malicious parties that

corrupt the output will be identified in the audit. The audit protocol can be accelerated by the

technique in [3].

Not only the encoded shares but also the plain shares opened for multiplication need to go for the

audit, if they fail the correlation check. In the online protocol, all shares that need audit are taken

care of in one stage, such that batch processing can give additional efficiency improvement. The

check of plain shares is more complicated than that of encoded shares and will be described in the

next section.

3.1.2 Check for Plain Shares

The correlation check protects the computations defined in Def. 2, not including the multiplication,

because it uses three random values which are obtained from opening the plain shares of ⟨𝜂⟩, ⟨𝜌⟩,
and ⟨𝑡⟩. We need a correlation check for the opened plain shares, which is described as ΠChkPln

σ in

Figure 6. The approach is similar except using random shares ⟨𝒔⟩ and secret value 𝑣𝑖 for hiding the

encoded shares 𝑧𝑖
(𝑘)

and 𝑟𝑖
(𝑘)

. Its correctness and soundness are stated in following lemma, and the

proof is omitted due to the length limit. If ΠChkPln
σ fails, the auditor 𝑃A will check the commitments

in the audit stage.

ΠChkEnc
σ

Given 𝑧𝑖
(𝑘)

 and 𝑟𝑖
(𝑘)

 from ℱBlt for 𝑖 ∈ {n}, 𝑘 ∈ {σ}. Set id(𝐳)={id(𝑧(𝑘))}𝑘∈{σ}.

Check Encoded Shares: On input (ChkEnc, id(𝐳), σ) from all parties.

1) The parties use ℱRnd to publicly sample a vector 𝒘
$

← 𝔽σ.

2) Each 𝑃𝑗 ∈ 𝑃 publicly computes 𝑧𝑖
𝒘 = ∑ 𝑧𝑖

(𝑘)
∙ 𝑤𝑘

σ
𝑘=1 and 𝑟𝑖

𝒘 = ∑ 𝑟𝑖
(𝑘)

∙ 𝑤𝑘
σ
𝑘=1 for each

𝑗 ∈ {n} and sends toward ℱBlt.

3) Each 𝑃𝑗 ∈ 𝑃 privately computes �̃�𝑗
𝒘 = ∑ �̃�𝑗

(𝑘)
∙ 𝑤𝑘

σ
𝑘=1 and �̃�𝑗

𝒘 = ∑ �̃�𝑗
(𝑘)

∙ 𝑤𝑘
σ
𝑘=1 . Then it

computes and 𝜂𝑖 = ∑ 𝑧𝑗
𝒘 ∙ 𝛼𝑗,𝑖

𝑛
𝑗=1 − �̃�𝑗

𝒘 and 𝜇𝑖 = ∑ 𝑟𝑗
𝒘 ∙ 𝛼𝑗,𝑖

𝑛
𝑗=1 − �̃�𝑗

𝒘.

4) Each 𝑃𝑖 ∈ 𝑃 uses ℱCom to commit to 𝜂𝑖 and 𝜇𝑖.

5) Each 𝑃𝑖 ∈ 𝑃 uses ℱCom to open 𝜂𝑖 and 𝜇𝑖 to all parties.

6) All parties compute and output 𝜂 = ∑ 𝜂𝑖
𝑛
𝑖=1 and 𝜇 = ∑ 𝜇𝑖

𝑛
𝑖=1 .

7) If η = μ = 0, all parties output Accept. Else output Reject.

Figure 4. ΠChkEnc
σ : Protocol for the correlation check of encoded shares.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

21

Lemma 2 (Correlation Check for Plain Shares): The protocol ΠChkPln
σ is correct, i.e. it accepts if

the plain shares (�̃�𝑖
(𝑘)

, �̃�𝑖
(𝑘)

) for all 𝑖 ∈ {n} and 𝑘 ∈ {σ} are correctly computed as defined in Def.

2. Moreover, it is sound, i.e. it rejects except with probability 𝑜(1/𝑞) in case at least one

(�̃�𝑖
(𝑘)

, �̃�𝑖
(𝑘)

) is not correctly computed, or any server deviates from the protocol.

3.2 Fairness

We see that if the encoded shares of random values and triples are statistically indistinguishable

from the samples from uniform distribution, and then those of the immediate values and final

results have the same property. This implies fairness property.

Proposition 1 (Fairness): The protocol ΠOnline has public accountability and fairness, that is, the

malicious parties know the result only if the honest ones know. If the TTP 𝑃𝑇 is malicious and

colluding with other adversarial parties, ΠOnline still has public accountability in the hybrid model

with ℱOffline, ℱRnd, ℱCom, ℱBlt, 𝒵, and 𝒦, if one computing party and 𝑃𝐴 are honest.

Remark 1: Until Open of ΠOnline, 𝑃𝑇 has no information of the output result, since any set of n −
1 shares are indistinguishable to samples from uniform distribution. The adversary gains no

advantage from the existence of malicious 𝑃𝑇. During the Open stage of ΠOnline, by providing an

incorrect key, 𝑃𝑇 is only able to prevent the output delivery and cannot modify the output. If 𝑃𝑇 is

colluding, the adversary will know the result before the honest parties but cannot force the protocol

to output wrong results. Besides, if 𝑃𝑇 can be assumed to be honest, we can modify the protocol

and model such that the global key generation only needs to be invoked once. Furthermore, with

honest 𝑃𝑇, Step 1 of the Open stage can be done in the offline phase.

3.3 Offline Phase

The protocol ΠOffline describes the full offline phase in Figure 7. Here we give a view to integrate

all ideas that will be discussed later. During Initialize the parties will generate two key pairs to

encrypt random MUSS ciphers α𝑖 and the key (𝑔, ℎ) for the commitment scheme. With encrypted

ΠAudit

With published 𝑧𝑖 and 𝑟𝑖 from each 𝑃𝑖 . Set 𝐿 ← {}.

1) Compute Commitments:

We follow the computation gates of the evaluated circuit 𝒞 in the same order as they were

computed. For any gate, with assigned inputs having

well-formed commitments 𝜀〈𝑥〉 and 𝜀〈𝑦〉 from ℱBlt. The parties do the following:

Input: For input 𝑚 and preprocessed random 〈𝑡〉, 〈𝑧〉 = 𝑦 ∙ 〈𝑡〉 with 𝑦 = 𝑚 ∙ 𝑡−1, compute

𝜀〈𝑧〉 = (𝜀〈𝑡〉)
𝑦

.

Add: For 〈𝑧〉 = 〈𝑥〉 + 〈𝑦〉, compute the expectancy 𝜀〈𝑧〉 = 𝜀〈𝑥〉 × 𝜀〈𝑦〉.

Multiply: For 〈𝑧〉 = 〈𝑥〉 × 〈𝑦〉 with the preprocessed triple (〈𝑎〉, 〈𝑏〉, 〈𝑐〉) and random 〈𝑡〉.

Derive 𝜂, 𝜌, and 𝑡 from �̃�, �̃�𝑖, and �̃�𝑖 stored in ℱBlt.

a) Compute 𝜀〈𝜂〉 = 𝜀〈𝑥〉 × (𝜀〈𝑦〉
−1) and 𝜀〈𝜌〉 = 𝜀〈𝑦〉 × (𝜀〈𝑏〉

−1
) .

b) Compute 𝜀〈𝑧〉 = 𝜀〈𝑐〉 × (𝜀〈𝑎〉)
𝜌

× (𝜀〈𝑏〉)
𝜂

× (𝜀〈𝑡〉)
𝜂𝜌(𝑡−1)

.

2) 𝑃A gets 𝐸(𝑧𝑖, 𝑟𝑖) from 𝜀〈𝑧〉 and checks if (𝑧𝑖 , 𝑟𝑖) can correctly open it . If not, identify

cheating 𝑃𝑖 and set 𝐿 ← 𝑃𝑖 ∪ 𝐿.

3) If 𝐿 = {}, 𝑃𝐴 output Accept. Else output (Reject, 𝐿).

Figure 5. ΠAudit: Sub-protocol for the audit of encoded shares.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

22

ciphers, Single uses the procedure ΠComShr
σ which generates random MUSS shares, together with

commitments to the values. For multiplication triples, ΠGenTrp
σ computes a product of the two

random values and output them with commitments in Triples. These sub-protocols can be found

in Figure 8. If we assume the presence of at least one honest server and that the adversary has a

static strategy to corrupt the servers, ΠCPRZK
σ (Error! Reference source not found.) and ΠChkZKP

σ

(Error! Reference source not found.) work as the audit to ensure that the following properties

hold:

• All commitments of shares have ZKP’s. All ciphertexts and commitments of MUSS ciphers

have ZKP’s, which are verified in the online phase.

• The procedure ΠCPRZK
𝜎 was executed such that the ciphertexts of MUSS ciphers were correctly

encrypted from the plaintexts.

• The procedure ΠChkZKP
𝜎 was executed such that the generation of shares followed the protocol,

otherwise the malicious parties that cheat in Single and Triples of ΠOffline were identified.

The security of offline protocol is provided as below with the proof deferred to Sec. 4.2. The reader

can refer to [26] for the details of ΠChkZKP
𝜎 , which are omitted here.

Theorem 3 (Offline Security): Let ℋ be a semi-homomorphic cryptosystem. Then ΠOffline

implements ℱOffline with computational security against any static adversary corrupting all

parties but one honest computing party and auditor in the (ℱKGD, ℱCom, ℱBlt)-hybrid model if

the DLP is hard in 𝔾.

While we do not consider guaranteed output delivery for the offline phase, we compose player-

elimination on the online phase, that invokes a copy of the offline phase to achieve the robustness.

Since information is revealed due to the failed audit, everything will need to be generated again for

a newly setup copy in the next iteration.

3.3.1 Distributed Encryption

Figure 6. ΠChkPln
σ : Protocol for the correlation check of plain shares.

ΠChkPln
σ

 �̃�𝑖
(𝑘)

 and �̃�𝑖
(𝑘)

 has been opened from each 𝑃𝑖 and 𝑘 ∈ {σ}. Set 𝐿 ← {}

Check Plain Shares: On input (ChkPln, id(𝐳), σ) from 𝑃𝐴.

1) Each 𝑃𝑖 ∈ 𝑃 privately sample 𝑣𝑖

$
← 𝔽. The parties use a new random value ⟨𝒔⟩ =

([𝒔], [𝒕], ε⟨𝒔⟩) and use ℱRnd to publicly sample a vector 𝒘
$

← 𝔽σ.

2) Each 𝑃𝑖 ∈ 𝑃 opens (𝑧𝑖
(𝑘)

+ 𝑠𝑖
(𝑘)

) and (𝑟𝑖
(𝑘)

+ 𝑡𝑖
(𝑘)

) and computes 𝑧(𝒘) =

∑ 𝑤𝑘
σ
𝑘=1 (∑ �̃�𝑗

(𝑘)
)𝑛

𝑗=1 , 𝑟(𝒘) = ∑ 𝑤𝑘
σ
𝑘=1 (∑ �̃�𝑗

(𝑘)
)𝑛

𝑗=1 , 𝑥𝑖
(𝒘)

= ∑ 𝑤𝑘
σ
𝑘=1 (𝑧𝑖

(𝑘)
+ 𝑠𝑖

(𝑘)
), and

𝑦𝑖
(𝒘)

= ∑ 𝑤𝑘
σ
𝑘=1 (𝑟𝑖

(𝑘)
+ 𝑡𝑖

(𝑘)
) and sends them toward ℱBlt.

3) Each 𝑃𝑖 ∈ 𝑃 privately computes �̃�𝑗
𝒘 = ∑ �̃�𝑗

(𝑘)
𝑤𝑘

σ
𝑘=1 and �̃�𝑗

𝒘 = ∑ �̃�𝑗
(𝑘)

𝑤𝑘
σ
𝑘=1 , 𝜂𝑖 =

∑ 𝑥𝑗
𝒘 ∙ 𝛼𝑗,𝑖

𝑛
𝑗=1 − �̃�𝑗

𝒘 − 𝑣𝑖 ∙ 𝑧(𝒘), and 𝜇𝑖 = ∑ 𝑦𝑗
𝒘 ∙ 𝛼𝑗,𝑖

𝑛
𝑗=1 − �̃�𝑗

𝒘 − 𝑣𝑖 ∙ 𝑟(𝒘).

4) Each 𝑃𝑖 ∈ 𝑃 uses ℱCom to commit to 𝑣𝑖, 𝜂𝑖, and 𝜇𝑖.

5) Each 𝑃𝑖 ∈ 𝑃 uses ℱCom to open 𝑣𝑖, 𝜂𝑖, and 𝜇𝑖 to all parties.

6) Each party computes and outputs 𝜂 = ∑ 𝜂𝑖
𝑛
𝑖=1 and 𝜇 = ∑ 𝜇𝑖

𝑛
𝑖=1 .

7) If 𝜂=𝑧(𝒘)(1 − ∑ 𝑣𝑖)𝑛
𝑖=1 , 𝜇 = 𝑟(𝒘)(1 − ∑ 𝑣𝑖)𝑛

𝑖=1 , all parties output Accept. Else output

Reject.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

23

We have a semi-homomorphic encryption scheme ℋ = (𝖪𝖦, 𝖤𝗇𝖼, 𝖣𝖾𝖼,⊕,⊗) with a message

space 𝔽 and randomness distribution 𝜒 . The ciphertext encrypted by 𝐻 is denoted as ⟦𝑥⟧𝑝𝑘

∶= 𝖤𝗇𝖼𝑝𝑘(𝑥, 𝑟) with key pair (𝑝𝑘, 𝑠𝑘). In addition, ℋ has a predicate

𝐂𝐨𝐫: {0, 1}𝑛(λ) × {0, 1}𝑛(λ) × {0, 1}𝑛(λ) × {0, 1}𝑛(λ) → {0,1}

ΠOffline
Initialize: On input (Init, 𝜎, 𝔽, 𝔾, 𝒈, ℎ) from all players. This generates encryption keys and

MUSS ciphers.
1) The parties use ℱKGD to generate the key pair (𝑝𝑘𝑑, 𝑠𝑘𝑑), where skd is shared among

parties.

2) The third party 𝑃𝑇 use ℱKGD to generate the global key pair (𝑝𝑘𝑜, 𝑠𝑘𝑜) if it has none. Each

𝑃𝑗 is given 𝑝𝑘𝑜.

3) 𝑃𝑗 samples 𝛼𝑖,𝑗

$
← 𝔽 for all 𝑖 ∈ {𝑛}. Set 𝛼𝑖 = ∑ 𝛼𝑖,𝑗𝑗∈{𝑛} .

4) Each 𝑃𝑗 computes and broadcasts ⟦𝟏 ∙ 𝛼𝑖,𝑗⟧
𝑝𝑘𝑑

= 𝖤𝗇𝖼𝑝𝑘𝑑(𝟏 ∙ 𝛼𝑖,𝑗) with all-one vector 𝟏 ∈

𝔽𝜎 to ℱBlt.

5) All parties compute ⟦𝟏 ∙ 𝛼𝑖⟧𝑝𝑘𝑑 =⊕𝑗∈{𝑛} ⟦𝟏 ∙ 𝛼𝑖,𝑗⟧
𝑝𝑘𝑑

 for all 𝑖 ∈ {𝑛}.

6) Each 𝑃𝑗 commits 𝜶𝑗 = {𝛼𝑖,𝑗}𝑖∈{𝑛} with 𝛽𝑗 ∈ 𝔽 by 𝑑𝑗 = 𝐸(𝒈,ℎ)
(𝑛)

(𝜶𝑗, 𝛽𝑗) toward ℱBlt.

7) Each 𝑃𝑗 computes c𝑗 = 𝖤𝗇𝖼𝑝𝑘𝑜({𝜶𝑗, 𝛽𝑗}, 𝑢𝑗) with 𝑢𝑗 ∈ 𝔽 and invokes (genZKP, 𝑃𝑗) of

ΠCPRZK
𝜎 to obtain ζ𝑗.

Single: On input (Single, 𝜎, 𝑔, ℎ) from all players. This generates 𝜎 random values for the

input.

1) Run {〈𝑟(𝑘)〉}
𝑘∈{σ}

← ΠComShr
σ (⊥).

2) Output {〈𝑟(𝑘)〉}
𝑘∈{σ}

.

Triples: On input (𝐓𝐫𝐢𝐩𝐥𝐞, 𝜎, 𝑔, ℎ) from all players. This generates 𝜎 triples for the

multiplication.

3) Run {〈𝑎(𝑘)〉}
𝑘∈{σ}

← ΠComShr
σ (⊥) and {〈𝑏(𝑘)〉}

𝑘∈{σ}
← ΠComShr

σ (⊥).

1) Run {〈𝑐(𝑘)〉}
𝑘∈{σ}

← ΠGenTrp
σ . Set 𝑡(𝑘) = (〈𝑎(𝑘)〉, 〈𝑏(𝑘)〉, 〈𝑐(𝑘)〉) with 𝑐(𝑘) = 𝑎(𝑘) ∙ 𝑏(𝑘) for

𝑘 ∈ {𝜎}.

2) Output {𝑡(𝑘)}
𝑘∈{σ}

.

Audit: On input (Audit, 𝜎, 𝑔, ℎ) from all parties. This verifies the output from Initialize, Single

and Triples.

1) Run ΠComShr
σ (⊤) for Single and ΠComShr

3σ (⊤) for Triples.

2) Run ΠChkZKP
σ once for Single and ΠChkZKP

σ three times for Triples. If any of two replies

Reject, 𝑃𝐴 requests each 𝑃𝑖 to open toward ℱBlt the share of secret key skd𝑖 and run the

following steps.

1.1. If the first fails, 𝑃𝐴 requests each 𝑃𝑖 to open toward ℱBlt the share of 〈𝑟𝑘〉 as well as the

proofs of commitments and encryptions. 𝑃𝐴 reads transcripts from ℱBlt and verifies to

identify malicious parties ℳ𝑅 .

1.2. If the second fails, 𝑃𝐴 requests each 𝑃𝑖 to open the random pads 𝜿𝑖𝑗 and �̃�𝑖𝑗, the share

of 𝑡𝑘 as well as the proofs of commitments and encryptions. PA reads transcripts from

ℱBlt and verifies to identify malicious parties ℳ𝑇 .

3) If any check fails, PA outputs Reject and {ℳ𝑅, ℳ𝑇}. Or 𝑃𝐴 outputs Accept.

Figure 7. ΠOffline: Protocol for the offline phase.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

24

(𝑝𝑘, 𝑐, 𝑥, 𝑟) → 𝐂𝐨𝐫 (𝑝𝑘, 𝑐, 𝑥, 𝑟), that maps to 1 if 𝑝𝑘
$

← 𝖪𝖦(1𝜆), 𝑥 ∈ 𝔽, 𝑟
$

← 𝜒 and c ←
𝖤𝗇𝖼𝑝𝑘(𝑥, 𝑟), but otherwise indicates that at least one of these four conditions are not true. The

operator ⊕ then guarantees that 𝖣𝖾𝖼𝑠𝑘(⟦𝑥 + 𝑦⟧𝑝𝑘) = 𝖣𝖾𝖼𝑠𝑘(⟦𝑥⟧𝑝𝑘 ⊕ ⟦𝑦⟧𝑝𝑘), whereas we do not

use homomorphic multiplication. The scalar multiplication ⊗ guarantees that 𝖣𝖾𝖼𝑠𝑘(𝑦 ⊗
⟦𝑥⟧𝑝𝑘) = 𝖣𝖾𝖼𝑠𝑘(⟦𝑥 ∙ 𝑦⟧𝑝𝑘).

In addition, we require the interactive functionality ℱKGD that will be used for the preprocessing.

The key pair can be securely generated by a key-generation protocol, where the secret key is

Set ⟦∙⟧ ∶= ⟦∙⟧𝑝𝑘𝑑, SIMD factor 𝜎. ⟦𝛼𝑗⟧ as the encrypted cipher key. Define 𝒖𝑖 = {𝑢𝑖
(𝑘)

}
𝑘∈{σ}

,

𝒗𝑖 = {𝑣𝑖
(𝑘)

}
𝑘∈{σ}

, 𝒂𝑗 ∙ 𝛼𝑗 = {𝑎𝑗
(𝑘)

∙ 𝛼𝑗}
𝑘∈{σ}

, 𝖤(𝒖𝑖, 𝒗𝑖) = {𝖤 (𝑢𝑖
(𝑘)

, 𝑣𝑖
(𝑘)

)}
𝑘∈{σ}

 and ⟦𝝁𝑖⟧ =

{⟦𝑢𝑖
(𝑘)

⟧}
𝑘∈{σ}

, 𝒖𝑗 ⊗ ⟦𝜶𝑗⟧ = {⟦𝑢𝑖
(𝑘)

𝛼𝑗⟧}
𝑘∈{σ}

, 𝒖𝑗 ⊗ ⟦𝒂𝑗⟧ = {⟦𝑢𝑖
(𝑘)

𝑎𝑖
(𝑘)

⟧}
𝑘∈{σ}

, and ⟦𝜶𝑗⟧ =

⟦𝟏 ∙ 𝛼𝑗⟧ for parallel processing.

ΠComShr
σ (𝖿𝗅𝖺𝗀)

With private share 𝒖𝑖 and randomness 𝒗𝑖 from each 𝑃𝑖. 𝒖𝑖 = {𝑢𝑖
(𝑘)

}
𝑘∈{σ}

1) Execute ΠGenShr
σ twice to obtain �̃�𝑖 and �̃�𝑖, respectively, for each 𝑃𝑖.

2) Each party 𝑃𝑖 computes 𝖤(𝒖𝑖, 𝒗𝑖) and 𝖤(�̃�𝑖 , �̃�𝑖) If 𝖿𝗅𝖺𝗀 =⊥ , open both toward ℱBlt . If

𝖿𝗅𝖺𝗀 = ⊤, only open 𝖤(𝒖𝑖, 𝒗𝑖).

ΠGenShr
σ

With private share 𝒖𝑖 and randomness 𝒗𝑖 from each 𝑃𝑖.

1) Each 𝑃𝑗 ∈ 𝒫\𝑃1 samples 𝒖𝑖 , �̃�𝑗

$
← 𝔽𝜎 at random and opens ⟦𝝁𝑗⟧ = 𝒖𝑗 ⊗ ⟦𝜶𝑗⟧ − �̃�𝑗.

2) 𝑃1 opens ⟦𝝁1⟧ = 𝒖1 ⊗ ⟦𝜶1⟧. All parties compute ⟦�̃�1⟧ = ⨁𝑗∈{𝑛}⟦𝝁𝑗⟧.

3) All parties call (Decrypt, pk, ⟦�̃�1⟧, 𝑃1) for 𝑃1 to obtain �̃�1.

ΠGenTrp
σ

With private share ⟨𝒂⟩ and ⟨𝒃⟩.
1) Each 𝑃𝑗 ∈ 𝒫 opens ⟦𝒂𝑗 ∙ 𝛼𝑗⟧ = 𝒂𝑗 ⊗ ⟦𝜶𝑗⟧ and ⟦�̃�𝑗⟧.

2) Each 𝑃𝑗 ∈ 𝒫 samples 𝜿𝑗𝑖 , �̃�𝑗𝑖

$
← 𝔽𝜎 and sends ⟦𝜿𝑗𝑖 ∙ 𝛼𝑗⟧ = 𝜿𝑗𝑖 ⊗ ⟦𝜶𝑗⟧ and ⟦�̃�𝑗𝑖⟧ toward

each 𝑃𝑖 ∈ 𝑃\𝑃𝑗.

3) Each 𝑃𝑗 ∈ 𝒫 computes

⟦𝒄𝑗⟧ = (𝒃𝑗 ⊗ (⨁𝑖∈{𝑛}⟦𝒂𝑖 ∙ 𝛼𝑖⟧)) ⊕ (⨁𝑖∈{𝑛}\𝑗⟦𝜿𝑖𝑗 ∙ 𝛼𝑖⟧) ⊕ (⨁𝑖∈{𝑛}\𝑗⟦−𝜿𝑗𝑖 ∙ 𝛼𝑖⟧)

⟦�̃�𝑗⟧ = (�̃�𝑗 ⊗ (⨁𝑖∈{𝑛}⟦�̃�𝑖⟧)) ⊕ (⨁𝑖∈{𝑛}\𝑗⟦�̃�𝑖𝑗⟧) ⊕ (∑𝑖∈{𝑛}\𝑗−�̃�𝑗𝑖).

4) All parties call (Decrypt, 𝑝𝑘𝑑, ⟦𝒄𝑗⟧, 𝑃𝑖) and (Decrypt, 𝑝𝑘𝑑, ⟦�̃�𝑖⟧, 𝑃𝑖) for each 𝑃𝑖 ∈ 𝒫.

5) Each 𝑃𝑗 ∈ 𝒫 samples 𝒕𝑗

$
← 𝔽𝜎. All parties run ΠGenShr

𝜎 for [𝒕].

6) Each 𝑃𝑖 computes and opens 𝖤(𝒄𝑖, 𝒕𝑖) and 𝖤(�̃�𝑖, �̃�𝑖) toward ℱBlt for ⟨𝒄⟩ = {⟨𝑐(𝑘)⟩}
𝑘∈{σ}

.

Figure 8. Sub-protocols for the generation of MUSS shares.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

25

additively shared by all parties. The ciphertext can be jointly decrypted by yielding the plaintext

publicly from all parties, or providing it to a specific party privately.

3.3.2 Generation of Multiplicative Ciphers

The ciphers are jointly generated by the computing parties. The protocol has two key pairs

(𝑝𝑘𝑑, 𝑠𝑘𝑑) and (𝑝𝑘𝑜, 𝑠𝑘𝑜) . The first one is obtained using ℱKGD invoked by all computing

parties. The second one is given by the external TTP. Henceforth, each party encrypts his share

twice with 𝑝𝑘𝑑 and 𝑝𝑘𝑜 . With 𝟏 = {1}𝑖∈{ℓ} , 𝒓𝑖,𝑗

$
← 𝔽ℓ , and 𝑢𝑗

$
← 𝔽 the ciphertext 𝑏𝑖,𝑗 = ⟦𝟏 ∙

𝛼𝑖,𝑗⟧
𝑝𝑘𝑑

= 𝖤𝗇𝖼𝑝𝑘𝑑(𝟏 ∙ 𝛼𝑖,𝑗, 𝒓𝑖,𝑗) is broadcasted for the generation of correlated randomness, and

c𝑗 = 𝖤𝗇𝖼𝑝𝑘𝑜({�̅�𝑗, 𝛽𝑗}, 𝑢𝑗) for �̅�𝑗 = {𝛼𝑖,𝑗}i∈{𝑛} is always held private until the output delivery of

online phase. The relation between two ciphertexts is built by committing 𝛼𝑖,𝑗 toward the bulletin.

Therefore, we need ZKP to ensure that these encryptions are all derived from the same plaintext.

For 𝖤(𝒈,ℎ)
(𝑛)

(�̅�𝑗, 𝛽𝑗) = ∏ 𝖤(𝑔𝑖,ℎ)(𝛼𝑖,𝑗, 𝛽𝑗)𝑛
𝑖=1 and 𝜶𝑗 = {𝛼𝑖,𝑗}𝑖∈{𝑛}, and the relation is formalized as:

𝑅𝐶𝑃𝑅,𝑗
(𝑛,ℓ)

= {(𝐬, 𝒂)|𝐬 = ({𝑏𝑖,𝑗}
𝑖∈{𝑛}

, 𝑐𝑗, 𝑑𝑗, 𝑝𝑘𝑑, 𝑝𝑘𝑜) , 𝒂 = (𝜶𝑗, 𝛽𝑗, 𝒓𝑖,𝑗, 𝑢𝑗), 𝐂𝐨𝐫(𝑝𝑘𝑑, 𝑏𝑖,𝑗, (𝟏 ∙

Figure 9. ℱOnline: Ideal functionality for the online phase.

ℱOnline

Initialize: On input (Init, 𝒞, 𝔽, 𝔾) from all parties (where 𝒞 is a circuit with 𝑚 inputs and 𝑚

outputs, consisting of addition and multiplication gates over 𝔽).

1) Send (Init, 𝒞, 𝔽, 𝔾) to 𝒜 and wait until 𝒜 sends ℒ𝑓 , ℒ𝑝, ℒ𝑐 , ℒ𝑜, ℒ𝑘 ⊆ 𝒟 ⊂ 𝒫 and ℒ𝐼 ⊆

𝒟𝐼 ⊆ ℐ.

2) If |ℒ𝑓| = 0, reply Accept. Or reply (⊥, ℒ𝑓) to all parties and stop.

Input: On input (Input, 𝐼𝑖, 𝑖𝑑(𝑥𝑖), 𝑥𝑖) from each 𝐼𝑖 and (Input, 𝐼𝑖, 𝑖𝑑(𝑥𝑖)) from all computing

parties, with 𝑖𝑑(𝑥) a new identifier and 𝑥𝑖 ∈ 𝔽. 𝐷𝐼 is the set of corrupted input party. ℒ𝐼 is its

subset sending 𝑥𝑖 =⊥ to the trust party.

1) Get and override 𝑥𝑖 for each party in 𝒟𝐼 from 𝒜. If |ℒ𝐼| > 0, reply (⊥, ℒ𝐼) to all parties.

2) Set 𝒙 = (𝑥1, . . . 𝑥𝑚). Store (𝑖𝑑(𝒙), 𝒙). Reply Accept.

Compute: On input (Compute, 𝒞) from all parties.

1) For every 𝑓𝑖 ∈ 𝒞, compute 𝑦𝑖 = 𝑓𝑖(𝒙). Set 𝒚 = {𝑦𝑖}𝑖∈{𝑚}.

2) If |ℒ𝑝| = 0, set 𝑦𝑖
∗ ← 𝑦𝑖. Or 𝑦𝑖

∗ ←⊥.

3) If |ℒ𝑝| = 0 and |𝐿𝑐| = 0, reply Accept. Or reply Reject.

Audit: On input (Audit, 𝑖𝑑(𝒙)) from 𝑃𝐴 . If |ℒ𝑝| = 0, reply Accept. Or reply (⊥, ℒ𝑝) to all

parties and stop.

Open: On input (Open) from all parties.

1) Send 𝑦∗ to 𝑃𝑇.

2) If |ℒ𝑜| > 0, reply (⊥, ℒ𝑜) to all parties. Stop.

3) If |ℒ𝑜| = 0, send ok to 𝑃𝑇 and wait for the response.

3.1. If 𝑃𝑇 is dishonest, 𝒜 decides for him to send Cheat or ⊥.
3.2. If 𝑃𝑇 is honest, he always sends back ⊥.

4) If 𝑃𝑇 replies ⊥, reply (𝑦∗, ℒ𝑘) to all parties. Or if 𝑃𝑇 replies Cheat, reply (𝑦∗, 𝑃𝑇) if |ℒ𝑘| =
0 or (⊥, {ℒ𝑘 , 𝑃𝑇}) to all parties.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

26

𝛼𝑖,𝑗), 𝑟𝑖,𝑗) = 1, 𝐂𝐨𝐫(𝑝𝑘𝑜, 𝑐𝑗 , {�̅�𝑗, 𝛽𝑗}, 𝑢𝑗) = 1, {𝑏𝑖,𝑗}
𝑖∈{𝑛}

= {⟦𝟏 ∙ 𝛼𝑖,𝑗⟧
𝑝𝑘𝑑

}
𝑖∈{𝑛}

, c𝑗 =

𝖤𝗇𝖼𝑝𝑘𝑜({�̅�𝑗, 𝛽𝑗}, 𝑢𝑗), 𝑑𝑗 = 𝖤(𝒈,ℎ)
(𝑛)

(�̅�𝑗, 𝛽𝑗)}.

Based on [19], the ZKP protocol ΠCPRZK
(𝑛,ℓ)

 is described in the conference version of this paper [26].

4. PROOFS

𝒮Online

Initialize:
1) Set up ℱKGD, ℱBlt, ℱCom and RO’s 𝒦 and 𝒵. Start a local instance Π of ΠOnline with which

the dishonest parties will communicate.

2) Send ℒ𝑓 , ℒ𝑝, ℒ𝑐 , ℒ𝑜 , ℒ𝑘 and ℒ𝐼 to ℱOnline . Then send (Init, 𝒞, 𝔽, 𝔾) for each 𝑃𝑗 ∈ 𝒟 to

ℱOnline.

3) Run a copy of ℱOffline, with which the dishonest parties and the simulated honest parties

communicate. If |ℒ𝑓| > 0, stop.

4) Sample a generator 𝑔 ∈ 𝔾 at random, choose 𝑡1, … , 𝑡𝑛, 𝑠
$

← ℤ|𝔾|
∗ and set 𝑡0 = 1 , 𝑔𝑖 =

𝑔𝑡𝑘 , ℎ = 𝑔𝑠 for 𝑘 ∈ {𝑛}. Set 𝒈={𝑔𝑖}𝑖=(0,…,𝑛) and the random oracle 𝒦 to output 𝒈 and ℎ.

Then run this protocol step as in ΠOnline.

5) Send (Init, 𝔽, 𝔾, 𝒈, ℎ) for all simulated 𝑃𝑖. Record the {𝛼𝑖,𝑗}𝑖,𝑗∈{𝑛} used by ℱOffline.

6) Send (Input, νr, 𝑔0, ℎ) and (Triple, νtrp, 𝑔0, ℎ) as in ΠOnline for all simulated 𝑃𝑖.

Input: 𝐼𝑖 ∈ ℐ inputs a value 𝑢𝑖.

1) If 𝐼𝑖 is honest, then follow ΠOnline for a default input value 𝑢𝑖 ← �̃�𝑖.

2) If 𝐼𝑖 ∈ 𝒟𝐼 is dishonest, then extract the input value 𝑢𝑖 from Π and send

(Input, 𝐼𝑖, 𝑖𝑑(𝑢𝑖), 𝑢𝑖) for 𝐼𝑖 and (Input, 𝐼𝑖, 𝑖𝑑(𝑢𝑖)) for each dishonest 𝑃𝑗 ∈ 𝒟 to ℱOnline.

Compute: If Initialize has been executed and inputs for all 𝑚 inputs of 𝒞 have been provided,

evaluate 𝒞 gate per gate as follows:

Add and Multiply: Follow the steps in ΠOnline.

Output: Send (Compute) to ℱOnline. Obtain the output y from ℱOnline. Simulate ΠOnline

as follows:

1) Generate correct shares for the simulated honest parties for Π:

1.1. Let 𝑃𝑗 be a simulated honest party and 𝑦′ be the output of the simulated protocol.

Set ⟨𝑦′⟩ = ([𝑦′], [𝑟′], 𝜀⟨𝑦′⟩).

1.2. For 𝑃𝑗 set new shares as follows: 𝑦𝑖 = 𝑦𝑖
′ + (𝑦 − 𝑦′)/𝛼𝑖 and �̃�𝑖 = �̃�′𝑖 + (𝑦 − 𝑦′),

𝑟𝑖 = 𝑟𝑖
′ + ((𝑦′ − 𝑦)/𝛼𝑖) ∙ 𝑠−1, and �̃�𝑖 = �̃�′𝑖 + (𝑦′ − 𝑦) ∙ 𝑠−1.

1.3. Follow the protocol ΠOnline to run ΠChkPln
𝑡 and ΠChkEnc

𝑚 with ℒ𝑐 and ℒ𝑘.

Audit: Run Audit as in ΠOnline to get ℒ𝑝. Then invoke Audit in ℱOnline.

Open: Run Open as in ΠOnline to get ℒ𝑜 and ℒ𝑘. Then invoke Open in ℱOnline.

Figure 10. 𝒮Online: Simulator for the protocol ΠOnline.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

27

4.1 Security of the Online Phase

We will now prove security for the construction from Sec. 3.1 in the UC framework. which implies

that ΠOnline implements ℱOnline as in Figure 9 in a hybrid model as defined in Theorem 2.

Proof: The proof of the statement is provided by the simulator 𝒮Online in Figure 10, which requires

at least one honest party to run an instance of ΠOnline. The simulator and the honest parties are

controlled by 𝒜. During Initialize, Input, Add, Multiply, 𝒮Online performs the same steps as in

ℱOffline

Set 𝒟 as the set of dishonest parties, and ℋ = (𝖪𝖦, 𝖤𝗇𝖼, 𝖣𝖾𝖼,⊕,⊗) as PKI.

Initialize: On input (Init, 𝜎, 𝔽, 𝔾, 𝒈, ℎ, 𝒦) from all players.
1) For all 𝑃𝑗 ∈ 𝒟 and 𝑖 ∈ {𝑛}, 𝒜 input 𝛼𝑖,𝑗, 𝛽𝑗,𝑢𝑗 ∈ 𝔽 and 𝒓𝑖,𝑗 ∈ 𝔽ℓ. For all 𝑃𝑗 ∈ 𝒫\𝒟 and 𝑖 ∈

{𝑛}, the funtionality chooses 𝛼𝑖,𝑗 , 𝛽𝑗, 𝑢𝑗

$
← 𝔽, 𝒓𝑖,𝑗

$
← 𝔽ℓ uniformly at random.

2) Get (𝑝𝑘𝑑, 𝑠𝑘𝑑) ← ℋ. 𝖪𝖦(1𝜆) , (𝑝𝑘𝑜, 𝑠𝑘𝑜) ← ℋ. 𝖪𝖦(1𝜆) and send 𝑝𝑘𝑑 and 𝑝𝑘𝑜 to 𝒜 .

Send (𝑝𝑘𝑜, 𝑠𝑘𝑜) to 𝑃𝑇.

3) Set 𝟏 = {1}𝑘∈{𝜎}. Obtain ⟦𝟏 ∙ 𝛼𝑖,𝑗⟧
𝑝𝑘𝑑

 and send to 𝒜. Set �̅�𝑗 = {𝛼𝑖,𝑗}
𝑖∈{𝑛}

.

4) For each honest 𝑃𝑖 ∈ 𝒫\𝒟 compute 𝜔𝑖 = ({⟦𝟏 ∙ 𝛼𝑖,𝑗⟧
𝑝𝑘𝑑

}
𝑖∈{𝑛}

, 𝑐𝑗, 𝑑𝑗, 𝜁𝑖) with 𝑑𝑖 =

𝖤(𝒈,ℎ)
(𝑛)

(�̅�𝑗, 𝛽𝑖), 𝑐𝑖 = ⟦(�̅�𝑗, 𝛽𝑗)⟧
𝑝𝑘𝑜

, and ZKP 𝜁𝑖.

5) For each dishonest 𝑃𝑖 ∈ 𝒟, 𝒜 sends 𝜔𝑖 to 𝑃𝑖.

Single: On input (Single, 𝜎, 𝑔, ℎ) from all players. Generate 𝜎 random values.

1) Set ℳ𝑅 ← {}.

2) For each honest 𝑃𝑖, the functionality chooses, 𝒖𝑖, 𝒗𝑖

$
← 𝔽𝜎, send these to 𝑃𝑖.

3) For each dishonest 𝑃𝑖, 𝒜 inputs 𝒖𝑖, 𝒗𝑖. Add 𝑃𝑖 to ℳ𝑅 if input is not in 𝔽𝜎

4) Run the sub-function to compute (⟨𝒖⟩, ℒ𝑢) ← ℱGenShr
𝜎 (𝒖1, . . . , 𝒖n, 𝒗1, . . . , 𝒗n).

5) Add ℒ𝑢 to ℳ𝑅.

Triples: On input (Triple, 𝜎, 𝑔, ℎ) from all players. Generate 𝜎 triples for the multiplication.

1) 𝒜 sends a partial list of malicious parties 𝑀𝑇 to the functionality.

2) For each honest 𝑃𝑖, the functionality chooses 𝒂𝑖, 𝒃𝑖 , 𝒓𝑖, 𝒔𝑖

$
← 𝔽𝜎and send to 𝑃𝑖.

3) For each dishonest 𝑃𝑖, 𝒜 inputs 𝒂𝑖, 𝒃𝑖, 𝒄𝑖 , 𝒓𝑖 , 𝒔𝑖, 𝒕𝑖. Set 𝒂 = ∑ 𝒂𝑖 ∙ 𝛼𝑖𝑖∈{𝑛} , 𝒃 = ∑ 𝒃𝑖 ∙𝑖∈{𝑛}

𝛼𝑖. Add 𝑃𝑖 to ℳ𝑇 if input is not in 𝔽𝜎.

4) Randomly select one party 𝑃𝑖, the functionality samples 𝒄𝑗, 𝒕𝑗

$
← 𝔽𝜎 for 𝑃𝑗 ∈ 𝒫\𝑃𝑖 and set

𝒄𝑖
∗ = 𝒂 ∙ 𝒃 − ∑ 𝒄𝑗 ∙ 𝛼𝑗𝑗∈{𝑛}/𝑖 and 𝒕𝑖

∗
$

← 𝔽𝜎 for 𝑃𝑖.

4.1. If 𝑃𝑖 is dishonest, send 𝒄𝑖
∗, 𝒕𝑖

∗ to 𝒜 and wait for 𝒄𝑖 , 𝒕𝑖 from 𝒜. If 𝒄𝑖
∗ ≠ 𝒄𝑖 or 𝒕𝑖

∗ ≠ 𝒕𝑖 ,

add 𝑃𝑖 into ℳ𝑇.

4.2. If 𝑃𝑖 is honest, set 𝒄𝑖 = 𝒄𝑖
∗ and 𝒕𝑖 = 𝒕𝑖

∗.

5) Run the sub-protocols to compute

 (⟨𝒂⟩, ℒ𝑎) ← ℱGenShr
𝜎 (𝒂1, . . . , 𝒂n, 𝒓1, . . . , 𝒓n),

(⟨𝒃⟩, ℒ𝑏) ← ℱGenShr
𝜎 (𝒃1, . . . , 𝒃n, 𝒔1, . . . , 𝒔n),

 (⟨𝒄⟩, ℒ𝑐) ← ℱGenShr
𝜎 (𝒄1, . . . , 𝒄n, 𝒕1, . . . , 𝒕n). Add ℒ𝑎, ℒ𝑏 , and ℒ𝑐 to ℳ𝑇.

Audit: On input (Audit, 𝜎) from all players. If |{ℳ𝑅, ℳ𝑇}| > 0. Reply Reject and {ℳ𝑅, ℳ𝑇}.

Or reply Accept.

Figure 11. ℱOffline: Ideal functionality for the offline phase.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

28

ΠOnline and obtains MUSS ciphers α𝑖 from ℱOffline. It also sets up the Random Oracle (RO) for

commitment keys and uses a fixed default input �̃�𝑖 defined by 𝒞 for the simulated honest parties

during Input.

Every set of at most 𝑛 − 1 MUSS encoded and plain shares of a value is uniformly random and

does not reveal any information about the shared secret, so it is indistinguishable from a real

transcript. During Output, the shares of one simulated honest party are adjusted to match the

correct output 𝑦 from ℱOnline. By obtaining shares from ℱCom, the simulator derived the result 𝑦′
of the simulation, so it can adjust the encoded and plain shares of a simulated honest party. For

each encoded share 𝑦𝑖, there exists only one 𝑟𝑖 that opens the commitment 𝐸(𝑦𝑖 , 𝑟𝑖) correctly, so it

is indistinguishable. The same is true for the plain shares.

If the encoded shares generated by ℱOffline follow uniform distribution, the property still holds

after any linear operation and scalar multiplication. It follows from Theorem 1 of [24] that except

𝒮Offline

Initialize:
1) Set up ℱKGD, ℱBlt, ℱCom, and the commitment key (𝒈, ℎ) and simulate honest parties in a

local instance Π of ΠOnline with the dishonest parties.

2) Send 𝑀𝑟 and 𝑀𝑡 to ℱOffline. Then send (Init, 𝜎, 𝔽, 𝔾, 𝒈, ℎ, 𝐻) for each 𝑃𝑗 ∈ 𝒟 to ℱOffline.

3) The simulator obtains (𝑝𝑘𝑑, 𝑠𝑘𝑑) and (𝑝𝑘𝑜, 𝑠𝑘𝑜) from ℱKGD in Π.

Single: On input (Single, 𝜎, 𝑔, ℎ), Π outputs random values {〈𝑟(𝑘)〉}
𝑘∈{σ}

.

1) Obtain the commitment 𝜀𝑖
(𝑘)

 and 𝜀�̃�
(𝑘)

 from Step 3 of ℱGenShr
𝜎 for honest parties. For each

honest 𝑃𝑖 of 𝑖 > 1 , sample 𝑢𝑖
(𝑘)

, �̃�𝑖
(𝑘) $

← 𝔽 and set 𝑣𝑖
(𝑘)

 and �̃�𝑖
(𝑘)

 such that 𝜀𝑖
(𝑘)

=

𝖤 (𝑢𝑖
(𝑘)

, 𝑣𝑖
(𝑘)

) and 𝜀�̃�
(𝑘)

= 𝖤 (�̃�𝑖
(𝑘)

, �̃�𝑖
(𝑘)

). For the honest 𝑃𝑖 , sample 𝑢𝑖
(𝑘) $

← 𝔽 and set 𝑣𝑖
(𝑘)

such that 𝜀𝑖
(𝑘)

= 𝖤 (𝑢𝑖
(𝑘)

, 𝑣𝑖
(𝑘)

).

2) For each dishonest 𝑃𝑖, decrypt ⟦𝝁𝑖⟧ (for 𝒖𝑖 and 𝒗𝑖) and ⟦𝛼𝑖⟧ using 𝑠𝑘𝑑. Sample 𝑢𝑖
(𝑘)

, 𝑣𝑖
(𝑘)

$
← 𝔽 and obtain �̃�𝑖

(𝑘)
= 𝑢𝑖

(𝑘)
∙ 𝛼𝑖 − 𝜇𝑖

(𝑘)
 and �̃�𝑖

(𝑘)
 similarly. Send them to ℱOffline.

Triples: On input (Triple, 𝜎, 𝑔, ℎ), Π outputs random values {𝑡(𝑘)}
𝑘∈{σ}

.

1) Execute the same simulation of Single for {〈𝑎(𝑘)〉}
𝑘∈{σ}

 and {〈𝑏(𝑘)〉}
𝑘∈{σ}

.

2) Obtain the commitment 𝜀𝑖
(𝑘)

 and 𝜀�̃�
(𝑘)

 from Step 3 of ℱGenShr
𝜎 for honest parties. For each

honest 𝑃𝑖 , sample 𝑢𝑖
(𝑘)

, �̃�𝑖
(𝑘) $

← 𝔽 and set 𝑣𝑖
(𝑘)

 and �̃�𝑖
(𝑘)

 such that 𝜀𝑖
(𝑘)

= 𝖤 (𝑢𝑖
(𝑘)

, 𝑣𝑖
(𝑘)

) and

𝜀�̃�
(𝑘)

= 𝖤 (�̃�𝑖
(𝑘)

, �̃�𝑖
(𝑘)

) . For the honest 𝑃𝑖 , sample 𝑢𝑖
(𝑘) $

← 𝔽 and set 𝑣𝑖
(𝑘)

 such that 𝜀𝑖
(𝑘)

=

𝖤 (𝑢𝑖
(𝑘)

, 𝑣𝑖
(𝑘)

).

3) For each dishonest 𝑃𝑖, decrypt ⟦𝒄𝑖⟧ and ⟦�̃�𝑗⟧ to obtain 𝑐𝑖
(𝑘)

and �̃�𝑖
(𝑘)

. Decrypt ⟦𝝁𝑖⟧ (for 𝑡𝑖
(𝑘)

).

Sample 𝑡𝑖
(𝑘) $

← 𝔽 and obtain �̃�𝑖
(𝑘)

= 𝑡𝑖
(𝑘)

𝛼𝑖 − 𝜇𝑖
(𝑘)

. Send them to ℱOffline.

Audit: Run Step 1 and 2 of Single in the simulation except random chosen �̃�𝑖
(𝑘) $

← 𝔽. Then run

Audit as in ΠOffline to get {ℳ𝑅, ℳ𝑇}. Then invoke Audit in ℱOffline.

Figure 12. 𝒮Offline: Simulator for the protocol ΠOffline

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

29

negligible probability o(1/q) the matrix composed of opened encoded shares achieves full rank,

leading to perfect secrecy as stated in Theorem 1. This ensures that no information about the output

can be gained from every set of MUSS encoded shares of 𝑚 results. In the ideal world, the

simulator outputs Reject in Output if any of the values opened by the dishonest parties was

inconsistent, while ΠOnline does so if ΠChkPln
𝑡 and ΠChkEnc

𝑚 may pass. This occurs with a

probability of o(1/p), which is negligible in λ.

At the beginning of execution, 𝒜 decides to stop the execution or affect the outcome by corrupting

dishonest parties, then 𝒮Online will forward the set of malicious parties to the ideal functionality.

During the Audit and Opening stage, we also do exactly the same as in the protocol. The MUSS

ciphers α𝑖 given by ℱOffline are uniformly random and thus indistinguishable from the counterparts

from ℱOnline. □

4.2 Security of the Offline Phase

We will now prove security for the construction from ΠOffline in Figure 7 in the UC framework,

which implies that ΠOffline implements ℱOffline described in Figure 11 and Theorem 3.

Proof: The simulator 𝒮Offline in Figure 12 will generate MUSS shares that are uniformly random,

and use the decryption key to fit these shares to the commitments that ℱOffline outputs for the

honest parties. Hence, the values of the dishonest parties are consistent with those values that the

honest parties obtain and are indistinguishable. If 𝒜 cheats during the decryption, then the

simulator will always abort by running ΠChkZKP
𝜎 , which guarantee the correctness and soundness,

assuming the existence of an honest verifier. We do not directly decrypt the ciphertexts and check

MUSS correlation, because it is impossible to differentiate the misbehavior in the proofs and that

in the corresponding shares. Since there is at least one honest computing party, the opening will

always be invoked if the MUSS correlation is violated. One can see that if the check fails, 𝒮 makes

ℱOffline abort which is consistent with the protocol. □

5. DISCUSSIONS AND CONCLUSIONS

Comparisons. We compare our proposed MPC with the other three works in [9], [12], and [13],

as summarized in Table 1. Cachin and Camenisch [9] use encrypted circuits for computation where

two parties exchange input tokens through verifiable oblivious transfer. Moreover, it uses a TTP to

resolve misbehavior. The protocol in [12] uses Shamir’s sharing to construct a public auditable

MPC in a lack of the TTP. The fairness is achievable when there exist enough honest parties to

recover the secret. Seo’s work in [13] requires all party to provide verifiable encrypted shares to

the TTP such that it can verify and decrypt the shares.

Result delivery: “Decrypt to open?” means if the opening procedure requires decryption, which

could be done unconditionally (by “Yes, always”) or in case of detected misbehavior (by “Yes,

optimistic”). “Verify first” denotes the verification of results before revealing their plaintexts to

the parties, and “Reveal first” indicates the verification after the revealing.

Fairness: [9], [13], and our work are fair if there exists at least one honest party and TTP to detect

the misconduct of other malicious parties. However, [12] needs at least t honest party due to

threshold- t sharing and the lack of TTP.

Privacy: [12] can protect privacy against at most t − 1 malicious and colluding computing parties

Works TTP

exist-

ence

Decrypt to

open?

Verify

or/Reveal

First?

Guaranteed

Fairness

Guaranteed

Privacy

Online #

messages

Offline #

messages

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

30

due to threshold- t sharing. [13] and our work can do with at most n − 1 malicious ones. [9] is

susceptible to input corruption attack, as mentioned in [14]. Furthermore, it should be noted that in

the schemes of [9] and this paper TTP has no knowledge of secret, but the TTP in [13] has the

access to opening share in plaintext.

Communication: The protocol in [9] needs to check non-interactive ZKP (NIZKP) for each

encrypted gate in a garbled circuit for each pair of parties. As a consequence, the number of

messages is 𝑂(ℓλn2|𝒞|). Its offline number of messages is N/A because of its lack of preprocessing.

The delivery procedure in [12] broadcasts NIZKP for the commitment of each share to each party.

Besides, using beaver triples needs to broadcast 𝑛 messages for each multiplication gate in online

computing. The computing parties in [13] have to sends NIZKP of encrypted shares to the TPP, so

the factor is only n. However, our work only requires 𝑂(n2|𝒞|) for broadcasting shares in plaintext

for result delivery and multiplication. In addition, [12], [13], and ours all use 𝑂(λn2|𝒞|) messages

to generate correlated randomness in offline preprocessing, and our work additionally sends

𝑂(ℓλ𝑛2) to broadcast NIZKP for ΠCPRZK
𝜎 .

Summary. We described a proposed scheme to address the issues of privacy and correctness in

multi-party computation protocols. The solution introduced a semi-trusted third party as the key

manager and redesigns the secret-sharing mechanism. The design ensures that the malicious parties

cannot know the output by causing an abort, and the output delivery is guaranteed by excluding

cheaters and restarting the protocol. The offline sub-protocols can be audited publicly by verifying

zero-knowledge proofs based on KEA, holding corrupted parties accountable. The security of the

protocol can be proven in the universal composability framework.

REFERENCES

[1] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, "Multiparty Computation from Somewhat

Homomorphic Encryption," CRYPTO 2012, pp. 643-662, 2012.

[2] I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart, "Practical Covertly Secure MPC

for Dishonest Majority - Or: Breaking the SPDZ Limits," ESORICS 2013, pp. 1-18, 2013.

[3] C. Baum, I. Damgård, and C. Orlandi, "Publicly Auditable Secure Multi-Party Computation," SCN

2014, pp. 175-196, 2014.

[4] G. Spini and S. Fehr, "Cheater Detection in SPDZ Multiparty Computation," ICITS 2016, pp. 151-176,

2016.

[5] M. Keller, V. Pastro, and D. Rotaru, "Overdrive: Making SPDZ Great Again," EUROCRYPT 2018, pp.

158-189, 2018.

[9] Yes Yes,

optimistic.

Verify

first

At least 1

honest

Yes to

TTP. Up to

1 malicious

𝑂(ℓλ𝑛2|𝒞|) N/A

[12] No No. Reveal

first
At least t

honest

Up to t − 1

malicious

𝑂(ℓλ𝑛2

+ 𝑛2|𝒞|)

𝑂(λ𝑛2|𝒞|)

[13] Yes Yes, always. Verify

first

At least 1

honest

No to TTP

Up to n-1

malicious

𝑂(ℓλ𝑛
+ 𝑛2|𝒞|)

𝑂(λ𝑛2|𝒞|)

This

work

Yes Yes,

optimistic

Verify

first

At least 1

honest

Yes to

TTP. Up to

n-1

malicious

𝑂(𝑛2|𝒞|) 𝑂(ℓλ𝑛2

+ λ𝑛2|𝒞|)

Table. 1: Comparisons with previous works in various properties.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

31

[6] C. Baum, D. Cozzo, and N. P. Smart, "Using TopGear in Overdrive: A More Efficient ZKPoK for

SPDZ," SAC 2019, pp. 274-302, 2019.

[7] R. Cohen and Y. Lindell, "Fairness versus Guaranteed Output Delivery in Secure Multiparty

Computation," ASIACRYPT 2014, pp. 466-485, 2014.

[8] N. Asokan, V Shoup, and M. Waidner, “Optimistic Fair Exchange of Digital Signatures,” EUROCRYPT

1998, pp. 591-606, 1998.

[9] C. Cachin and J. Camenisch, “Optimistic Fair Secure Computation (Extended Abstract),” CRYPTO

2000, LNCS, vol. 1880, pp. 93-111, 2000.

[10] H. Kılınç and A. Küpçü, "Optimally Efficient Multi-Party Fair Exchange and Fair Secure Multi-Party

Computation," CT-RSA 2015, pp. 330-349, 2015.

[11] C. Baum, E. Orsini, and P. Scholl, "Efficient Secure Multiparty Computation with Identifiable Abort,"

TCC 2016-B, pp. 461-490, 2016.

[12] M. Rivinius, P. Reisert, D. Rausch, and R. Küsters, "Publicly Accountable Robust Multi-Party

Computation, " IEEE S&P 2022, pp. 2430-2449, 2022.

[13] M. Seo, "Fair and Secure Multi-Party Computation with Cheater Detection," Cryptography, vol. 5, no.

3, pp. 19-39, 2021.

[14] A. Herzberg and H. Shulman, “Oblivious and Fair Server-Aided Two-Party Computation,” ARES 2012,

pp. 75-84, 2012.

[15] M. Bellare and A. Palacio, "The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge

Protocols, " CRYPTO 2004, vol. 3152, pp. 273-289, 2004.

[16] J. Groth, "Short Pairing-Based Non-interactive Zero-Knowledge Arguments, " ASIACRYPT 2010, col.

6477, pp. 321-340, 2020.

[17] R. Cleve, “Limits on the Security of Coin Flips When Half the Processors Are Faulty (extended

abstract),” STOC, pages 364–369. ACM, 1986.

[18] D. Beaver, "Efficient Multiparty Protocols Using Circuit Randomization," CRYPTO ’91, pp. 420-432,

1991.

[19] R. Cramer and I. Damgård, "On the Amortized Complexity of Zero- Knowledge Protocols," CRYPTO

2009, pp. 177-191, 2009.

[20] R. Canetti, "Universally Composable Security: A New Paradigm for Cryptographic Protocols," FOCS

2001, pp. 136-145, 2001.

[21] MP-SPDZ 2022 [online] Available: https://github.com/data61/.

[22] M. Keller, "MP-SPDZ: A Versatile Framework for Multi-Party Computation," CCS 2020, pp. 1575-

1590, 2020.

[23] E. Orsini, "Efficient Actively Secure MPC with a Dishonest Majority: A Survey," WAIFI 2020, pp. 42-

71, 2020.

[24] C. Cooper, "On the distribution of rank of a random matrix over a finite field," Random Structures and

Algorithms, vol. 17, pp. 197-212, 2000.

[25] I. Damgård, "Non-Interactive Circuit Based Proofs and Non-Interactive Perfect Zero-Knowledge with

Preprocessing, " EUROCRYPT 1992, LNCS, vol. 658, pp. 341-355, 1992.

[26] C. Wang, " Efficient Fair and Robust SPDZ-Like Multi-Party Computation," CRYPIS 2023, Available:

https://aircconline.com/csit/abstract/v13n13/csit131327.html.

AUTHORS

Chung-Li Wang

He is a Ph. D. from University of California,

Davis and now a staff engineer with

Alibaba, Inc. His research topic includes

secure computation, cryptography,

error-control coding, and information

theory.

International Journal of Network Security & Its Applications (IJNSA) Vol.15, No.5, September 2023

32

https://github.com/data61/

