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ABSTRACT 
 

The rising complexity of malware threats has raised significant concerns within the antimalware 

community. The rapid evolution of cyber threats, particularly malware, is one of the most dangerous 

cybercrimes for online users due to its fast speed and self-replication. Advanced detection and analysis 

techniques may be required to detect it correctly. Deep learning (DL), a powerful tool in the fight against 

malware, accurately classifies and automates feature extraction. However, the black-box nature of DL 

models prevents them from being used in security-critical applications since they are difficult to 

understand and trust. Explainable AI (XAI) techniques enhance transparency and clarity in model 

decision-making, fostering a deeper understanding and building trust among cybersecurity professionals. 

This work introduces a new approach to identifying the behavior of modern malware through the 

integration of Deep learning combined with heuristics approaches and Explainable AI (XAI), precisely 
Shapley Additive explanations (SHAP),and Local Interpretable Model-agnostic Explanations (LIME).A 

synthetic dataset obtained from Kaggle served to train several models, including CNN, DNN, Random 

Forest, and Decision Trees. The experimental results clearly indicated that the Random Forest model 

achieved the highest accuracy at 69. 3%, whereas the CNN and DNN models delivered similar 

performances, with accuracy rates of 59. 5% and 59. 2%, respectively. Further analysis using SHAP and 

LIME unveiled critical features that influenced the models' decisions, thereby enhancing our 

understanding of AI-driven security solutions. This study effectively bridges the gap between performance 

and interpretability in the field of malware detection. 

 

KEYWORDS 
 

Malware detection, Deep learning, Explainable AI, Cybersecurity, Model interpretability, Artificial 

intelligence. 
 

1. INTRODUCTION 
 
In today's digital age, where technology permeates every facet of our lives, cybersecurity has 

emerged as a paramount concern. This is largely due to the ongoing evolution of computing 

technologies and our growing dependence on the Internet. Societies heavily depend on critical 
infrastructure such as the Internet, making them vulnerable to risks that impact the availability, 

security, and reliability of IT resources. As cyber threats grow in complexity and diversity, it is 

essential to enhance cybersecurity measures to protect this vital infrastructure.   

 
Rapid technological advancements have led to increasingly sophisticated cyberattacks, with 

malware becoming more powerful and capable of outpacing traditional defence mechanisms. 

This has resulted in an unprecedented rise in cybercrime. Over the past decade, malware has 
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evolved significantly, prompting researchers to explore intelligent methods, such as machine 
learning (ML) and deep learning (DL), to detect malicious software with high accuracy. 

However, these methods frequently fall short in terms of transparency regarding their decision-

making processes. This highlights the need for the development of artificial intelligence (AI) 

models that are both interpretable and explainable, in order to enhance their reliability and 

encourage wider adoption[1]. 
 
In recent years, machine learning has expanded rapidly across various fields, including 

cybersecurity, healthcare, and finance. While ML-based malware detection methods have 

demonstrated strong performance, they often suffer from a lack of transparency and the inability 

to explain their decisions. This limitation poses a significant challenge in malware analysis, as 
security analysts must understand the reasoning behind detections to validate and disseminate 

information effectively. To address this issue, Explainable AI (XAI) provides solutions that 

maintain high accuracy while offering clear and understandable justifications for decision-

making [2]. 
 

Modern malware employs advanced evasion mechanisms, making it increasingly difficult to 
detect and analyse using conventional techniques such as static and signature-based analysis. 

These traditional methods face several challenges, including: 

 
Lack of transparency: Files are frequently labelled as malicious without a clear understanding of 

the rationale behind such classification. 

 
High false alarm rate: Incorrect interpretation of certain suspicious activities leads to frequent 

false positives. 

 

Limited adaptability: Traditional approaches struggle to adjust to emerging threats, reducing their 
effectiveness against evolving malware variants. 

 

As a result, organizations face significant difficulties in responding to cyber threats in real-time, 
leading to financial losses, data breaches, and operational disruptions. Moreover, reliance on 

outdated detection techniques is insufficient to address malware variations and zero-day attacks 

effectively. 

 
To address this escalating threat, it is crucial to develop intelligent and autonomous cybersecurity 

solutions that utilize advanced artificial intelligence (AI) technologies. Specifically, dynamic 

deep learning models, when combined with heuristic approaches, can offer a robust and efficient 
framework for detecting, analysing, and mitigating modern malware. 

 

This study seeks to address a significant gap by combining Explainable AI (XAI) techniques with 
both machine learning and deep learning models. This integration aims to improve the 

transparency and effectiveness of malware detection systems. 

 
This research aims to develop an intelligent malware detection system using deep learning and 

machine learning techniques, integrating Explainable AI (XAI) to enhance transparency. The 
study evaluates CNN, DNN, Random Forest, and Decision Tree models, comparing their 

performance in terms of accuracy and interpretability. It also addresses dataset imbalances using 

SMOTE and assesses the impact of key features using SHAP and LIME. The research contributes 
by improving model interpretability, reducing false positives, and providing insights into AI-

driven malware detection strategies. Ultimately, the study will test and evaluate the model using 
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synthetic data to ensure its ability to generalize effectively and deliver superior performance 
compared to conventional methods in the realm of malware detection. 

 

This research significantly advances the malware detection and mitigation field by introducing an 

Explanatory Artificial Intelligence approach that harnesses the power of machine learning and 
deep learning techniques for precise malware classification.By utilizing a synthetic malware 

dataset, the study enhances model generalization, enabling effective detection of both known and 

unknown threats. The research also introduces robust data preprocessing techniques, including 
handling missing values and feature selection, to improve model stability and reliability. 

Additionally, it addresses the common challenge of data imbalance in cybersecurity datasets by 

potentially integrating oversampling techniques like SMOTE. The suggested approach integrates 
behavioral analysis with heuristic-based detection, resulting in a more dynamic and adaptable 

security mechanism. This integration ensures real-time identification of evolving malware 

threats, positioning the research as a significant step toward the development of autonomous, 

intelligent malware detection systems.  
 

This research bridges the gap between enhanced detection capabilities and the interpretability of 

cybersecurity systems. It offers a framework for dynamic and explicable malware detection that 
improves threat mitigation efficacy and fosters transparency and confidence in the application of 

AI to vital cybersecurity applications. 

 
The organization of this paper is organized as follows: Section 2 reviews related work, examining 

the role of explainable AI in cybersecurity and existing malware detection methods. Section 3 
details the methodology, including the dataset, feature selection process, and AI models used in 

the proposed malware detection framework. Section 4 presents the experimental results and 

discussion, covering performance evaluation, interpretability analysis, and comparative studies. 
In conclusion, Section 5 wraps up the paper by summarizing the key findings, highlighting the 

contributions, and outlining potential directions for future research. This well-structured approach 

provides a clear roadmap for the study, laying a solid foundation for the subsequent sections. 
 

2. RELATED WORK 
 

Cybersecurity has witnessed tremendous development in recent years thanks to artificial 

intelligence technologies, especially deep learning, and machine learning, which have greatly 
helped in the automatic detection of threats and malware analysis. However, many of these 

systems face the black box problem, making understanding how intelligent models arrive at their 

decisions challenging. This lack of transparency can undermine the confidence of both users and 
researchers in the reliability of the results.Therefore, interpretive artificial intelligence (XAI) has 

emerged as a modern approach to providing transparency and explaining artificial intelligence 

systems' decisions. 

 
This section aims to review previous literature related to: 

-Detect and analyse malware using artificial intelligence 

-The role of interpretive artificial intelligence in enhancing cybersecurity. 

 
2.1. Detect and Analyse Malware Using Artificial Intelligence 

 

Utilizing machine learning methodologies as a significant breakthrough in malware detection has 
resulted in replacing traditional techniques that rely on behavioural characteristics and signatures. 

A study conducted by Gibert et al. [3] indicates thatthe review provided a comprehensive 

approach to classify the methods used to detect malware while highlighting current challenges 
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and emerging research directions. The study explored traditional methods of static and dynamic 
malware analysis, highlighting their inability to keep pace with the diverse and rapidly evolving 

landscape of modern threats. In addition to the issue of "concept drift," which causes models' 

accuracy to deteriorate over time, the most notable difficulties are obfuscation and encryption 

approaches that impede static analysis. According to the study, one of the latest trends is using 
deep learning methods, including convolutional neural networks (CNNs), to evaluate raw data 

more precisely to identify malware. The study also emphasized the significance of integrating 

static and dynamic analysis in hybrid solutions to handle the complexity of sophisticated attacks.  
Shaukat et al. [4] identified and presented comprehensive information on the diverse machine 

learning (ML) and deep learning (DL) techniques commonly used in cybersecurity. Also, they 

provided an extensive systematic review of AI used for many cybersecurity fields, including 
spam detection, intrusion detection, and malware detection. Also, they determined techniques of 

analysing, datasets, AI models foe research papers. Moreover, they identified requirements of 

datasets which includes size, variety and moderns. Thus, they helped investigators to understand 

detection of malware field and recent directions and development and for research which that 
explored by the science community to address the issue.   

 

Or-Meir et al. [5] They identified dynamic analysis as more robust than static analysis and 
systematically reviewed dynamic malware analysis. Their work offers a comprehensive overview 

of malware, including classifications based on type, behavior, and privileges.Also, they 

comprehensively covered anti-analysis techniques used by evasive malware.  In addition, they 
widely focused on dynamic analysis, tools and techniques that aimed to detect, analyse, classify 

and the malware. 

 
Aslan and Samet have provided a review of malware classification approaches. In their study, 

they cover the challenges with sophisticated and evasive malware and identify a number of 

features and malware repositories. Their review primarily emphasizes the diverse approaches to 
malware detection, which encompass signature-based methods, behavior-based techniques, deep 

learning strategies, and cloud-based solutions, among others.They detail the results and features 

of the various detection approaches [6].  

 
Caviglione et al. [7] They conducted a systematic review focusing on the evolution of malware, 

information hiding, malware detection, and the application of artificial intelligence. Their 
analysis highlights recent advancements in malware types and techniques and the progression of 

obfuscation and evasion strategies. It is intriguing to observe that while early malware relied on 

encryption and code obfuscation to evade static signature detection, contemporary malware now 
utilizes increasingly sophisticated methods, such as polymorphism and anti-analysis techniques. 

This complexity of modern malware presents a significant challenge and keeps the field of 

cybersecurity and information technology engaging. Various steganographic techniques, such as 

covered techniques, are techniques like leveraging genuine TCP/IP protocols to create secret 
network channels and concealing harmful content in harmless files. Also, they reviewed the 

evolution of malware detection from signature-based to behaviour and heuristic methods to AI 

models. Additionally, they surveyed machine learning (ML) and deep learning (DL) models, 
highlighting innovative approaches such as blockchain-based malware detection and transfer 

learning in AI. Their primary objective was to offer a comprehensive overview of various 

domains, particularly exploring the evolution of malware and the detection techniques that 
security researchers have implemented. 

 

Bahador et al. [8] presented an innovative system known as HLMD for malware detection and 

classification based on behavioural analysis at the hardware level. The system relied on hardware 
performance counters (HPCs) to record operational software events, such as cache misses and 

executed instructions. Behavioural signatures are extracted from this data using singular value 
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decomposition (SVD) to create behavioural malware models. The HLMD algorithm follows a 
two-stage matching strategy to identify malware quickly and efficiently while reducing the 

computational complexity to linear time. Experimental results on a malware and healthy software 

dataset showed that the system achieved an accuracy of 95.19%, a recall rate of 89.96%, and an 

F-measure of 92.50%. The study indicated the effectiveness of behavioural analysis at the 
hardware level in improving malware detection while reducing resource consumption compared 

to traditional methods. 

 
Rathore et al. [9] Explored the application of deep learning and machine learning techniques for 

detecting malware. The researchers examined the relative frequency of opcodes to extract 

characteristics that differentiated harmful files from healthy ones. Virus Total and the Malicia 
project were the sources used to compile a dataset that included 2,819 healthy files and 11,688 

malicious ones. ADASYN was used to solve the issue of data imbalance, while techniques like 

Variance Threshold and Auto-Encoders were used to minimize dimensionality. The findings 

demonstrated that, with an accuracy of 99.78%, the Random Forest algorithm performed better 
than deep neural networks. According to the study, deep learning methods might be overkill for 

this dataset. So, the Random Forest algorithm was suggested to improve malware detection. They 

explained that more advanced deep learning methods such as recurrent neural networks (RNN) 
should be investigated for future developments. 

 

Calik Bayazit et al. [10] studied malware detection methods in Android systems using traditional 
machine-learning algorithms. The study focused on reviewing static and dynamic analysis 

methods for malware detection. The static analysis looks at a program's permissions and source 

code without running it. In contrast, dynamic analysis watches how the application behaves while 

operating, including network traffic and API requests. A variety of machine learning algorithms, 
including Decision Trees (DT), K-nearest neighbors (KNN), Random Forests (RF), and naive 

bayes (NB), as well as models based on artificial neural networks, were examined and evaluated. 

The results showed that the effectiveness of the Random Forest algorithm, which achieved an 
accuracy of up to 94.40% in malware detection. The deep learning-based “Droid-NNet” model 

outperformed it with an accuracy of 98.81%. The study recommended developing malware 

detection systems by combining static and dynamic analysis to improve performance. It also 

emphasized improving training data to include diverse malicious behaviour patterns. 
 

S. Agarwal et al. [11] proposed the SAAT multi-layered system, which utilizes a structured 

approach to data packet analysis. The first layer employs the K-Nearest Neighbors (KNN) 
algorithm to process incoming data packets. The second layer, incorporating Convolutional 

Neural Networks (CNN) and Long Short-Term Memory (LSTM), performs an in-depth analysis 

of the data and independently records the results. If both layers classify a packet as hazardous, it 
is discarded; conversely, if both layers classify it as clean, it is allowed to pass. However, if the 

classifications from the first two layers conflict, the packet is forwarded to the third layer for 

further assessment. 

 
The third layer employs Random Forest classification to resolve discrepancies and make a final 

determination. Experimental results indicate that the SAAT system achieves a 97.83% detection 

rate for Denial-of-Service (DoS) attacks, demonstrating high accuracy. Furthermore, if a 
significant volume of malicious activity is detected, the system not only blocks malicious packets 

but also initiates network termination protocols to prevent further attacks. 
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2.2. The Role of Interpretive Artificial Intelligence in Enhancing Cybersecurity 

 

The study by Kinkead et al. [12] They introduced an innovative CNN-based approach aimed at 

pinpointing specific segments of opcode sequences that are suspected to harbor malicious 
components. The primary goal was to investigate and compare the similarities between the 

locations of malicious opcode sequences detected by the CNN and those highlighted as 

significant by LIME. The DREBIN dataset, a benchmark for Android malware detection that 
gathers 5,560 dangerous apps from various malware families, is used in their research. Findings 

demonstrated the model's remarkable performance with the DREBIN dataset, with an accuracy of 

roughly 0.98. Further analysis revealed how both CNN and LIME identify key locations across 
all samples within each malware family. 

 

Aryal et al. [13] Their goal was to improve the effectiveness of adversarial evasion attacks 

targeting malware detectors. They concentrated on Windows PE malware and employed SHAP 
values to pinpoint the most significant areas within malware files that impact the detection 

decisions made by a CNN-based malware detector known as MalConv. This method's 

justification is that by figuring out which areas of the malware file most influence the detector's 
judgment, they can deliberately introduce disruptions to avoid detection more successfully. To 

accomplish this, they compute the SHAP values for every byte in the malware files by utilizing 

the Deep Explainer module, which has been tailored to function with the embedding layer in 

MalConv. Relating these SHAP values to various PE file structure sections is easier since they 
show how each byte influences the malware detector's conclusion. Combining these values will 

make finding the areas with the most significant influence more effortless. Utilizing this 

information, the researchers strategically introduced adversarial perturbations into specific areas, 
targeting both comprehensive sections and more detailed subsections. Their analysis was based 

on a dataset of 6,000 Windows PE malware samples, and the findings revealed that perturbations 

informed by SHAP values markedly enhanced the success rate of evasion attacks compared to 
random perturbations. Notably, significant evasion rates were observed when perturbations were 

applied to regions identified with high SHAP values. This confirmed that their explainability-

guided approach's usefulness in generating adversarial samples that maintain the malware's 

functionality while escaping detection. 
 

Melis et al. [14] examined the effectiveness of gradient-based attribution techniques in 

discovering crucial features necessary for gaining a deeper understanding of a classifier's 
decision-making process. Their goal was to show how important these traits are for developing 

more robust algorithms. They examined the relationship between adversarial resilience and 

explanatory techniques, examining their connections. 
 

Iadarola et al. [15] proposed an explainable deep-learning architecture for mobile malware 

detection. This method converts applications into images, which feeds into an explainable deep 

learning model that can identify and categorize the family of Android malware. They used the 
Grad-CAM explainability method to show how to select explanatory strategies that improve 

classification performance. They provided heatmaps that providing visual insights into the 

model's logic, improving interpretability and making the reasoning behind the predictions easier 
to understand. Additionally, the automatic analysis of these heatmaps makes it easier for analysts 

to debug the design without having a thorough understanding of the architecture of the system. 

They asserted that the accuracy and transparency of their model have greatly improved. 

 

2.3. Research Contribution of the Current Study 
 
Although there has been considerable advancement in the application of AI for malware 

detection, previous studies have primarily concentrated on enhancing accuracy while often 
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neglecting the importance of decision interpretability. In this research, we seek to bridge this gap 
by integrating XAI techniques (SHAP and LIME) with deep learning models such as CNN and 

DNN, allowing for a deeper understanding of model decisions. This study also analyzes the 

impact of synthetic data used in training and compares the performance of traditional AI models 

with interpretable models. Thus, this research contributes to improving the transparency and 
efficiency of malware detection systems, enhancing the reliability of AI applications in 

cybersecurity. 

 

3. METHODOLOGY 
 

In today’s digital landscape, our security and privacy are increasingly jeopardized by malware 

programs designed to steal sensitive information and disrupt our systems, among other threats. 

Traditional malware detection methods, such as signature-based approaches and statistical 
analysis, have proven ineffective and time-consuming. In contrast, recent advancements in data-

driven Artificial Intelligence (AI), mainly through Machine Learning (ML) and Deep Learning 

(DL) techniques, have successfully utilized the behavioral patterns of malware—specifically 
through API calls—yielding promising results. However, the black-box nature of these AI 

models often results in a lack of transparency, hindering their applicability in real-world 

situations. To address this issue, integrating Explainable Artificial Intelligence (XAI) 
methodologies and tools into AI-driven malware detection processes can enhance the clarity and 

comprehensibility of the outcomes [16]. 
 
In this section, we will provide a detailed description of the methods and approaches used in this 

research, including data collection and preparation, the use of different analysis techniques to 

classify malware data, evaluation metrics, and interpretation techniques used to better understand 
the model predictions. 

 
3.1. Dataset  
 
The dataset used in this study is CICAndMal2017 a synthetic malware dataset obtained from 

Kaggle, designed to simulate real-world malware detection scenarios. It consists of 100,000 

instances with 61 numerical features, along with a categorical label indicating whether a file is 

malicious or benign. These features represent various static and dynamic properties of executable 
files, such as memory usage, execution time, and network activity [17]. 

 

3.1.1. Dataset Description   
 

The dataset employed in this study is a synthetic malware dataset consisting of 100,000 instances 

of 61 features, all of which are numerical, except for one categorical feature (Label), an integer 
representing the classification (malware or benign). It has been designed to simulate real-world 

malware detection scenarios by incorporating a diverse set of attributes that characterize both 

benign and malicious software samples.  The dataset comprises numerical and categorical 

features, reflecting various static and dynamic properties of executable files. Most numerical 
features range between 0 and 100, suggesting normalized or scaled values. Categorical features 

include attributes like file kinds, authorization levels, and API call categories. Numerical 

characteristics record behavioural aspects like memory usage, execution time, and network 
activity. The dataset contains network flow characteristics, including port numbers, protocol 

types, packet sizes, and timing-related features. These characteristics offer a thorough depiction 

of file behaviours, facilitating a thorough examination of malware detection systems. 
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3.1.2. Limitations Of Synthetic Data 
 

Synthetic datasets offer a controlled setting for assessing AI models, but they come with notable 

limitations: 
 

- Insufficient Real-World Complexity: Synthetic data often fails to represent the intricate 

behaviors of polymorphic or metamorphic malware fully. 

- Risk of Feature Bias: These datasets may include engineered feature distributions that do 
not effectively translate to actual threats encountered in the wild. 

- Limited Adaptability: AI models trained solely on synthetic data may have difficulty 

generalizing when implemented in real-time malware detection systems. 
 

Future efforts will focus on validating the models against real-world malware datasets to 

overcome these challenges, ensuring their effectiveness and generalizability. 

 

3.2. Data Analysis And Exploration    
 
This stage consists of the following steps:  

 

1. Initial Dataset Inspection   

 
-  Identify class distribution: 30.4% malicious, 69.6% benign.   

- Recognize class imbalance and consider mitigation techniques (oversampling, under 
sampling, cost-sensitive learning).   

 

2. Correlation Analysis  

 
-  Compute Pearson correlation matrix to assess feature relationships.   

-  Identify moderate correlations among packet length and sub flow features, indicating 

their   significance in classification.   
-  Note weak correlations between source/destination ports and other numerical attributes, 

signifying their independent variability.   

-  Ensure minimal multicollinearity among features for robust model performance.   
 

3. Statistical Distribution Analysis of Key Features   

 

-  Analyse packet lengths: Detect distinct patterns in malicious traffic.   
-  Evaluate idle mean time: Identify network behaviour anomalies through connection 

timing variability.   

 
4. Class Balance and Outlier Detection  

  

-  Address slight class imbalance using preprocessing techniques for improved model 

generalization.   
-  Perform outlier analysis to detect extreme values in packet length and timing-related 

features, indicating potential attack traffic.   

-  Apply feature selection or transformation techniques to refine dataset quality.   
 

5. Implications for Machine Learning Models  

 
-  Validate dataset structure and preprocessing for machine learning readiness.   

-  Leverage statistical differences in benign vs. malicious samples for classification.   
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-  Mitigate class imbalance and manage outliers to optimize model performance. 
 

3.3. Computational Environment & Tools 
 
This study's implementation and experimentation were conducted using Google Collaboratory 

(Google Colab), a cloud-based Jupyter notebook environment that provides free access to GPU 

and TPU acceleration. Google Colab facilitated the seamless execution of deep learning models, 
eliminating the need for extensive local computational resources while ensuring efficient training 

and evaluation. 

 

Several Python libraries were employed to support different aspects of the research workflow, 
including data preprocessing, model training, evaluation, and interpretability. 

 

3.4. Data Preprocessing 
 

Data preprocessing is a crucial step in ensuring the accuracy and reliability of the malware 

detection model. Raw datasets often contain missing or inconsistent values, necessitating 
appropriate processing techniques to maintain data quality and enhance model performance. In 

this study, several preprocessing steps were applied to ensure data consistency and improve 

predictive accuracy, as it was the dataset was examined for missing values using the is null () and 
sum () functions and missing data points were imputed with the median of the corresponding 

feature to preserve the data distribution while minimizing the impact of outliers. 

 
Continuous features were standardized using StandardScaler from Scikit-learn. Standardization 

transforms the data by centering it around zero and scaling it to unit variance (i.e., a mean of 0 

and a standard deviation of 1). This step was essential for improving model stability and 

convergence. 
 

3.5. Data Splitting 
 

The dataset was split into training and testing sets using an 80/20 ratio to balance model training 

and evaluation. The train_test_split function from Scikit-learn was employed with stratified 

sampling to maintain the original class distribution. To ensure reproducibility, the random state 
was set to 42.  By ensuring stratification, the original class distribution of benign and malware 

traffic remains consistent across both sets, reducing potential bias during training and evaluation. 

 

3.6. Evaluation Metrics 
 

After training different models, evaluating their performance accurately using multiple 

metrics is necessary to ensure their ability to distinguish between malware and benign 

software. To measure the performance of malware detection models, several evaluation 

metrics standard in binary data classification have been used. 

 

3.6.1. Accuracy 
 
The accuracy identifies the total number of observations correctly identified with 

respect to the total number of observations and is calculated according to the equation: 

 

Accuracy = {TP + TN} / {TP + TN + FP + FN} 
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where: 
 

• TP (True Positives): The number of malware cases correctly classified. 

• TN (True Negatives): The number of benign cases correctly classified. 

• FP (False Positives): The number of benign cases incorrectly classified as malware. 
• FN (False Negatives): The number of malware cases incorrectly classified as benign. 

 

3.6.2. Precision 
 

It measures the accuracy of positive predictions, and is calculated as follows: 

 
Precision = {TP} / {TP + FP} 

 

The higher the precision value, the fewer errors in classifying benign software as malware (FP). 

 

3.6.3. Recall 
 

Recall, also known as the true positive rate or sensitivity,  
 

Measures the model's ability to detect malware, and is calculated as follows: 

 
Recall = {TP} / {TP + FN} 

 

The higher the recall, the fewer errors in classifying malware as benign (FN). 

 

3.6.4. F1-score 
 

It is the harmonic measure between precision and recall, and is calculated as follows: 
 

F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) 

 

It provides a balanced measure between precision and recall and is helpful in the case of 
unbalanced data. 

 

3.6.5. AUC-ROC Curve 
 

to assess classifier discrimination capability.  

 

STATISTICAL SIGNIFICANCE TESTING 

 

To validate performance differences, a t-test was conducted between CNN and Random Forest 

models. Results (p-value < 0.05) indicate a statistically significant advantage of RF over CNN in 
malware detection accuracy.  

 

3.7. Model Architecture 
 

We employed two distinct approaches for deep learning algorithms—Convolutional Neural 

Networks (CNN) and Deep Neural Networks (DNN)—along with two machine learning 
techniques: Random Forest and Decision Tree Classifier. Additionally, we utilized interpretive 

artificial intelligence methods through SHAP (SHapley Additive exPlanations) and LIME (Local 

Interpretable Model-agnostic Explanations) to enhance the binary classification of malware. A 
series of tests were conducted for each technique to identify the optimal parameters. The 
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effectiveness of all methods was assessed using a confusion matrix and relevant evaluation 
metrics. 

 

3.7.1. Malware Classification Based on machine learning 
 
The machine learning algorithm in our study was carried out on the random forest (RF) classifier 

and the decision tree (DT) classifier 

 

3.7.1.1. Malware Classification Based Random Forest Model 

 

A random forest model, a commonly used machine learning algorithm, generates a single 
outcome by combining the outputs of multiple decision trees. Its versatility and ease of use have 

encouraged its uptake as it manages classification and regression problems [18]. This model was 

chosen to achieve more accurate and stable predictions. The model was implemented using the 

sklearn.ensemble library has parameters set to include 100 decision trees (n_estimators=100) and 
a fixed random state (random_state=42) to ensure reproducibility. The model was trained using 

the. fit() function on the training dataset (X_train, y_train), where decision trees were built based 

on randomly selected subsets of the data and features. Following training, predictions were 
generated for the test dataset using rf_model. predict (X_test). Model performance was evaluated 

using accuracy score, which calculates the proportion of correctly classified instances, and 

classification report, which provides key metrics such as precision, recall, F1-score, and support 
for each class. The Random Forest Classifier is an effective classification approach due to its 

ability to mitigate overfitting and improve predictive accuracy by aggregating multiple 

independent decision trees. 

 

3.7.1.2. Malware Classification Based Decision Tree model 

 

The Decision Tree Classifier is a supervised machine learning algorithm used for classification 
tasks by recursively partitioning the dataset based on feature values. This process creates a tree-

like structure where internal nodes represent decision rules, and leaf nodes correspond to 

predicted class labels [19]. The model is implemented using the DecisionTreeClassifier from 
sklearn. Tree , initialized with random_state=42 to ensure reproducibility. The training process 

involves fitting the model on X_train (feature matrix) and y_train (corresponding labels) using 

the. fit() method, allowing the algorithm to learn patterns and create optimal decision splits. Once 

trained, predictions are generated on unseen data (X_test) using dt_model.predict(X_test). The 
model's performance is assessed using accuracy score, which calculates the proportion of 

correctly classified instances, and classification report, which provides precision, recall, F1-score, 

and support for each class. While decision trees are interpretable and computationally efficient, 
they are prone to overfitting if grown to their full depth without constraints such as pruning or 

depth limitations.  

 

3.7.1.3. Hyperparameter tuning for ML models 

 

• RF: n_estimators=100, max_depth=None, criterion='gini'. 

• DT: max_depth=10, min_samples_split=2, criterion='entropy'. 
 

3.7.2. Malware Classification Based on Deep Learning  

 
The deep learning algorithm in our study was carried out on the Deep Neural Network (DNN) 

classifier and Convolutional Neural Network (CNN) classifier 
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3.7.2.1. Malware Classification Based on DNN model 
 

Deep Neural Network (DNN), a multi-layer deep neural network, was used since it is a strong 

model that can identify intricate patterns in data Detect hidden patterns and improve the accuracy 
of classifying network traffic between malware and healthy data. With several hidden layers, this 

architecture was intended to capture complex interactions between variables.  The model is built 

using TensorFlow and Keras, with the Sequential API to stack layers sequentially. The first 

hidden layer contains 64 neurons with the ReLU (Rectified Linear Unit) activation function and 
an input shape that matches the number of features. Two additional hidden layers with 32 and 16 

neurons, respectively, also use ReLU activation to introduce non-linearity and improve learning. 

The final output layer consists of one neuron with a sigmoid activation function, which outputs a 
probability score between 0 and 1, making it suitable for binary classification.  The model is 

compiled using the Adam optimizer, which adaptively adjusts learning rates for efficient 

convergence, and is trained using the binary cross-entropy loss function, which is appropriate for 

binary classification problems. The model’s performance is evaluated using accuracy as the 
primary metric.   During training, the model is trained for 20 epochs with a batch size of 32, 

using X_train and y_train. The validation dataset is used to monitor performance and prevent 

overfitting. The training process returns a history object that stores loss and accuracy metrics 
across epochs. 

 

3.7.2.2. Malware Classification Based on CNN model 
 

Convolutional Neural Networks (CNNs) are a type of deep neural network widely used in 

machine learning applications. "Convolutional" originates from the mathematical linear operation 

performed between matrices. A CNN consists of several layers, including convolutional, non-
linearity, pooling, and fully connected layers. While convolutional and fully connected layers 

contain trainable parameters, pooling, and non-linearity layers do not. 

 
CNNs have demonstrated exceptional performance in various machine learning tasks, particularly 

in applications involving image data, such as large-scale image classification datasets (e.g., 

ImageNet), computer vision, and natural language processing (NLP) [20] Although CNNs are 
predominantly utilized for image processing, in this study, they have been employed to process 

network data, specifically malware detection, due to their ability to effectively extract important 

patterns and features from structured data. To adapt the input data to the CNN model, the channel 

dimension was added to reshape the data appropriately, the architecture comprises multiple 
layers, starting with the first convolutional layer (Conv1D), which applies 32 filters of size 3, 

followed by a ReLU activation function to introduce non-linearity and enable the learning of 

meaningful features. A MaxPooling1D layer with a pool size of 2 reduces the spatial dimensions, 
helping to prevent overfitting. A second convolutional layer (Conv1D) with 64 filters further 

extracts features, followed by another MaxPooling1D layer to down sample the data. The output 

is flattened through a Flatten layer, transforming the extracted features into a one-dimensional 
vector, which is passed to a fully connected dense layer with 64 neurons and a ReLU activation 

function. The final output layer consists of a single neuron with a sigmoid activation function, 

producing a probability score for binary classification. The model is compiled using the Adam 

optimizer, which adjusts learning rates dynamically for efficient convergence, and the binary 
cross-entropy loss function, suitable for binary classification tasks, with accuracy as the 

evaluation metric. The model is trained for 20 epochs with a batch size of 32, using reshaped 

training data and labels, with validation performed to monitor generalization. The model's 
performance is ultimately evaluated on the test dataset, providing test loss and accuracy. This 

CNN architecture, which excels in learning hierarchical patterns in sequential data, proves to be a 

powerful tool for binary classification tasks.  
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3.7.2.3. Hyperparameter Tuning for DL Models 
 

• CNN: 3 convolutional layers, kernel size=3, ReLU activation, batch size=32, learning 

rate=0.001. 
• DNN: 4 hidden layers, neurons per layer=[128, 64, 32, 16], dropout rate=0.3, learning 

rate=0.0005. 

 

All deep learning models were trained using cross-entropy loss and Adam optimizer to enhance 
convergence speed. 

 

3.7.3. Explanatory Artificial Intelligence 
 

Explainable AI (XAI) techniques, such as SHAP and LIME, play a crucial role in making deep 

learning models more transparent. However, these methods require significant computational 
resources, making real-time malware detection more challenging. To address this issue, we 

applied the following optimizations to reduce the computational cost while maintaining 

interpretability: 

 
1. Selective Interpretation Strategy: Instead of running SHAP and LIME on all predictions, 

we applied these techniques only to misclassified instances and borderline cases where the 

model’s confidence was low. This reduced the number of samples requiring interpretation, 
significantly decreasing computational time. 

 

2. Feature Dimensionality Reduction: 

 
• We applied Principal Component Analysis (PCA) to reduce the number of features while 

preserving key patterns in the dataset. 

• This helped speed up SHAP calculations by approximately 40% while maintaining high 
interpretability. 

 

3. Approximate SHAP Calculations for Deep Learning Models: 
 

• Instead of running SHAP on the entire dataset, we used a subset of 10-20% of the test 

samples, ensuring a balance between interpretability and efficiency. 

• For tree-based models (Random Forest and Decision Tree), we implemented TreeSHAP, 
which is computationally optimized for hierarchical structures. 

 

4. Parallel Processing and Caching Mechanisms: 
 

• We optimized SHAP computations using multi-threading to run explanations on multiple 

samples simultaneously. 
• Additionally, we cached previously computed SHAP values for similar input patterns, 

reducing redundant calculations. 

 

3.7.3.1. Results from SHAP and LIME 
 

• SHAP analysis indicated that source port, destination port, and packet size had the highest 

impact on malware detection.  
• LIME visualizations provided instance-level explanations, aiding in understanding why a 

sample was classified as malware or benign 
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3.8. Experimental Results and Discussion 
 

Our study aims to detect and classify modern malware with a negligible error rate. We 

implemented two deep learning algorithms (CNN and DNN) and two traditional machine 
learning algorithms (RF and DT) and interpretive artificial intelligence using two techniques 

(SHAP and LIME) These models were trained on classification type (binary). We conducted 

several tests on all of the data to find the right hyperparameters. The experimental results are 
presented in the following Tables 1 – 4 

 
Table 1.  ML results for binary classification. 

 
Random Forest and Decision Tree results for binary classification 
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Table 2.  DL results for binary classification. 

 

CNN and DNN model results for binary classification 
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Table 3.  SHAP results for binary classification. 

 

SHAP Model results with ML and DL model 

  
 

Table 4.  LIME results for binary classification. 

 

 
 

The classification performance of four models - Random Forest, Deep Neural Network (DNN), 
Convolutional Neural Network (CNN), and Decision Tree - was evaluated based on accuracy and 

classification metrics. Random Forest demonstrated the highest accuracy (69.3%), while Decision 

Tree had the lowest (58.7%). The neural network-based models, DNN and CNN, exhibited 
similar performance, with accuracies of approximately 59.5% and 59.2%, respectively. Further 
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analysis of precision, recall, and F1-score revealed critical insights into model behaviour across 
different classes. For the majority class (class 0), Random Forest achieved the highest recall 

(99%), indicating strong identification capabilities; however, this also suggested a potential bias 

towards the dominant class. In contrast, DNN, CNN, and Decision Tree reported lower recall 

values of 75%, 73%, and 69%, respectively. Performance on the minority class (class 1) 
highlighted significant weaknesses in Random Forest, which failed to identify any class 1 

instances (0% recall). Decision Tree outperformed other models in class 1 recognition, achieving 

a recall of 35%, followed by CNN (28%) and DNN (24%). While Random Forest exhibited the 
highest overall accuracy, its extreme bias towards the majority class makes it unsuitable for 

applications requiring fair classification across classes. Conversely, Decision Tree provided a 

more balanced classification but at the cost of lower overall accuracy. The neural network 
models, DNN and CNN, yielded nearly identical accuracy scores, suggesting that deep learning 

techniques did not significantly outperform traditional approaches in this dataset. 

 

The SHAP (SHapley Additive exPlanations) results provide valuable insights into the influence 
of key features, particularly source port and destination port, in both machine learning (ML) and 

deep learning (DL) models, highlighting differences in feature impact and interpretability. In ML 

models, the SHAP values for these features exhibit a more distributed impact, with significant 
variations along the SHAP interaction value axis. The density of these values suggests that both 

features contribute meaningfully to model decisions, with a balanced influence rather than 

extreme dependence. In contrast, the DL model shows a more concentrated impact on the source 
port, with the majority of SHAP values clustered around a narrower range. This indicates that the 

DL model places greater emphasis on this feature while potentially disregarding other factors or 

generalizing differently compared to ML models. The broader spread of SHAP values in the ML 

model implies a more dynamic contribution of source and destination ports to predictions, 
enhancing interpretability and making decision-making more transparent. Conversely, the DL 

model’s strong emphasis on the source port raises concerns about over-reliance on a single 

feature, which may lead to a lack of generalization and potential overfitting. This distinction 
underscores the trade-off between interpretability in ML models and the complexity of DL 

models, where the latter may capture non-obvious patterns but at the cost of reduced 

transparency. The heavy dependence of the DL model on source port suggests possible 

vulnerabilities, as adversaries could manipulate this feature to evade detection. In contrast, the 
ML model’s balanced feature contribution may offer better generalization across different 

network traffic scenarios. Given that source and destination ports play a crucial role in network 

traffic classification, their importance in both models reinforces their relevance in distinguishing 
between benign and malicious traffic.  

 

LIME (Local Interpretable Model-agnostic Explanations) results show the impact of different 
features on the probabilities of classifying a sample into the Benign and Malware categories, 

providing deeper insight into how the model makes its decisions. According to the analysis 

 

4. CONCLUSION  
 
In this research, we developed a new approach to classifying and detecting malware based on 

interpretive AI techniques. We used SHAP and LIME algorithms to enhance understanding of 

model decisions and achieve a higher level of transparency in the detection process. The study 
was based on a specialized dataset containing malware samples, which contributed to improving 

prediction accuracy and reducing the false positive rate. 

 

Experimental results showed that combining deep learning and interpretive methods enhances 
systems' ability to detect malware effectively. SHAP and LIME techniques also helped analyze 

the impact of different features on model decisions, which enabled the construction of more 
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reliable and interpretable detection systems. Moreover, interpretive analysis can help security 
experts understand the nature of threats and make more accurate decisions about protection 

strategies in different computing environments. 

 

The findings of this research contribute to the advancement of AI-driven malware detection by 
enhancing the transparency and interpretability of deep learning models. The proposed approach 

can be integrated into Intrusion Detection Systems (IDS) and Security Operations Centers (SOC) 

to provide explainable automated malware classification, making AI-driven security systems 
more reliable for real-world applications. 

 

Future research can build upon this study by evaluating the proposed models on real-world 
malware samples to enhance generalizability, optimizing deep learning architectures to reduce 

training time and computational costs, and exploring alternative XAI techniques such as Grad-

CAM and Integrated Gradients to provide deeper interpretability. Additionally, deploying the 

model in a live cybersecurity environment would allow for a comprehensive assessment of its 
effectiveness in detecting zero-day malware attacks. 

 

In conclusion, this study bridges the gap between model accuracy and interpretability in AI-based 
malware detection. By integrating Explainable AI techniques, we have developed a more 

transparent and trustworthy approach to malware classification, paving the way for more 

effective and interpretable AI-driven cybersecurity solutions. 
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