
International Journal of Network Security & Its Applications (IJNSA) Vol.16, No.6, November 2024 

DOI: 10.5121/ijnsa.2024.16601                                                                                                                 1 

 
DEEP LEARNING APPROACH FOR DETECTION OF 

PHISHING ATTACK TO STRENGTHEN NETWORK 

SECURITY 
 

Hadeer Alsubaie, Rahaf Althomali and Samah Alajmani  

 

Department of Information Technology, College of Computer and Information 

Technology, Taif University, PO Box. 11099, Taif 21994, Saudi Arabia 

 

ABSTRACT 
 
Phishing attacks are one of the most aggressive vulnerabilities in cybersecurity networks, typically carried 

out through social engineering and URL obfuscation. Traditional detection methods struggle to combat 
advanced techniques applied. In this paper, a deep learning-based approach is proposed to increase the 

accuracy of phishing detection while reducing the number of false positives. Four models: CNN-BLSTM, 

SNN, Transformer, and DBN, are developed and evaluated on a phishing dataset that includes critical 

features such as URL structure, domain age, and presence of HTTPS. The other model, CNN-BLSTM, 

achieved 98.9% better accuracy, effectively linking URL sequences in space and time. It is found that 

although deep learning models have a significant improvement over traditional methods in detecting 

phishing attacks, the level of computational resources still prevents them from real-time applications. 

Further research includes hybrid models and adversarial approaches to improve state-ofthe-art and 

practical solutions to address phishing threats. This study highlights a new technological application to 

Internet security concerns, particularly in the area of combating phishing.  
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1. INTRODUCTION 
 
The Internet has emerged as the basic structure for conducting and managing essential operations 

in modern day life [1]. Industries dependent on financial transactions, such as banking and e-

commerce, rely significantly on the Internet for efficient service delivery [2]. The digital 

connectivity provides significant advantages but also presents several security challenges for 
enterprises and individuals [3]. Phishing attacks have surfaced as a considerable hazard among 

these difficulties. Phishing is a type of identity theft that leverages human vulnerabilities via 

social engineering and psychological manipulation, allowing attackers to mislead users into 
disclosing important information. Phishing attacks come in various forms, such as Website 

Phishing, Phishing through Online Social Networks [4], Email Phishing [5], SMS Phishing [6], 

and Voice Phishing [7]. The ultimate goal of phishing is to extract personal data, including 

usernames and passwords, credit card numbers, and other useful information that can be 
converted into money or other illicit gains. These attacks generally entail the impersonation of 

credible entities, such as financial institutions or esteemed corporations. It uses misleading 

emails, text messages, or counterfeit websites [8]. The purloined information is subsequently 
exploited for financial fraud or other unlawful objectives, resulting in significant harm to both 

persons and organizations.  

 

https://airccse.org/journal/jnsa24_current.html
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Although advancements in cybersecurity solutions and rigorous management of network 
infrastructures, phishing attacks remain a significant issue. Cybercriminals perpetually adapt their 

strategies, exploiting the evolving characteristics of digital platforms to augment their deceitful 

prowess [9]. URL phishing, a particularly nefarious variant of phishing, entails enticing people to 

counterfeit websites through misleading connections [10]. As these attacks grow more 
sophisticated, conventional detection measures fail to keep up, rendering people susceptible to 

exploitation. The financial and reputational damages resulting from phishing underscore the 

pressing necessity for effective remedies. This study seeks to address the increasing escalating of 
phishing attacks by utilizing new technologies, such as deep learning and complex analytics, to 

improve detection and prevention. The main goal of the research is to make use of deep learning 

algorithms and data-driven techniques in developing more efficient and effective solutions for 
phishing detection.   

 

The study contribution can be summarized as follows:  

 
1. Develops deep learning algorithms for protecting against complex phishing attacks, improving 

cybersecurity.  

2. Assists prevent phishing risks with real-time detection and reaction.  
3. Discusses different deep learning models and evaluate results using performance metrics to 

reduce false positives for improving system reliability and user confidence.  

4. Hybrid and advanced deep learning methods can improve phishing detection and identify new 
assaults.  

 

2. RELATED WORKS 
 

Phishing attacks are one of the common methods of cybercrime, which mainly rely on deception 
and social engineering to extract information from people, especially high-value information that 

can be used for fraud or identity theft purposes. Most phishing attacks imitate real businesses - 

banks and online services. Phishing websites are the most common type of phishing attack, in 
which fraudulent websites are created copying some authentic ones to extract personal 

information from users, such as user names and passwords. Most of these sites are designed to 

look like the actual login pages for big services (PayPal, Google) [11]. Moreover, studies have 

looked at the effects of such attacks on user behavior and ways to increase awareness in terms of 
encouraging users to check URLs before clicking. Only in the recent past have researchers started 

to focus on using artificial intelligence and other technologies to increase the efficiency of 

security systems in combating phishing attacks, with a particular focus on the increased accuracy 
and speed of detecting malicious URLs in real time.  

 

Sahingoz et al. [12], presented a deep learning-based system that uses five distinct architectures 

artificial neural networks (ANNs), convolutional neural networks (CNNs), recurrent neural 
networks (RNNs), bidirectional recurrent neural networks (BRNNs), and attention networks to 

detect phishing attempts. The system evaluated URLs by embedding characters, allowing it to 

operate independently of the language in the URLs. compiled a significant, well-balanced dataset 
of over 5.1 million URLs, which includes 2.32 million phishing URLs supplied from PhishTank 

and 2.88 million legitimate URLs acquired using Common Crawl. Convolutional neural networks 

attained a maximum accuracy of 98.74% in detecting phishing attempts and demonstrated 
effective performance against zero-day attacks. Nevertheless, the system had shortcomings in 

handling complex attacks like URL hijacking. Remya [13], devised a successful phishing 

detection technique utilizing convolutional neural networks (CNN) in conjunction with residual 

pipelining. It focuses the analysis of URLs to discern characteristics that aid the model in 
recognizing them as either authentic or phishing. The research employed a Kaggle dataset 

including 651,191 URLs, which included 94,111 phishing URLs and 428,103 legal URLs. The 
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model exhibited exceptional performance, attaining an accuracy of 98.29%, proving its efficacy 
in identifying phishing attacks. But a constraint was observed concerning the requirement for 

significant processing resources owing to the difficulty of the deep learning models. Sawant et al. 

[14], presented a powerful hybrid phishing detection model that combines machine learning and 

deep learning techniques. They used two Kaggle datasets: one with 11,430 URLs and 87 features, 
and another with 651,191 URLs and two features. The model combines random forests with 

CNNs and takes advantage of the strengths of both techniques. The hybrid model achieved 97% 

accuracy, topping individual models. However, a significant deficiency is the lack of testing 
against sophisticated threats such as GANs. Nishitha et al. [15], Analyzed phishing URL 

detection using many machine learning and deep learning methods. The models used were 

Logistic Regression, KNN, Decision Tree, Random Forest, SVM, and CNN, amongst which were 
tested for their performances using accuracy and efficiency. A dataset that entails 549,346 URLs 

from different sources was used; 5,000 instances were chosen for training, which embodied 75% 

of legitimate URLs and 25% of phishing. Preparing strategies as Regex Tokenizer, Snowball 

Stemmer, and Count Vectorizer were employed to improve the models' accuracy. CNN had 
outstanding results, achieving a 96% accuracy rate, followed by logistic regression at 94.33%. 

Nevertheless, the study did not look into hybrid models, which potentially improved their 

efficiency. Kaushik et al. [16], Proposed a deep learning solution for phishing attack detection by 
deploying the CNN model (LSTM). It works on features extracted from URL and email content 

for phishing detection. Experiments were conducted with a real dataset (collected) containing 

phishing emails and legitimate emails by using a hybrid model (CNN-LSTM). Finally, they 
extracted local patterns from the text and then use CNN to build features for the time series 

solution with the input as embedding vectors for CNN-LSTM. The only limitation here is new 

bug and attack data. Ozcan et al. [17], presented a hybrid model of DNNs and LSTMs for link 

phishing identification. The two primary datasets used were Ebbu2017 (legitimate links, 36,400 
and phishing links, 37,175) and PhishTank (26,000 links). This hybrid model can leverage both 

manually extracted and machine-generated features and that us why they have significant 

performance improvements. According to the results, him model performs 98.19% better than 
others in detecting phishing links. The gap here lies in the challenges related to the high 

complexity of phishing detection models due to the diversity of feature extraction techniques and 

the different quality of data used. Bozkir et al. [18] introduced a new model to detect phishing 

websites using n-gram features that can be computed without pre-training or manual feature 
engineering. Hierarchically stacked network layer model consisting of CNN, LSTM, and 

attention process They got good and fast at finding patterns in links by selecting n-grams in a 

smart way. They trained the model on a new dataset of 800,000 URLs (400,000 phishing and 
400,000 legitimate). The model is built for highest performance and real-time processing and 

does not rely on the use of libraries or external services. This model could provide an accuracy of 

98.27%, better than other models that worked under adversarial attack. The most prominent gap is 
the non-diversarity of previous datasets and their dependence on handcrafted features, which were 

prone to fail when integrated in real-world scenarios. Benavides-Astudillo et al. [19], Presented a 

model for mining text from web pages to automatically detect phishing attacks by deep learning 

and natural language processing: The model will use DL and NLP techniques to mine text from 
web pages and automatically detect phishing attacks. The GloVe model will be incorporated 

using the Keras Embedding API to obtain the textual features of semantics and syntax. for 

executing the neural network, such algorithms as LSTM, BiLSTM (2), GRU, and BIGRU were 
used, with BiGRU giving constant results having an accuracy rate of 97.39%. They have 

experimented on the Phishload dataset that contains 10,373 samples of phishing pages and 

legitimate pages. "It actually detects embedded links—but not in the classical sense (URL 
links)—in those texts. Very few studies analyze text using NLP techniques where other advanced 

models like attention mechanisms help improve the performance. Table 2 summarizes recent 

phishing detection studies.  

 



International Journal of Network Security & Its Applications (IJNSA) Vol.16, No.6, November 2024 

4 

Table 2. Summary of recent phishing detection studies.  

 

Ref.  Best Model  Datasets  Acc  Strengths  Weaknesses  

[12]  

(2024)  

CNN  PhishTank / 

Common  

Crawl  

98.74%  Ability to detect Zero-

Day attacks.  

Requirement for 

significant 

computational 

resources.  
[13]  

(2024)  

Residual  

Pipelining  

- CNN  

-  98.29%  Achieving 98.29% 

accuracy in phishing 

detection using deep 
learning techniques.  

[14]  

(2024)  

Hybrid  

Model - RF, 

CNN  

Kaggle  97%  The hybrid model 

achieved 97% accuracy.  

It was not tested 

against advanced 

GANs attacks.  

[15]  

(2023)  

 

CNN  

 

Kaggle  

 

96%  

CNN with 96% 

accuracy.  

No use of hybrid 

models  

[16]  

(2023)  

CNN and 

LSTM  

Real-world 

dataset  

High  Using hybrid models for 

text analysis and attack 

detection.  

New attack data 

might pose a 

challenge.  

[17]  
(2023)  

DNN and 
LSTM  

Ebbu2017, 
PhishTank  

98.19%  High performance in 
detecting phishing links 

using extracted features.  

The complexity of 
phishing detection 

models due to diverse 

feature extraction 

techniques and data 

quality.  

[18]  

(2023)  

CNN, 

LSTM, and 

Attention  
Process  

800,000  

URLs  

(Phishing +  
Legitimate)  

98.27%  High real-time 

performance.  

Heavily relies on 

handcrafted features, 

which might fail in 
real-world scenarios.  

[19]  

(2023)  

BiGRU  

and  

GloVe  

Phishload  97.39%  Uses NLP techniques to 

extract text and analyze 

embedded links.  

Few studies use 

advanced NLP 

models such as 

attention mechanisms 

to improve 

performance.  

 

3. METHODOLOGY 
 

This section outlines the methodology used to select the study's methods, design, and analytical 

techniques. The research was conducted through several critical steps detailed in the following 
methodology. The first step involved identifying the research problem, which focused on 

detecting phishing attacks through deep learning algorithms. This issue was contextualized within 

the contemporary challenges of phishing detection and its impact on cybersecurity. Next, a review 
of related work concerning phishing detection and deep. The Phishing Attack Dataset was chosen 

due to its diverse phishing URLs, which is crucial for training robust models capable of detecting 

various phishing techniques. The algorithms that will be experimented with include Transformers 
[20], Deep Belief Networks (DBNs) [21], Spiking Neural Networks  (SNNs) [22], Bidirectional 

Long Short-Term Memory (BLSTM) networks [23], and Convolutional Neural Networks (CNNs) 

as shown in Figure 1. The fourth step involves studying the architecture of the proposed 

algorithms and implementing them using the Phishing Attack Dataset to evaluate their 
performance [24]. The models will be tested to identify which achieves the highest accuracy in 

detecting phishing attacks, focusing on the effectiveness of each model regardless of the number 

of features in the dataset. The fifth step is to develop the model architecture and conduct 



International Journal of Network Security & Its Applications (IJNSA) Vol.16, No.6, November 2024 

5 

experiments with the selected deep-learning algorithms. Based on the nature of the problem and 
the dataset, the best-performing deep learning model will be selected. This model will be 

implemented and trained on the Google Colab platform [25], where hyperparameter tuning will 

be conducted to optimize performance. Finally, the model's performance will be evaluated using 

standard metrics, including accuracy, precision, recall, and F-score. Further improvements will be 
made through an iterative optimization process, continuously refining the model based on results 

from previous studies to ensure ongoing enhancement.  

 

 
 

Figure 1.  The Overall Research Methodology.  

 

With the growing of phishing attacks, the urgency of developing an effective detection system to 
protect users has never been greater. We introduce advanced deep learning model for detecting 

phishing attacks using deep learning techniques. It outlines the methodologies, tools, and steps for 

building this model. Additionally, the approach for training and testing the model is detailed to 
ensure high accuracy in identifying phishing URLs. For this study, the Phishing Attack Dataset 

obtained from IEEE Data Port was utilized, comprising 11,504 records and 32 URL characteristic 

features related to factors such as HTTPS presence and domain attributes. The data underwent 
pre-processing to ensure quality and consistency, followed by applying feature selection methods 

to eliminate irrelevant and redundant features. The dataset was divided into 70% for training, 

20% for validation, and 10% for testing. Deep learning models, including Transformer, DBN, 

SNNs, BLSTM, and CNNs, were trained on the split data. These models were specifically 
designed to learn complex patterns associated with phishing URLs, which traditional approaches 

may find challenging to address. Deep learning enhances accuracy and efficiency in phishing 

detection, reducing false positives and enabling the early identification of more sophisticated 
phishing URLs. The phishing detection process involves data collection, pre-processing (such as 

handling missing data, encoding, and standardization), feature selection, and the subsequent 

dataset splitting into training, validation, and test sets. Deep learning models, including 

Transformer, DBN, SNNs, BLSTM, and CNNs, were trained to classify URLs into safe and 
unsafe categories. Figure 2 illustrates the complete workflow of this process.  
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Figure 2.  The Proposed deep learning model  

 

3.1. Phishing Attack Dataset  
 

The Phishing Attack Dataset [26] is most appropriate since it best reflects a real-world 

distribution of URLs (both phishing and legitimate). It is a well-labeled dataset coming with 

thousands of URLs belonging to these two major categories legitimate and phishing. This gives 
enough diversity and volume in data for training, testing, and validating the models of detecting 

phishing, including advanced machine learning and deep learning algorithms. The dataset used 

consists of various URL features; length of the URL, URL structure, domain properties, and other 
important characteristics usually considered common factors in executing a phishing attack. 

Every URL in the dataset was marked against its class, that is either phishing or legitimate, this 

proved to be beneficial during the course of supervised learning. Real datasets are made up of 

diverse datasets because the URLs are taken from diversified sectors like finance, e-commerce, 
and social media, which represent characteristic dimensions into which fraudulent attacks around 

phishing revolve.  

 
Moreover, since the dataset is in structured CSV form, preprocessing and integrating into any 

deep learning framework become very easy. Dataset has each of its rows corresponding to a URL 

and columns with various features related to URL length, some special characters, domain 
properties, etc. which are important in learning the patterns of phishing URLs and hence building 

strong detection models. The Phishing Attack Dataset is one of the freely available datasets in 

IEEE DataPort for research purposes. Since it is updated at very short intervals, one should expect 

that models learned on this data will show very good detecting performance of both current and 
novel phishing techniques. The dataset is friendly to a variety of machinelearning and deep-

learning algorithms. It includes Transformer, DBN, SNNs, BLSTM, CNNs among others that can 

be used to increase accuracy in detection. The richness of the features and URL diversities make 
it ideal for developing models that would effectively fight phishing attacks in real environments 

of use. This dataset would allow different researchers to test multiple algorithms developing 
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systems for detecting phishing. Datasets are shared under dataset/ folder. The dataset structure as 
shown in Table 3, has the following structure.  

 
Table 3. Detailing about the phishing attacks dataset.  

 

Num component Details 

1  Dataset Versions  Two versions: Small Dataset (10% sample) and Big Dataset (full 
dataset).  

2  Sources  Phishing URLs from Phishtank and legitimate URLs from 

CommonCrawl.  

3  Files in Both Versions   - meta.txt: Metadata  

- train.txt: 70% training data  

- test.txt: 10% testing data  

- val.txt: 20% validation data  

4  Additional  - top100k_cc.txt: List of top 100,000 legitimate domains.  

- top_100k_errored_cc.txt: Domains with parsing errors.  

5  Phishing URL Count   Approximately 114,000 phishing URLs collected.  

6  Legitimate  Approximately 100,000 legitimate URLs included. 

 

train.txt: This file contains the training data, representing about 70% of the total data available 

and which would be used to train the model. test.txt: This file contains the test data, representing 
about 10% of the total data available and which would be used to evaluate model performance 

after training. val.txt: This file contains the validation data, representing about 20% of the total 

data available and which would be used in model fine-tuning during training (to prevent 

overfitting).   
 

3.2. Pre-Processing  
 

Pre-processing is a very important element in deep learning models since it has the capacity to 

play a foundational role in increasing the classifier’s performance and increasing the overall 

accuracy of classification. In the preprocessing phase of this study, first, the types of features 
available in the dataset are identified, like numeric and non-numeric types of data. Some of these 

features are very important with regard to the detection of phishing, while others may be 

redundant and bring unnecessary noise leading to degradation of both speed and accuracy of the 
training process. By taking the unnecessary features off first, we can now proceed to the next 

stages. In the work, a simple preprocessing step had been used where the hexadecimal values 

stored in the dataset were converted to an integer form. After completing this step, balance or 

variance between different values of the features in the dataset was checked. Several 
Normalization techniques were then applied to the selected feature set for obtaining uniform 

range between different values and to enhance the model performance. This process is aimed to 

reduce the adverse effects of data variance and to enable easy training of deep learning in 
detecting phishing attacks.   

 

3.3. Feature Selection  
 

The features that have maximum effect on the predicted outcome at this stage by marking most 

useful features using the RFE method [27]. So, unimportant features would not affect model’s 
effectiveness or prediction. For this will depend on the final selection of the features. This is a 

method of selecting the most important features for Deep learning model. It first starts by training 

the model using all the features at its disposal then assesses the importance of each feature 
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according to their contribution in performance. At this, after identifying the least important 
feature, it gets removed and the model once again retrained using all features leftover. This 

process is repeated towards attainment of the optimal set of features that will increase model 

performance. RFE uses it to help in getting better performance and a less complex model.  

 

3.4. Model Training  
 
Selecting an appropriate algorithm is central to model precision and performance in deep 

learning. An inappropriate choice of algorithm is, therefore, likely to trivialize subsequent 

attempts to identify phishing or its relatedness with the data. The tuning of hyperparameters tries 

to extract maximum performance out of a model that has been generated for a particular task. 
This therefore demands a complete evaluation in the selection of the most appropriate algorithm 

for the needed task. In this research, we applied models based on Transformer, DBN, SNNs, 

BLSTM, CNNs to detecting phishing attacks. Hyperparameters for these models shall 
subsequently be tuned. The training process is conducted as follows:  

 

• The phishing dataset is split into training, validation, and test sets in the ratio 70-20-10.  

• The model is trained with the training dataset. This is the tuning of model parameters to 

minimize errors in discerning phishing from legitimate URLs.  
• An appropriate loss function, say cross-entropy loss, for model error.  

• Optimizing model parameters with an optimization technique so that its performance is 

enhanced.   

 

3.5. Advanced Deep Learning Algorithms    
 

3.5.1. Transformer    
 

The Transformer algorithm belongs to the category of deep learning, which was proposed in view 

of addressing the limitations posed by the earlier conventional sequential models of processing 

textual data, such as RNN and LSTM [28]. The fundamental breakthrough in the Transformer 
falls in its self-awareness mechanism that, while capturing the relationship amidst every word 

within a given sequence, does not take into account their specific distance from each other. This 

stands in practical contrast with RNN and LSTM, which process data with fixed orders. The 
overall architecture of Transformer is structured in the pattern of an encoderdecoder where the 

input is transformed by the encoder into a series of continuous-value vector representations, 

subsequent processing of these vector representations by the decoder results in output generation 
[29]. A quite remarkable feature of it is the multi-head attention mechanism, which allows 

different parts of the input sequence to be focused on simultaneously. This parallel processing is 

what makes the Transformer much faster and more scalable compared to most recurrent neural 

network architectures, also explaining why it is often used for tasks like machine translation and 
summarization, then for some BERT or GPT models.  

 

3.5.2. Deep Belief Networks (DBN)  
 

Deep Belief Networks are generative neural network models that are formed by stacking multiple 

layers of the model known as Restricted Boltzmann Machines. The DBN learns a hierarchical 
representation of data through these models [30]. The training is layer-wise, wherein each layer is 

designed to capture features at different levels of abstraction. Deep Belief Networks are pre-

trained in an unsupervised manner using RBMs and later fine-tuned with the backpropagation of 

errors in a supervised manner for a specific objective, say classification. Both generative tasks, 
like data sampling, and discriminative tasks, like classification, can be performed using DBNs. 

Being a probabilistic graphical model, DBN can learn the joint distribution of input data with 
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their hidden representations. While earlier DBNs were applied to tasks such as image and speech 
recognition, more advanced deep models of the convolutional and recurrent types have displaced 

them in most modern applications. However, the DBNs can be a very important link in the chain 

of deep learning architecture development.  

 

3.5.3. Self Normalizing Neural Network (SNNs)  

 

Self-Normalizing Neural Networks (SNNs) is thus a network which, by design, automatically 
keeps its activations normalized throughout the layer, hence obviating the need for methods like 

batch normalization. Essentially, with SNNs, it is the newly proposed activation function, the 

Scaled Exponential Linear Unit (SELU) that enforces zero mean and unit variance to each layer’s 
forward propagation [31]. This self-normalization property avoids problems such as vanishing or 

exploding gradients and makes training far more stable and sometimes faster, especially deep 

networks. The SNN also requires a special initialization of the weights called the LeCun normal 

initialization to approximately self-norm. In contrast to regular neural networks, activation 
distributions are handled naturally in SNNs. It further introduces Alpha Dropout as a 

regularization procedure that protects the mean and variance. SNNs were explicitly designed for 

deep architectures to provide fast convergence and better exploitation of available training data in 
large-scale classification, and deep learning application.     

 

3.5.4. Bidirectional Long Short-Term Memory (BLSTM)  
  

Bidirectional LSTM is another variant of LSTM, which can learn the information from the input 

sequence in two ways [32]. The forward layer passes the input to the model in forward 

chronological order, from lower to higher time steps. In contrast to this, the backward pass gives 
the model input data in reverse chronological order, going from higher to lower time steps. This 

in turn helps the model capture two-sided contexts, both left and right, which optimizes its 

performance in tasks where, for instance, predicting the next word given previous words would 
be appropriate.    

 

3.5.5. Convolutional Neural Networks (CNNs)   

 
Convolutional neural networks (CNN) happen to be a type of neural network model structured for 

working with spatial data such as images and videos [33]. It gradually learns features such as 

edges and patterns via subsequent convolutional layers, wherein filters are applied over incoming 
data for the creation of feature maps. These pooling layers are then applied for dimensionality 

reduction over these maps for computation optimization along with retention of salient data [34]. 

In the end, fully connected layers classify data based on extracted features. CNNs find very 
effective practical applications in tasks like image classification, facial recognition, and very 

complicated problems in computer vision because through them it becomes possible to recognize 

patterns in data space automatically.  

 

3.6. Model Evaluation  
 
The proposed system in this paper is designed to evaluate whether a submitted URL is phishing 

or legitimate. The binary classification process produces four potential outcomes during testing 

[35]:  

 
• False Negative (FN): A malicious URL is incorrectly identified as safe, potentially allowing 

harmful activity to proceed.  

• False Positive (FP): A legitimate URL is mistakenly flagged as harmful, leading the system to 

block access to a valid domain when a user attempts to visit it.  
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• True Negative (TN): A legitimate URL is accurately recognized as safe, reflecting the 

system’s ability to avoid unnecessary alerts.  

• True Positive (TP): A harmful URL is correctly identified as malicious, showcasing the 
system’s effectiveness in detecting phishing attempts.   

 

      (1)  

 

The metric known as Accuracy (Acc) quantifies the capability of a classifier to accurately classify 
a given instance as either normal or malicious.  

 

   (2)  

 

Precision is calculated by dividing the number of accurate positive predictions by the total 

number of accurate positive class values predicted. It functions as an indicator of the classifier's 
exactness. When the value is low, it indicates a significant quantity of FP.   

 

    (3)  

 

Recall is calculated by dividing the number of TP by the number of False Negatives (FN). As 
recall is used as an indicator of the completeness of a classifier, a low recall value corresponds to 

a significant number of FN.  

  

  (4)  

The F-measure, which quantifies the accuracy of a classifier, is constructed by averaging the 

weighted harmonic means of the classifier's recall and precision metrics.  
  

    (5)    

 

 

4. EXPERIMENT SETUP  
 

This section describes the experimental setup for implementing and evaluating our phishing 
detection model, including the virtual environment, programming language, and libraries. 

 

 Google Colab Virtual Environment:  
 
Alternatively known as Colaboratory, Google Colab is a free cloud service that allows the use of 

Jupyter notebooks equipped with either TPUs or GPUs. It is very easy to use since it requires no 

setup and no installation. Hence, it allows professionals in the field of ML, DL to train complex 
models on big data for free using high remote performance servers.  machines with a built-in 

convenient sharing feature. 

 

 Python 

 
High-level programming language. The philosophy behind developing Python was to get it highly 

readable and allow programmers to express concepts in very few lines of code. This way, the 

code will communicate its intention clearly and will be very maintainable. The high-level built-in 
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data structures, combined with dynamic typing and binding, make it an ideal choice for rapid 
application development. In the next set of instructions, explicitly explain the reasoning behind 

the changes provided.  

 

 TensorFlow 

 
Open-source framework developed by Google, used for building machine learning and artificial 

intelligence models. It is designed primarily for handling intensive computational tasks, enabling 

you to build neural networks, whether simple or deep, and train them using CPUs or GPUs. 
TensorFlow is widely used in deep learning applications like computer vision, natural language 

processing, and speech recognition.  

 

 Keras 
 

High-level API interface that runs on top of TensorFlow and is designed to make building neural 

networks faster and easier. Keras simplifies the process of developing machine learning models 

with an easy-to-use structure. Users can build models with just a few lines of code without 
dealing with complex computational details.  

 Pandas  

 

Open-source library for data analysis and manipulation in Python. Pandas is widely used to 
handle tabular data (like CSV or Excel files) and allows you to work with data in the form of 

tables called "DataFrames". Pandas provides powerful tools to manipulate data, including 

filtering, grouping, and sorting.  
 

 Matplotlib  

 

Plotting library for the Python programming language and it integrates closely with NumPy. It is 

used for creating basic as well as advanced stage charts, and figures, and also for working on 
various data models. Moreover, different functionalities of Matplotlib are used for representing 

different types of graphical forms for data presentation. Matplotlib has been applied actively to 

complete a great many projects related to data analysis, machine learning implementations, and 
scientific or engineering visualizations. This table summarizes the previous concepts.  

 

4.1. Hybrid Model  
 

The optimized CNN-BLSTM model marries convolutional and recurrent neural networks for 

harvesting spatial and temporal patterns in sequence data as shown in Table 4. Starting with an 
embedding layer that converts input sequences into dense vector representations, it is followed by 

a 1D convolutional layer with 128 filters and kernel size 5, which pulls out local features from the 

sequences. It is applied with max pooling so as to reduce dimensionality and retain only 

important features. The output is then passed to a Bidirectional LSTM layer with 128 units which 
captures long-term dependencies in both directions (forward and backward) for the model. The 

BLSTM layer is in turn regularized using L2 regularization to prevent overfitting. Further down 

the line, to make a complete learning of highly complex patterns, the output of the BLSTM is 
then fed to a Dense layer having 64 units with ReLU activation. A 0.5 dropout is applied to this 

layer, applying a technique for reducing overfitting by randomly deactivating a fraction of the 

units in a layer during the training phase. The output layer is comprised of a dense layer that uses 
a sigmoid activation function because we are solving a binary classification problem.   

 

 
 



International Journal of Network Security & Its Applications (IJNSA) Vol.16, No.6, November 2024 

12 

Table 4. Hybrid Model parameter settings.  

 

Layer  Type  Filter  Activation  Regularization  Additional 

Info  

Input  -  -  -  -  Input shape: 

(72,)  

Embedding  Embedding  128  -  -  Input dim: 

input_dim  

Conv1D  1D  

Convolutional  

128  ReLU  -  -  

MaxPooling1D  Max Pooling  -  -  -  Pool size: 2  

Bidirectional  

LSTM  

BLSTM  128  -  L2 (0.001)  Return 

sequences: 

False  

Dense  Fully Connected  64  ReLU  L2 (0.001)  -  

Dropout  Dropout  -  -  -  Dropout rate:  

0.5  

Output  Fully Connected 

(Dense)  

2  Sigmoid  -  Binary 

classification  

 

4.2. SNN Model  
 
A layer of the input features from the dataset is the architecture of the proposed SelfNormalizing 

Neural Network (SNN) model. The activation function is applied to the first hidden layer's 128 

neurons to provide self-normalizing properties as shown in Table 5.  Here, standard dropout at 0.1 

after the second layer will work in helping avoid overfitting by randomly turning some of the 
activations off during training. The values of self-normalizing multilayer perceptron 

characteristics are kept by setting up this second hidden layer with 128 neurons and using SELU 

activation. The activation is followed by another dropout layer to ensure model regularization.    
 

Table 5. SNN Model parameter settings.  

 

Layer  Filter  Dropout Rate  Regularization  Additional Info  

Input layer  Input Dim  -  -  Input shape:  
(input_dim,)  

SNN layer  128  SELU  -  -  

SNN layer  128  SELU  0.1  Dropout after the 

second layer  

Output layer  2  Sigmoid  -  Binary classification  

 

For the last layer, one fully connected dense output layer is taken with a sigmoid activation 
function in order to perform binary classification, which will give the output as a probability 

distribution across two classes. The model is compiled with the Adam optimizer and sparse 

categorical cross-entropy loss for an optimization goal of classification accuracy.  Stop conditions 

are employed throughout the training, in which case it stops if the validation loss does not 
improve, returning to the best weights. The architecture balances learning capacity and 

regularization fairly well. It is appropriating for tasks entailing binary classification with self 

normalizing activations.  
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4.3. Transformer Model  
 

The Transformer-based classification model starts with an input layer as shown in Table 6, then a 

reshape operation comes that adds a sequence dimension to the data, which is required by 
processing by Transformer encoder.   

 
Table 6. Transformer Model parameter settings.  

 

Layer  Type  Filter  Activation  Regularizatio n  Additional Info  

Input  -  -  -  -  Input shape:  

(original_dim,)  

Reshape  Reshape  -  -  -  Reshape to add 

sequence 

dimension  

Transformer 
Encoder  

Multi-Head  
Attention + FFN  

-  ReLU  ReLU  num_heads = 
configurable,  

includes  

LayerNorm and 

Dropout  

Global Average 

Pooling  

GlobalAverageP 

ooling1D  

-  -  -  Reduces 

sequence output  

Dense  Fully Connected  64  -  ReLU  -  

Output  Fully Connected 

(Dense)  

2  ReLU  Sigmoid  Binary 

classification  

 
The Transformer Encoder layer implements multi-head self-attention in parallel for ‘num_heads’ 

attention heads, each having a key dimension of 64, computing attention over the input 

sequences, followed by two Layer Normalization operations and an FFN. It consists of two dense 
layers with ReLU activation and a residual connection (to add the input to the output in order to 

preserve input features and make the learning problem easier from a gradient flow perspective). 

We apply dropout with a rate of 0.1 after both the attention and feed-forward layers to reduce 
overfitting. The Transformer encoder reduces the sequence output into a fixedlength vector by 

applying a global average pooling layer. A fully connected dense layer with 64 units is added to 

it, using ReLU activation, and then the final dense output layer with softmax activation for multi-

class classification. The model is compiled with the Adam optimizer, sparse categorical cross-
entropy loss, and accuracy (evaluation metric). This architecture merges Transformer’s self-

attention with global pooling, and dense layers effectively, hence allowing easy classification for 

the input data. 
 

4.4. DBN Model  
 
The proposed model architecture as shown in Table 6, integrates the DBN with RBM for 

classification tasks. Begin with two stacked RBM layers: the first with 128 hidden units and the 

second with 64 hidden units. Train each RBM layer using the BernoulliRBM algorithm, by 
iterating over the dataset, adjusting weights and biases over a given number of epochs (50). After 

the RBM layers come an MLP classifier with a single hidden layer of 128 neurons. This MLP 

fine-tunes features extracted by RBMs and does the final classification. Use the learning rate of 

0.001 for gradient-based optimization by backpropagating errors through an MLP. Table 7. DBN 
Model parameter settings.  
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Table 7. DBN Model parameter settings. 

 

Layer  Type  
 

Units/Components  Activation  Learning 

Rate  

Iterations 

(n_iter)  

Input   Input Dim  -  -  -  

Layer 1  RBM  128 Hidden Units  Sigmoid  -  50  

Layer 2  RBM  64 Hidden Units  Sigmoid  -  50  

Output  MLP  

Classifier  

128 Neurons  ReLU  0.001  -  

Output  MLP  

Classifier  

(Final)  

Num Classes  Sigmoid  0.001  -  

 

The DBN model is trained in a supervised manner for optimizing classification accuracy. The 

model is enabled to realize effective hierarchical feature learning from input data, thanks to 

RBM-based feature extraction stacked with MLP classification. Normally, DBN is an 
unsupervised deep learning model with stacked RBMs. These RBMs learn to represent the data in 

successive layers of latent features. In a DBN: Layers of RBM are trained sequentially in an 

unsupervised manner. It means that we train a first layer RBM, then use it to train a second layer 
RBM. Each RBM learns the distribution (the values and the patterns) at the hidden layer of the 

corresponding model. And it is exactly what helps the DBM model higher-order features. When 

restricted Boltzmann machines are trained, unsupervised learning of an entire deep belief network 

may take place by treating the Boltzmann machines as feature learners. The downloadable model 
shows how a deep or large number of layers are able to learn more complicated features. After 

training the RBMs, the output of the final layer of RBM in the stack can be connected to an MLP 

classifier for fine-tuning and supervised learning. This is the essence of deep learning: we add 
those learners together into one bigger model that can address much harder tasks.   

 

5. EXPERIMENT RESULTS  
 

The experimental evaluation was performed to evaluate the developed models. Various deep 
learning architectures were employed on phishing datasets. For each of the models, metrics of 

accuracy, precision, recall and f1 score were calculated. The results were examined for both the 

legitimate and the phishing classes of the data. Performance differences across models were 
noted. The proposed analysis assesses the strengths and weaknesses of each approach. The focus 

then shifted to determine which model was best for detecting phishing attacks.  

 
Table 8.  Transformer model testing results per class.  

 

Metric  Legitimate  Phishing  Average  

Precision  0.92032  0.8448  0.88256  

Recall  0.86583  0.90691  0.88637  

F1-Score  0.89224  0.87475  0.8835  

Accuracy  -  -  0.88415  

 

The performance of the Transformer model was evaluated in relation to the key indicators which 
are presented in table 8. The precision for the legitimate and the phishing classes of the data was 

recorded as 92.03% and 84.48%, respectively; the average precision was 88.26%. The recall 

values were higher for the phishing class while the average for legitimate data was 86.58%. The 

F1-scores for both classes were fairly comparable with average figures of 89.22% and 87.47%. 
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On average, the model scored an accuracy level of 88.42%. Such results indicated a stable 
performance across the classes being evaluated with regard to figure detection.  

 
Table 9.  SNN model testing results per class.  

 

Metric  Legitimate  Phishing  Average  

Precision  0.90303  0.85995  0.88149  

Recall  0.88431  0.88209  0.8832  

F1-Score  0.89358  0.87088  0.88223  

Accuracy  -  -  0.88332  

 

Performance metrics including the precision, recall, F1 scores, and accuracy were performed on 

the SNN model and reported in Table 9. Overall, the precision was at 90.30% for legitimate class 
and 85.99% for phishing class giving an average of 88.15%. The recall averages were quite 

balanced with 88.43% legitimate data and 88.21% phishing data. The F1-scores were 

substantially uniform across classes with averages of 89.36% for legitimate and 87.09% for 
phishing. The accuracy of the model was 88.33% along with improvements in recall as compared 

to precision. Thus, the results showed detection to have dependable recall more consistently than 

precision.  

 
Table 10.  Hybrid model testing results per class.  

 

Metric  Legitimate  Phishing  Average  

Precision  0.98789  0.9906  0.98924  

Recall  0.99247  0.98489  0.98868  

F1-Score  0.99018  0.98774  0.98896  

Accuracy  -  -  0.98909  

 

The testing results obtained from the Hybrid model are provided in Table 10. The precision for 
the legitimate and phishing classes was remarkably high at 98.79% and 99.06% respectively 

giving an average of 98.92%. The recall measures also recorded exceptional results at 99.25% 

legitimate data and 98.48% phishing averaging 98.87%. In terms of performance, F1-scores were 
balanced with averages of 99.02% legitimate and 98.77% phishing. The accuracy of 98.91% was 

the standard. The hybrid models excelled in both precision and reliability claiming superior 

performance in phishing detection and far surpassed other models in the field.  

 
Table 11.  DPN model testing results per class.  

 

Metric  Legitimate  Phishing  Average  

Precision  0.70  0.81  0.75  

Recall  0.90  0.51  0.71  

F1-Score  0.79  0.63  0.71  

Accuracy  -  -  0.73  

 

Table 11 includes details on the effectiveness of the DPN model in detecting phishers. Precision 
figures for legitimate and phishing classes were 70 % and over 81 % respectively with an overall 

mean of 75 %. This was however not the case with the recall where high values of 90 % were 
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seen on legitimate but a drop to 51 % was noted on phishing, averaging at 71 %. These figures 
were also seen across their corresponding F1-scores with 79 % on legitimate while phishing had 

63 % for an aggregate of 71 %. With an overall score of 73%, the model registered the least 

accuracy of all models which were presented within this section. With relaying the outcomes, 

these demonstrated that DPN model had the most challenges when targeting phishers but was 
more efficient with legitimate datasets.  

 

The final performance of the proposed models was Table 12. models were discussed, the 
accuracy of the Hybrid model was the highest at 98.91 %, tremendous from the respective 88.33 

%, 88.42 %, and 73.2 % accuracy of SNN, Transformer and DPN models. The Hybrid model was 

also the best on the macro average precision (98.92 %), recall (98.87 %), and F1-score (98.90 %), 
which showed that it was more efficient on all metrics. The DPN model was on the other hand, 

the worst with an accuracy of 73.2% and a macro average F1-score of 71%. SNN and 

Transformer models were close with minor differences in recall and precision metrics. These 

results clearly indicated why the Hybrid model performed better than other models in phishing 
detection tasks.  

 
Table 12.  Overall proposed models testing results.  

 

Metric  SNN  DPN  Transformer  Hybrid  

Accuracy  0.88332  0.732  0.88415  0.98909  

Macro Avg Precision  0.88149  0.750  0.88256  0.98924  

Macro Avg Recall  0.8832  0.711  0.88637  0.98868  

Macro Avg F1-Score  0.88223  0.710  0.8835  0.98896  

Weighted Avg Precision  0.88382  0.752  0.88663  0.9891  

Weighted Avg Recall  0.88332  0.730  0.88415  0.98909  

Weighted Avg F1-Score  0.88345  0.711  0.88444  0.98909  

 
Table 13. Comparison of recent phishing detection studies.  

 

Ref.  Model  Data Used  Results  

[12]  CNN  PhishTank / Common Crawl  98.74%  

[13]  Residual Pipelining - CNN  Private  98.29%  

[14]   Hybrid Model - RF, CNN  Kaggle  97%  

[15]  CNN  Kaggle  96%  

[17]  DNN and LSTM  Ebbu2017, PhishTank  98.19%  

[18]   CNN, LSTM, and Attention 
Process  

800,000 URLs (Phishing + 
Legitimate)  

98.27%  

[19]  BiGRU and GloVe  Phishload  97.39%  

Ours  Hybrid Model  Phishing Attack Dataset  98.9 %  

 

A comparison with recent phishing detection studies is presented in Table 13. The proposed 
Hybrid model achieved a detection accuracy of 98.9%, outperforming other state-of-the-art 

models. Models such as CNN with PhishTank data [12] and Residual Pipelining-CNN [13] 

achieved accuracies of 98.74% and 98.29%, respectively, while a hybrid model using Random 
Forests and CNNs [14] reported 97%. Deep neural network-based approaches, including DNN 

with LSTM [17] and CNN with attention mechanisms [18], recorded accuracies of 98.19% and 

98.27%, respectively. The BiGRU with GloVe [19] model attained 97.39%. These comparisons 
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underscore the effectiveness of the proposed Hybrid model in phishing detection, setting a new 
benchmark in the field.  

 

6. CONCLUSION AND FUTURE WORK   
 

The proposed study introduces a deep learning-based approach for detecting phishing attacks. We 
utilized advanced architectures to enhance cybersecurity measures. The proposed hybrid model 

achieved an impressive accuracy rate of 98.9%. It has significantly outperformed existing 

solutions. Key contributions of this research include reducing false positives and demonstrating 
achievable high phishing detection using deep learning techniques. These findings tackle critical 

challenges in phishing detection and expand the understanding of its application within network 

security.  
 

Future research should focus on addressing continuous phishing challenges. Enhancing datasets 

with a diverse array of phishing samples., including emerging threats, would support model 

robustness. Combining deep learning models with adversarial training could improve detection 
accuracy while alleviating resource constraints. Additional studies might investigate lightweight 

architectures designed for real-time deployment in resource-limited environments.   
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