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ABSTRACT 
 
As semiconductor technology advances, high-speed circuits are becoming more common, which increases 

the chance of delay faults that can disrupt circuit timing. This paper explores the important issue of delay 

faults and reviews different testing methods, particularly focusing on path delay fault (PDF) testing and its 

role in hardware security. Various delay fault models and test generation techniques were discussed. The 

experiments on benchmark circuits showed that this approach could achieve a 12.7% to 19.6% increase in 

detecting path delay faults in circuits affected by hardware Trojans. These results highlight the need for 

effective delay testing methods to ensure the reliability of integrated circuits. This work recommends future 

research to focus on creating more efficient test generation methods and integrating security measures into 
standard testing practices.  
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1. INTRODUCTION 
 

As feature lengths of integrated transistors are decreasing, the amount of delay defects appearing 

in an IC is becoming a major concern while ensuring the timing correctness. This concern 

mandates appropriate tests to detect violations of the performance specifications of the circuit. 
Early approaches considered only logical correctness and assumed high stuck-at fault (SAF) 

coverage is sufficient to guarantee high-quality products. However, to increase the yield, 

industries have encouraged researchers to develop new test methods that can ensure timing 
correctness. Delay testing is considered the best solution. This area receives growing attention 

from both industries and academia. As a result, several delay fault models and numerous test 

methodologies have been proposed in the past two decades. This paper reviews a selection of 

existing delay test research results and encompasses basics with state-of-the-art techniques that 
address some of the current methodologies in delay testing.  

 

Delay fault testing in digital circuits follows the steps of test generation, fault simulation, and 
fault grading. The creation of effective stimuli is an important part of the delay test procedure 

because it determines the fault coverage values [1] [2]. Models bridge the gap between physical 

reality and mathematical abstraction, and therefore physical defects of digital circuits can be 
modeled [3] as delay fault models when the defect affects the operating speed of the circuit. Test 

stimuli are then generated based on this delay fault model, which are used to verify the timing 

correctness of the circuit. The well-known delay fault models are the gate delay fault model, 

transition delay fault model, and path delay fault model. The gate delay fault model is 
delaydependent because it makes assumptions about circuit delays [4]. In this model, small-sized 
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delay defects may not be detectable, and the analysis may be invalidated if certain assumptions 
on delays in the circuit do not hold. The transition delay fault model and the path delay fault 

model, on the other hand, are delay-independent since they do not make any assumptions about 

circuit delays. The transition delay fault model [5] is like the gate delay fault model in which 

slow-torise (STR) and slow-to-fall (STF) faults are considered at gate inputs and outputs. The 
delay due to such slow transitions is assumed to be large enough to cause a delay fault when a 

signal propagates along any path through the fault site in the circuit. In the transition delay fault 

model, even though the test generation and fault simulation techniques are simple and require 
only minor modifications to stuck-at-fault (SAF) tools, it will not detect small delay defects 

(SDD). Segment delay fault model [6] helps to address the limitations of basic delay models. 

This model represents any general delay defect ranging from a spot defect to a distributed defect 
but restricts the length of segments and the number of segment faults that need to be considered.  

However, the path delay fault model considers cumulative propagation delays along paths [7] in a 

circuit to detect delay faults. This model addresses the real situation of the circuit when there is a 

delay defect, and fault detection can be guaranteed by robust tests with no assumptions on circuit 
delays. Even though the path delay fault model supports an effective delay test method, it has 

several challenges in generating test patterns. These challenges include: (i) detecting small delay 

defects and shorter paths, (ii) pre-selection of longest paths in a circuit, and (iii) detection of 
faults that cannot support robust tests [9]. Path delay fault testing of large circuits remains an 

open problem, especially in achieving high fault coverage with cost-effective methods. These 

limitations have resulted in a lack of tools to cope with this type of testing and have prevented the 
adaptation of PDF testing. Motivated by this lack of tools, several recent research works have 

been engaged in developing techniques for PDF testing.   

 

In this paper, we focus on surveying such selective test generation and fault simulation 
techniques based on the path delay fault model. Even though this study presents largely a 

qualitative view, we believe that this paper provides enlightening information on delay testing. A 

brief path delay fault (PDF) test primer in Section 2 provides background information. The path-
selection techniques and test generation techniques are presented in Section 3 and section 4, 

respectively, followed by a PDF testing on hardware security in Section 5 and conclusions in 

Section 6.  

 

2. PDF TEST PRIMER  
 

The main objective of delay testing is to detect delay faults and ensure that the design meets the 

desired performance specifications.  
 

2.1.Delay Defect and Delay Test 
 
The delay defect in a circuit is manifested only when the delay of the propagated signal through a 

path arrives after the specified cycle time. Delay defect size (δ) is directly proportional to the path 

length (PL) or the difference between the designed cycle time (td) and actual arrival time (ta) 
[10]. If the defect is only considered at a particular point, such as a gate output or a signal on a 

path, it is called a point-defect or lumped delay defect. This can be used to model bridges and 

opens in a circuit.   
 

If the defect is considered distributed along a path, then it is called a distributed delay defect. In 

this case, the applied signal passes through multiple lines in a path, and the accumulation of delay 

for those signals may be significant enough to impact circuit speed. This cumulative effect is 
used to model defects due to process variations [11]. Path delay faults model physical defects in a  
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circuit with a gate-level representation and consider cumulative propagation delays along paths. 
For example, too low doping in channels leads to higher resistance than specified, yielding 

increased delays on every transition. However, a path-delay fault test can also detect spot defects 

in cutting-edge sub-micron level along the path [12].  

 

2.2. Fault Distribution 
 
The path delay fault test considers two faults associated with each path in a circuit. Each path 

begins at a primary input, contains a chain of gates, interconnects, and ends at a primary output. 

The first fault is related to a falling transition at the source of the path, and the second fault is 

related to a rising transition at the source of the path. If the signal transition along the path 
accumulates too much delay due to defects, the rising/falling transition on the output will arrive 

late. This indicates that the presence of defects has been detected by the applied test stimulus. 

Two-pattern tests are required to detect delay faults in combinational circuits, while test 
sequences may be required to detect delay faults in sequential circuits [8]. The following 

procedure summarizes the two-pattern PDF test method. (i) Apply the first pattern (p1), which 

launches an initial transition and establishes the initial state of the circuit; (ii) Apply the second 
pattern (p2) after a time interval, launching the second transition in a path and propagating the 

signal value toward the output; (iii) Capture the response at the primary output after a pre-

determined time interval. If there is a delay defect, an incorrect response will be captured.  

 
This same test procedure can also be applied to sequential circuits with flip-flops at PIs and POs. 

In this typical delay test architecture, as indicated in [13], input and output latches are part of the 

circuit or are provided by the automatic test equipment (ATE) for testing. During test mode, the 
input and output latches are controlled by two different clocks: the input and output clocks. These 

independent clocks allow a phase delay to apply the two consecutive test patterns. As mentioned 

earlier, a two-pattern test assumes that all signals due to p1 have reached a steady state before 
applying p2. If the steady-state assumption is not true, transient signals may be present in the 

circuit, which could interfere with the testing of the targeted path [14]. To avoid this problem, 

test patterns (p1, p2) are applied at slower than the rated clock frequency. As indicated in the 

timing diagram of Figure 1, p1 is applied at t0, and p2 is applied at t1 of the input clock of the 
input latch. The time difference (t1 - t0) allows all signals in the circuit to stabilize under p1. 

Then, the output clock is latched by the time period, which is equal to the rated clock period. This 

allows the circuit to settle down with signal transitions due to p1 followed by p2. If the delay of 
the selected path is longer than the rated-clock period, then the faulty output will be observed in 

the output latch [15].  

 

 
 

Figure 1.  Delay test architecture with its timing diagram 
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2.3. Faults Detection in a Gate-Level Circuit  
 

The goal of test generation based on the path delay fault model is to derive test patterns that can 

be used to test each manufactured circuit/component for timing correctness. [7] analyzed the 
major reasons for low path delay fault coverage in digital circuits. To achieve higher confidence 

in path delay fault tests, the number of untested faults in a circuit should be small. In practice, 

achieving high fault coverage is challenging mainly due to non-activatable paths, and it is 
difficult to produce two consecutive states effectively to create and propagate a transition through 

the paths [16]. Based on signal propagation criteria, fault detection under PDF test offers two 

different test methods: robust and non-robust tests. This subsection provides the basic principle of 

these two tests.  
 

In robust testing, fault detection can be guaranteed with no assumptions about circuit delays. 

However, it requires stringent logic conditions for the detection of a delay fault. For instance, in 
robust testing, off-path inputs of logic gates along the targeted path are expected to have stable 

non-controlling values (NCV) while propagating either a falling or rising transition through 

onpath inputs, as shown in Figure 2(a). When the test pattern pair activates signal transitions on 
the targeted path, all off-path inputs of the gates along the path should be robust. This is called a 

robust sensitizable path, which results in a high-quality test. However, most of the circuit paths 

cannot be tested under robust conditions, leading to robust untestable path delay faults [17]. In 

non-robust testing, fault detection requires knowledge about delays in the circuit, even though it 
is less stringent than robust testing. For example, if there is an NCV → CV (control value) 

transition in the on-path input of the gate along the targeted path concerning the applied test 

patterns, then a CV → NCV transition is expected in off-path inputs of the same gate, as shown 
in Figure 2(b). The transition arrival time on off-path inputs should be earlier than the transition 

arrival time on on-path inputs to detect faults in the targeted path. If the off-path signal transition 

arrives after the on-path signal transition, the fault cannot be propagated to the output, resulting 
in an invalidated non-robust test [18].  

 

 

 
 

Figure 2.  Principle of robust and non-robust PDF test 

 

3. PATH SELECTION OF PDF TESTING 
 

The number of testable paths can be huge in the CUT. It is impractical to consider all circuit 

paths because this would cause the size of the data structure inside the test patterns generation 

(TPG) tool to blow up. In order to keep the whole path store inside computer memory, the size of 
the path store with respect to the number of paths was set to a reasonable value. Generally, path 

selection approaches are based on either selecting paths with high fault probability, i.e., K-
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longest path selection, or improving the quality of a path set of a specific size with the 
assumption of structural or spatial correlation and statistical timing analysis, i.e., time defects 

cause many paths to be faulty that pass through the defective site. However, a simple and 

effective approach is testing the longest paths through a fault site because it increases the fault 

detection probability.  
 

Several studies have analysed the method of finding the longest paths through each gate or line in 

a circuit and described the fault propagation under certain sensitization criteria and finding the 
global longest paths. Many ATPGs, like NEST [19], DYNAMIT [20], RESIST [21], VIPER 

[22], and KLPG [23], have extensively studied the problem of finding k-longest testable paths 

through each gate in a circuit. Additional studies [24] have discussed the recursive path selection 
method, which does not require the iteration process for each path and correlation between paths. 

It recursively continues and selects a requested number of paths simultaneously. The branch-

andbound algorithm-based statistical path tracing was introduced in [25] and reports the 

statistically most critical paths from industrial circuits with multi-million gates. However, this 
section gives an overview of well-known path selection methods and reviews a few selective 

methods.  

 

3.1. Path Selection: Term Analysis  
 

Generally, in gate-level circuits, timing analysis often relies on gate delays, interconnects, and 
signal propagation where the earliest, latest, and average signal arrival times are estimated for 

each PI to PO pin pairs. Based on these discrete timing values, the delay of a path can be defined 

as the accumulated delay on the path. Then, the set of critical paths can be constructed by 
selecting either a fixed number of the longest paths or all paths that fall into a pre-defined time 

range. Eventually, this set of longest paths is expected to ensure a complete topological coverage 

of the circuit. However, this basic definition for the path selection procedure may not be 
sufficient to model delay defects in deep sub-micron technologies. In deep submicron 

technologies, delay variations due to the manufacturing process, small defects, and/or signal 

noise cannot be detected with discrete timing assumptions and accumulated delay effects of 

longest paths. Even though there is no universal procedure defined for path selection in circuits, 
some techniques, like klongest path selection [26], recursive path selection [27], and statistical 

path selection methods [28], are generally used in PDF testing.  

 
The commonly adopted method in both academia and industries is to select the K-longest testable 

paths in a circuit. In this method, the fault list is often set equal to the K-longest testable paths. 

This K value depends on the reasonable number of test patterns [23] [24]. Also, the selection of 

the longest or critical path depends on the timing length of a path or all testable path-delay faults 
considered to be longer than a predefined limit. It is often calculated using discrete delay models 

based upon worst-case timing scenarios. This K-longest path selection approach guides the test 

generation process along the longest paths with minimum slack. For instance, the difference 
between the minimum of the required time and the maximum of the arrival time at any given 

node is the slack. This simple and effective process selects long paths and obtains the difference 

between the arrival and required times by propagating fault effects along the longest paths. Even 
though the path selection technique is closely followed by the test generation, the next subsection 

only discusses the path selection for our simplification.  

 

3.2. An Overview of Path Selection in ATPGs  
 

An ATPG tool, NEST [19], generates paths in a non-enumerative way. This tool can handle a 
large number of paths and detect large numbers of path delay faults by propagating transitions 

robustly through parts of the circuit. It does not require enumerating the specific paths through 
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every selected subcircuit where the transitions are propagated. This tool uses labeling techniques 
that consider only lines in selected subcircuits and is used to determine test generation objectives 

effectively. However, NEST is only effective in highly testable circuits where a large number of 

path delay faults are testable. This method removes the most limiting restriction of the path delay 

fault model while handling a large number of path delay faults.  
 

In contrast to NEST, the Delay Fault Oriented Automatic Test Pattern Generation System 

(DYNAMITE) [20] introduced an effective method to handle poorly testable circuits. The path 
sensitization procedure of this tool is used to identify large numbers of path delay faults as 

redundant by a single ATPG attempt. If the selected subset of paths is not well testable due to the 

presence of many redundant paths, this method allows dynamic switching to another subset of 
paths. This will eventually succeed in generating a test set for all testable path delay faults and 

identifying all redundant ones. However, in highly testable circuits, many faults are treated 

separately, which results in huge memory consumption. It shows that this method is not suitable 

for larger circuits.  
 

Recursive selection and sensitization technique (RESIST) [21] overcomes the limitations of 

NEST and DYNAMITE. RESIST shows a cost effective method for a path selection and to test a 
large number of path delay faults in both highly testable and poorly testable circuits. It introduces 

an optimal search strategy for paths selection. For instance, many paths in a circuit have common 

subpaths which results dependent path delay faults. It is enough if these paths are sensitized only 
once. This tool addresses this issue by reducing the number of value assignments during path 

sensitization. To illustrate the basic idea of RESIST, let us use Figure 3.  In Figure 3, a structural 

path (P) starts at a PI or present state lines (PS) and ends at a PO or next state lines (NS). P 

consists of several structural subpaths (S0, S1 … Sn). Each subpath leads from a PI/PS or a 
fanout stem to a PO/NS or a fanout stem.   

 

To simplify the following discussion, we will assume that P is associated with two different 

faults. They are 𝑝𝑟  and 𝑝𝑓 (rising and falling transitions at S0. The 

transitions at all other on-path signals 𝑥(i,1) ≤ 𝑖 ≤ 𝑛, by uniquely determined by gates along path 

P. Here only the bold paths starting from y0 (PI) and ending at yn (PO) will be considered. In 

which, there are 2n different subpaths Si,i+1k where 0 ≤ 𝑖<𝑛 and 1 ≤ 𝑘 ≤ 2, between consecutive 

fanout stems.  
 

Each path from y0 to yn consists of n subpaths Si,i+1k . Altogether there are 2n different paths from 

y0 to yn. Conventional ATPGs sensitizes each path separately. Hence, it performs  𝑆(𝑛) :=  n 

×2𝑛subpath sensitization steps (SPS) in any given circuit Cn. To reduce the number of SPS, 
RESIST uses a different strategy.  

 

 
 

Figure 3.  Dependency of PDFs due to Common sub-paths in main paths 
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Let us consider the sub-paths 𝑆0
1

,1and 𝑆0
2

,1from yo to fanout stem y1. Both subpaths are included 

in 2"-l paths from yo to yn. Hence, sensitizing 𝑆0
1

,1and 𝑆0
2

,1only once reduces the number of SPS 

from S(n) to,  

 

2. [1+ (n - 1). 2n-1] = 2 + 2. S(n - l),                                (1)  
 

where S(n-1) := (n-1). 2n-1 is the number of SPS performed by conventional ATPG in circuit Cn- 
l. Applying the same principle at all subcircuits (Cn-1, Cn-2 … Cn), the number of SPS becomes 

   

=2 + 2.[2 + 2.[2+2.S(1)]...]]                                      (2) 

 

 
 

 = 2𝑛+1 − 2 (4)  
 
Since S(1) = 2, compared with conventional ATPG, the number of SPS is reduced by,  

 

 
 
For instance, if n=60 then the reduction factor is 30. The reduction factor increases with an 

increasing number of fanout branches (fanout > 2) converging to n. This simple sensitization 

procedure gives a speedup factor of this method that grows linearly with the circuit depth. 

Performing the sensitization step for a common subpath S only once requires that the TPG status 
is updated at fanout stems. Both mandatory value assignments for subpath sensitization and the 

corresponding unjustified lines have to be stored in order to exploit the TPG status for all paths 

including subpaths. Also RESIST identifies large sets of untestable paths without enumeration.  
  

Another method to find a set of longest testable paths through different gates under unit delay 

assumption [29]. This ATPG technique automatically determines the longest testable path 

passing through a gate or wire in the circuit without first listing all long paths passing through it. 
The path selection is based on a graph traversal algorithm that can traverse all paths of a given 

length in a weighted directed acyclic graph (DAG). This method used search space pruning 

techniques while searching for the longest testable path through each node. Since this improved 
version of RESIST assumes a unit delay model, there is no obvious way to extend it to handle the 

problem of finding the K longest testable paths through each gate. For instance, this method fails 

when applied to C6288.   
 

[30] introduced a timing analysis tool based on the recursive learning technique. Recursive 

learning [27] is a technique that can identify all necessary assignments required to satisfy a set of 

value assignments in a circuit. Necessary assignments are computed by temporarily injecting all 
combinations of possible values to the gate inputs that would justify the gates and observing the 

result after direct implication using a novel recursive ATPG technique. This timing analysis tool 

is used to find indirect conflicts during path building with the forward trimming technique. It 
efficiently identifies the global longest paths in combinational circuits and prevents the checking 

of multiple paths with equivalent constraints. Instead of generating many long structural paths 

and checking their testability, this tool grows paths from PIs, as shown in Figure 4. 
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3.3. Paths Selection/Generation Procedure 
 

Step 1: First, during the preprocessing, the circuit netlist is loaded and represented as a graph with 

n primary inputs and m primary outputs. All circuit components (i.e., logic gates), PIs, and POs 
are represented as nodes in the graph with edges representing circuit interconnect. Some delay 

information such as Omax, Imin, and Imax about each gate need to be determined and loaded at 

this time. First, the maximum distance from each gate to a PO is calculated at each node in the 
circuit. It is represented as Omax(G). The maximum Omax(G) of all PIs is the delay of the 

longest structural path in the circuit. This can be calculated through a simple depth-first search. 

Imin and Imax represent the earliest and last possible time of signal transitions at gate G. These 

values are calculated assuming that all PI transitions will occur at time zero. But it is possible to 
relax this condition in order to allow input transitions to occur over a range, helping to reduce 

constraints applied to the circuit during path building.  

 

 
 

Figure 4.  Incremental Path Generation Procedure 

 
Step 2: The path store contains the partial paths. A partial path starts from PI but has not reached 

PO. The partial path can be extended by adding one gate along its path. When this extension 

reaches PO, it becomes a complete path. To compute the longest paths during the path generation 

process, the partial paths are sorted by max Esperance. The max esperance of a partial path is the 
upper bound of its delay when it grows to a complete path. It is calculated from the delay of the 

current gate and the largest potential delay to a PO.   

 
Step 3: The path generation process begins by checking the path store for the largest partial path. 

The paths can be generated in decreasing order of path length based on the determined 

information. During the path generation process, after selecting a partial path, it is extended 

through the fanout with the highest esperance.  
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Step 4: The partial path extension begins by adding a new gate and applying the constraints to 
that gate. In VIPER [22], logic values are assigned to one or more PIs to satisfy the constraints on 

the newly added gate. However, this timing analysis tool uses direct implications, which are more 

efficient in finding local conflicts. It is used to discover blocked paths early.  

 
Step 5: If there is a conflict then the whole search space which contains the already grown series 

of gates is trimmed off. This is called implicit false path elimination which guides the search 

toward the true longest path. It improves the search process during the path building phase of the 
incremental path generation routine. After direct implications if the path extension reaches PO 

without conflict, then it is important to perform the final step, called path justification. The reason 

is that the immediate prior process such as direct implications of the path generation can only 
implicitly eliminate false paths with local conflicts. But still there is a possibility to have indirect 

conflicts which may cause a generated path to be false. This path justification is also used to 

determine a set of primary input values that can be used to sensitize the path. A FAN style 

decision tree-based justification routine is used to sensitize the generated potential path. This 
process begins by applying all the constraints necessary to propagate a transition along the path. 

If the generated path passes the justification, then the path generator will go to another path. This 

method can handle C6288.   
 

3.4. Observations 
 
Section 3 shows an overview of some important path selection algorithms. Many path delay 

faults do not have robust tests, and therefore, it is necessary to develop efficient test generation 

procedures for non-robust tests [32]. While propagating signal transitions through the path 
nonrobustly, the worst-case delay may occur. It is also observed from the timing analysis that the 

delay of a path under non-robust test is longer than the delay of a path under robust test [17] [33]. 

This can cause a delay defect affecting the path and may not cause the circuit to fail at its 
designated speed of operation under a robust test. However, the circuit will fail under a non-

robust test or may fail the same test (t) in the presence of the same fault (f1) if the path operates 

under its worst-case delay. Developing test generation procedures for path delay fault testing is a 

challenging task.  
 

4. TEST GENERATION FOR PDF TESTING 
 

The problem of finding the longest path through each gate or line in a circuit has been extensively 
studied in [34]. Several works inherit the framework of the existing techniques for the path 

selection and have developed different test generation procedures with improved experimental 

results. This section summarizes some existing test generation procedures with analysis. 

Generally, PDF tests for digital circuits (combinational and sequential circuits) are based on 
either non-scan methods or scan methods. These methods are implemented in circuits using self-

test techniques because self-test offers the ability to apply the stimuli effectively and analyze at-

speed test signals with better accuracy. Built-in Self-Test (BIST) techniques are well-suited in the 
path delay fault (PDF) testing of digital circuits [35]. This is a preferable technique for detecting 

a very large class of physical failures in the circuits. There are different ways to implement BIST 

[36] [37], but it usually comprises the following blocks: a test pattern generator (TPG), a circuit 
under test (CUT), a response analyzer, and a BIST controller. This section focuses on different 

automatic test pattern generation (ATPG) techniques for PDF testing.  
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4.1. Non-scan-based PDF Test Setup 
 

In this subsection, we describe the pseudo random test stimuli generation for PDF testing. Figure 

5 shows the non-scan-based BIST setup for PDF test. It comprises of netlist generator, path & 
test stimuli generator, PDF simulator and test controller with fault grading. The netlist generation 

is important in PDF test because netlist representation of the CUT simplifies the simulation 

algorithms and their implementation. It means that having an efficient netlist architecture is 
significant to achieve a better performance from the simulator [38]. The netlist typically contains 

logic gates and their associated interconnects along with attributes for the gates. First, the 

structure of the netlist can be represented using a Directed Acyclic Graph (DAG) with two event-

list classes. The fan-outs associated with each gate are in one DAG and the fan-ins associated 
with each gate are in another. This helps to perform forward and backward propagation through 

the circuit easily.   

 

 
 

Figure 5.  Non-scan-based BIST setup for PDF Test 

 

Second, the main concern in PDF testing is the path generation. Section 3 reviews different path 

selection procedures to generate the longest testable paths. However, a K-longest path selection 

approach guides the test generation process along the longest paths with minimum slack. This 
approach selects long paths and obtains the difference between the arrivals and required times by 

propagating fault effects along the longest paths.   

  
Next important part of the test setup is the test stimuli generator. Test stimuli generator of [39] is 

based on accumulator and mersenne twister methods. Both accumulators based and mersenne 

based pseudo random test stimuli generators are using different weighting schemes which are 

explained in the next subsection. In each weighting scheme, first weights are generated. Those 
are then used together with the pseudo random generators. The generated weights are based on 

the single stuck-at fault model and a deterministic test set. It is also important to create the basis 

patterns based on stuck-at faults. It can help in the path delay fault testing if the weight-based test 
patterns for stuck-at faults would yield a better fault coverage result or not. In the basis patterns, 

each bit is shifted once from 0 to 1 and once from 1 to 0. Therefore, testing a path delay fault 

over with a subsequence of successors and intrinsic complement operations on each path 
effectively tests for both rising and falling transitions on its inputs. In this way, every basic 

pattern produces 2N test vectors, and N is the number of inputs to the circuit. Figure 6 shows the 

basic concept of SIC stimuli generator which produces SIC stimuli by first establishing a basis 

pattern. Then each bit is toggled twice in order to generate both rising and falling transitions. The 
test patterns are encoded using smith’s alphabet [40] as shown in Table 1. The concept of 

different test stimuli generation techniques and summary of different test stimuli generators are 

presented in the next subsections.  
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Table 1. Encoding – Smith’s alphabet  

 

S0  S1  P0  P1  

0  1  0  1  

0  1  1  0  

 

Third, the PDF simulator starts to evaluate the generated test stimuli by applying them into the 

generated paths. In which, the generated paths are translated into the PDF simulator’s input fault 
list format. This basically involves mapping the paths and its corresponding gates with levelized 

information. Then the test vectors need to be applied into the simulator. Thus, the PDF simulator 

computes the correct simulation value of all gates along the paths from the circuit netlist using 
the generated test vectors. During simulation, the correct signal value of each gate is computed 

one at a time in topologically sorted order. The levelization assures that the signal value of a gate 

is not computed before the signal values of the gates driving the inputs. All gates in the netlist are 
visited at least once. When a new test vector is applied during simulation, it can cause one or 

more signal changes at the inputs of the circuit.   

 

 
 

Figure 6.  SIC Test Stimuli Generation 

 
Fourth, The PDF test controller manages the process of fault simulation, applying test stimuli and 

fault grading. According to the fault grading algorithm, it assigns a unique number to each 

pathdelay fault and when a fault is detected the corresponding number is stored in a list. The 

algorithm [41] is intractable by definition since the number of path-delay faults is counted one by 
one. If the number of path-delay faults is very high then it is better to use a non-enumerative 

algorithm [42] even though it is more complex. It is fast and efficient while managing the huge 

number of longest paths and its corresponding faults. However, the fault grading requires a well-
organized datastructure which can handle previously as well as currently detected faults 

efficiently for each test stimuli applied to the CUT.  

 

4.2. PDF Test Stimuli Generation Techniques  
 

This subsection describes a set of methods and techniques that can be used to design the test 

stimuli generators. Pseudo exhaustive test can give high fault coverage but applying 2n test 

vectors, in the case of stuck-at faults, is only feasible for circuits with few inputs n. However, 

sometimes, it is possible to partition the circuit so that each sub circuit can be tested exhaustively. 

Pseudo exhaustive test generators may be realized in many ways, for instance, based on 

accumulators and as a part of the ABIST methodology. These two generators are given here.  
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ACC-FIXED: Optimal accumulator-based generators for single size subspaces: Arithmetic 
BuiltIn Self-Test (ABIST) [43] is a term introduced by Rajski and Tyszer. They pointed out the 

existing components in today’s complex integrated circuits often contain ALUs and memory that 

can be reused for testing purposes. One efficient way to generate stimuli (measured in the number 

of clock cycles needed to generate a new vector) is to accumulate a constant as shown in the 
below equation. 

  

 
 

There are 22n ways of choosing pairs of C and I, and the resulting generator exhibits some 

interesting properties for each pair. By carefully selecting the parameters C and I, it is possible to 

cover exhaustively every subinterval of size r within the first 2r test vectors. A pseudo exhaustive 
generator can be used to test modules with physically adjacent input lines (e. g. adders). The 

value of r should then be set equal to number of inputs to the partition with the largest number of 

inputs; ACC-RANGE: The best accumulator-based generators for subspaces within a range of 
sizes. The number of inputs to the partitions often varies, and in such cases a generator made for 

subspaces with fixed size might be suboptimal. However, It is not possible to synthesize values 

for C and I for equation 1 in such cases.   

 
Pseudo-random technique: The most economical BIST techniques are based on pseudo-random 

pattern testing. Pseudo random pattern generators are used to generate test sequences that have 

the same properties as true random sequences even though the sequence is generated by a 
deterministic algorithm. The number of test vectors needed in order to detect all faults are usually 

much smaller than the number of test vectors generated during an exhaustive or 

pseudoexhaustive test. However, the test sequence might still be long due to random pattern 
resistant faults.   

 

LFSR - Linear feedback shift register: The most popular pseudo random generator is the linear 

feedback shift register (LFSR) [44]. LFSRs are very efficient in hardware and are also easy to 
emulate in software.  

 

TWISTER - Mersenne twister pseudo random generator: Mersenne Twister [45] is a 

pseudorandom generator which has a period of 219937− 1. The generator is fairly complex and is 

not suitable for use in built-in self-test. However, there are many pitfalls when designing 

pseudorandom generators, and the Mersenne twister may thus be used as a verification tool in the 

design phase. If, for instance, an LFSR based generator in a BIST environment performs much 
poorer than the Mersenne twister, it may be caused by some structural or linear dependencies.  

 

MAC - Multiply and accumulate based generator: In order to reduce the test application time of 
large sequential circuits with scan, the scan chain is usually broken down into several scan 

chains. These scan chains must then be fed by the test generator. LFSRs may, due to structural 

and linear dependencies, fail to produce some test patterns. Instead one can use a generator based 
on multiply and accumulate (MAC) operations.  

 

Even though pseudo-random BIST provides an economical solution, it has couple of drawbacks 

such as low fault coverage and high power dissipation. Low fault coverage arises due to the 
presence of random pattern resistant (r.p.r.) fault, which have low detection probabilities. 

Solutions to this problem involve either modifying the circuit-under-test (CUT) by inserting test 

points to increase the detection probabilities, or by modifying the test pattern generator so that it 
generates patterns that detect the r.p.r. faults. The problem of high power dissipation comes from 

the fact that pseudo-random patterns cause much greater switching activity in the CUT than what 
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occurs during normal functional operation. This can result in overheating, as the chip package 
may only be capable of handling the power dissipation that occurs during functional operation. 

The problem of low fault coverage for pseudo-random BIST has been studied for a long time and 

quite a number of solutions have been proposed. One of the most attractive involves adding 

weight logic to bias the pseudo-random patterns towards those that detect the r.p.r. faults.   
 

4.3.Weight Technique  
 

Deterministic test set based weight computation (DTW): Generally, these methods generating 

weights are based on structural analysis of the CUT. There are several ways of creating weights 

for a weighted stimuli generator [46]. One common method used in conjunction with the single 
stuck-at fault model, is to create weights based on a deterministic test set for stuck-at faults. It is 

interesting to find out whether or not a weight set based on a deterministic test set for stuck-at 

faults would yield a good result. For instance, first a deterministic test set for the circuit under 
test can be created using TetraMax, an ATPG from Synopsys. This deterministic test set will 

contain number of test vectors as shown in Figure 7.  

 
Then the weights can be determined by first counting the number of test vectors n1i with the 

symbols ’1’ and ’X’ present at input i, as well as the number of test vectors n0i with the symbols 

’0’ and ’X’ present at input i. Values for n0 and n1 is shown in Figure 7. The probability for 

observing ’1’ at the input of the circuit under test at input i can be computed using p1 = n1/(n1 + 
n0). The ATPG can be used in order to extract the K-longest testable paths in a circuit together 

with a valid test vector. The weights were then computed based on the deterministic test set for 

path delay faults. These weights based deterministic test generators proved their efficiency in 
detecting pat delay faults (PDF-DTW).  

 

 
 

Figure 7.  A deterministic test set and weights computation based on a deterministic test set for stuck-at 

faults 

 

COUNTING-based weight computation (CBW): Weighs can also be generated based on fault 
coverage measurements. If we consider the CUT is attached with the pseudo random generator 

(PRG), the PRG can provide uniformly distributed basis patterns to the inputs of the CUT. 

Counters associated with each input of the CUT can be used to store the number of faults 

detected for each input values. When the desired number of basis patterns has applied the 
weighting factors can be computed using counter values. Generally, circuits will have some paths 

that are very easy to detect and other paths that are more difficult to detect. The easiest to detect 

faults are usually detected in the first few vectors anyway, thus it is a good idea to try to tune the 
weights on to the faults that are a bit more difficult to detect. When weights were generated using 

this method, 10M SIC patterns were applied to each CUT to compute weights.   
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Fault Subset based weight computation (FSW): Each path-delay faults starts at an input-node and 
ends at an output-node. This can be used to efficiently divide the set of all path-delay faults into 

smaller disjoint subsets containing only faults that ends at a particular output, starts at a particular 

input or both. Instead of trying to detect all faults in the fault set using one fixed weight set, it 

may be more efficient to restart the generator with weights that target one subset of the fault set 
at a time. The CBW technique can easily be adapted with this technique.   

 

4.4.Implementation of PDF Test Stimuli Generators  
 

Based on the above-mentioned techniques, [47] introduced different test stimuli generators. 

These ATPGs are intended to use in software based BISTs. The stimuli generators are based on 
accumulator and Mersenne twister based pseudo random generators. For instance, we describe 

here about the implementation of accumulator based pseudo random test stimuli generator 

(APRG) using assembly code.  The fault simulation of this two-pattern test is assumed that the 
first pattern is held until it has propagated through the CUT. The second vector creates a 

transition and the signature compactor must sample the response one clock cycle later in order to 

capture any path delay faults. The test generators were realized in test program programs and test 
programs were implemented using the instruction set given in Table II. It is assumed that every 

instruction executes within one clock cycle. Test generators can easily be extended in order to 

include a response compactor as well. The test application was assumed that the CUT is 

connected to the processor through the register R0, and that R0 has the same width as the number 
of inputs to the CUT. This section discussed a review of several non-scan-based test stimuli 

generation techniques for PDF testing. The next sub-section gives the application path delay 

testing technique in hardware Trojans detection.   
 

Table 2. Instruction Set  

 

Instruction  Description  

LOAD Rd, k 

LOADI Rd, k  Set the content of register Rd to [data stored in memory address k - immediate]  

MOV Rd, Rr  Move content of Rr to Rd  

ADD Rd, Rr 

ADDI Rd, k  Add the content of [reg. Rr — immediate] to Rd. Store the result in Rd  

ADDC Rd, Rr 

ADDCI Rd, k 

 

Add the content of [reg. Rr 
 —immediate] with carry to Rd. Store the result in Rd 

AND Rd, Rr 

ANDI Rd, k  Bitwise AND operation of [reg. Rr — immediate] and Rd. Result is stored in Rd 

OR Rd, Rr ORI 

Rd, k  Bitwise OR operation of [reg. Rr—immediate] and Rd. Result is stored in Rd  

XOR Rd, Rr  Bitwise XOR operation of Rr and Rd. Result is stored in Rd  

NOT Rd  Invert the bits in Rd  

ROL Rd  Rotate left the content of Rd  

BRNE k  Set program counter to k if the equal flag is not set  

CPI Rd, k  Compare register with immediate  
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5. TESTING IN HARDWARE SECURITY 
 
Hardware Trojans (HTs) have become a significant concern in the trustworthiness of integrated 

circuits (ICs). If an untrusted foundry fabricates the IC, there is potential for an adversary to 

insert malicious behavior, known as Hardware Trojans (HTs). Detecting HTs is very challenging 

because of the diversity of Trojans and the stealthy modifications made to the hardware. HTs can 
be intelligently inserted in such a way that there is no impact on the function, area, power, and 

performance of the original design. They can also be inserted in a way that passes typical testing 

procedures [48], and they can be activated at any instant during runtime. Adversaries typically 
target weak sites, such as paths with large slack or paths with low switching activities, when 

inserting HTs. This section discusses detecting such HTs using the path delay fault testing 

approach. Our method focuses on detecting HTs by comparing the statistical path delay fault 
coverage (PDF Coverage) values before and after HT insertions for the particular selected paths 

and test seeds.  

 

5.1. HT Detection Principle  
 

The HT detection steps are as follows: i. First, select K shortest paths, ii. Generate m test patterns 
based on particular seeds, and compute the PDF coverage values, iii. Second, identify paths with 

large slack values among the selected K shortest paths, and insert an HT into the identified paths, 

iv. Generate the same m test patterns based on the same seeds, and compute the PDF coverage 

value for each circuit. This value will differ from the previous one because these patterns are not 
targeted to excite the inserted HTs [49], and the added interconnects and gates from HTs will 

affect the PDF coverage values. To observe the HT payload for each of these paths and 

cybersecurity threats [50], an appropriate vector must be generated to excite the path. This 
requires a different set of test generation conditions from typical path delay fault testing. In 

practice, PDF coverage values of HT-free ICs can be obtained by applying test patterns and 

performing PDF coverage measurement. After applying the patterns, a limited number of ICs are 

reverse engineered to ensure they are HT-free. Once the reference PDF coverage values are 
obtained, the same patterns are applied to the rest of the ICs. If the PDF coverage values differ 

from the reference values, the corresponding ICs are considered suspicious, potentially 

containing HTs. Different-sized HTs under varying process conditions can be detected by 
applying test patterns and observing the PDF coverage values.  

 

The fault simulation algorithm together with fault grading technique and its test patterns 
generation are based on three-level (3-L) software platform that we have introduced earlier [47]. 

It works with a logic of SIC based test pattern generation technique in detecting K-shortest PDFs 

rather than K-longest PDFs. The SIC patterns are pairs of patterns and differs in only one bit. The 

pattern generator varies depending on how the seed patterns are generated. In our previous works, 
different methods for generating seed patterns were explored, including general arithmetic (GA) 

and the general Mersenne Twister (GT) test generators. It used the logic of pseudo-exhaustive 

and weighted random generation techniques.  
 

The generated weights are associated with the single stuck-at fault model and based on a 

deterministic test set for stuck-at faults. Even though the test patterns are used to detect path 
delay faults, creating the seed patterns based on stuck-at faults is a sensible approach. It is also 

meaningful to test whether weight-based test patterns for stuck-at faults yield good coverage for 

path delay faults. The enumerative implementation and skip-list-based data structure were used to 

compute path delay fault coverage values. The skip-list data structure contains multiple pointers 
since elements can be in more than one list. This implementation makes the software easier to 

manage, and the open-source code for the skip list is particularly useful. When a path delay fault 
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is detected, a search in the skip-list is performed to find the proper position to store the fault. If 
the position is empty, the new path delay fault is stored; otherwise, the fault has already been 

detected.  

 

5.2. Experimental Results   
 

Our experiments considered 10K-shortest paths of ISCAS’85 benchmark circuits. 10 million 
(10M) single input change (SIC) test patterns were applied and the same was repeated ten times 

under the consideration of statistical variations. The number of test vectors are high enough to 

achieve high path delay fault coverage. Results are shown in Table 3. Each path is examined by 

SIC test vectors (rising/falling transitions) and detected faults associated with are logged.  
  

In case 1, the generated test vectors applied to the CUT. For each detected fault, the simulator 

logs the path number in which the fault got detected. It makes it easier to account the detected 
faults and drop its corresponding paths from the path list, immediately. This helps in the realistic 

testing and not repeating the test again on the already tested paths. The number of detected faults 

produced by each test vector can be huge and it is important to use a right data structure to handle 
them. Also, one N-bit (N is the number of primary inputs to the CUT) basis pattern is re-used in 

2N test vectors and therefore it is vital to create high quality seed patterns. It is significant to note 

that the fault coverage may differ based on the seed pattern because each good basis pattern may 

detect several new faults.  
 

In case 2, we performed a timing analysis to compute the slack time at each circuit nodes of the 

selected k-shortest paths. Slack time at any timing node is the difference of its required arrival 
time and its arrival time. For example, at the primary output node of the path, the arrival time is 

0+2=2, and the required arrival time is 6-2=4, and therefore a slack value is 4-2=2. The more 

accurate the estimation of the delay is, the better. This delay computation is therefore done after 
place and route of the original design to take into account delays of both gates and interconnects. 

Furthermore, this is what reflects the best information that an attacker can obtain from the GDSII 

sent to the foundry. Once this slack information is known for each of the selected path, it helps to 

decide about nodes with a large slack time. These nodes and their corresponding paths are 
dangerous. The reason is that they are insensitive to HT insertions, and they will not result any 

degradation in the overall timing performance of the original design due to HTs. We consider 

these dangerous paths to insert HTs. We assume that adversaries may not target other paths 
which holds a node with a slack time that is less than the threshold value we defined. The reason 

is that this kind of insertions can be easily detected by classical test methods.  

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.2, March 2025 

37 

Table 3.  Experimental results  

 

Benchmark  Circuit type  Inputs/Outputs  Gates/Levels 

Considered  

paths /  
 

Upper bound  

Case 1:  

PDF  

Coverage 

(Before  

HT  

insertion)  

Case 2:  

PDF  

Coverage 

(After HT 

insertion) 

c432  
Channel Interrupt 

Controller  

 

36/7  203/18  10K/132K  100%  84.2%  

c880  8-bit ALU  60/26  469/25  10K/16652  100%  89.1%  

c1355  
32-bit SEC  

Circuit  41/32  619/25  10K/1110K  100%  82.3%  

c1908  
16-bit SEC  

Circuit  33/25  938/41  10K/355K  98.8%  78.1%  

c2670  
12-bit ALU and  

Controller  233/140  1566/33  10K/1306K  89.5%  72.2%  

c3540  8-bit ALU  50/22  1741/48  10K/12330K  97.8%  75.4%  

c5315  9-bit ALU  178/123  2608/50  10K/353K  98.7%  78.3%  

c7552  
32-bit 

adder/comparator 
207/108  
 

3827/44  10K/282K  98.3%  81.1%  

 
Table 4.  Analysis of PDF coverage-based HT Detection  

 

Benchmark  PDF coverage variation in %  

 Statistical Simulation trials  

 VMax VMin VAve 

c432  18.6%  15.1%  17.5%  

c880  14.3%  11.9%  12.7%  

c1355  19.3%  17.4%  19%  

c1908  20.1%  19.2%  19.6%  

c2670  18.4%  14.3%  17.8%  

c3540  23.1%  18.6%  19.5%  

c5315  21.6%  17.2%  18.9%  

c7552  17.8%  16.1%  16.8%  

 

Table 3 shows the experimental results for different benchmark circuits before and after HT 

insertions. The 10M test vectors were applied to each circuit. Each simulation was repeated ten 
times with different seed patterns. The PDF coverage values were logged each time after applied 

test vectors. However, to analyze further on statistical variations, and the quality of the seed 

patterns, the best, the worst and average case HT detection probabilities were considered, and the 
results are shown in Table 4. Table 4 gives the results for the statistical variation analysis over 10 

trials. From the PDF coverage results of trial runs on each circuit, it presents values for ‘VMax’ 

(variation between the best-case values), ‘VMin’ (variation between the worst case values), and 

‘VAve’ as (variation between the average values of before and after attacks). The experiment 
results conclude that the variation (before and after attacks) is observable such as 12.7% - 19.6%.  
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5.3.Discussion and Future Directions   
 

Despite advancements in delay testing techniques, several challenges remain. Detecting small 

delay defects is still difficult, necessitating more sensitive testing methods. Additionally, 
generating effective test patterns for complex circuits is a complex task that requires automated 

solutions. Scalability poses another issue, as existing methods may struggle with larger circuit 

designs. The integration of hardware security is crucial, especially with the rising threat of 
hardware Trojans, and future research should explore combining delay testing with security 

measures. Furthermore, developing real-time testing techniques could provide immediate 

feedback on circuit performance. Lastly, cross-disciplinary collaboration with fields like machine 

learning may lead to innovative solutions for improving delay testing and enhancing hardware 
security.  

 

6. CONCLUSIONS 
 
Today’s advanced ICs require a delay fault testing to ensure the manufactured circuits meet their 

timing specification. Development of efficient test generation and fault simulation algorithms for 

delay faults has been an active area of research in the last two decades. In this paper, a survey of 
related literature revealed that there is considerable scope for the development of path delay fault 

models for delay fault testing in combinational as well as sequential circuits. We discussed about 

the details of path delay fault test method, its principle, various paths selection and test 

generation procedures. We have also presented a new path delay fault coverage comparison of 
HT-free and infected integrated circuits. This proposed idea utilizes shortest paths of the circuit, 

and particularly targeted on paths that are prone to get attacked by adversaries. Our methodology 

does not require activation of the HT and does not require additional HT prevention mechanism 
(i.e. design-for trust circuits). The possibilities to detect HTs are very high using PDF coverage 

comparison method where the variation is more than 10% in all benchmarks under attacks.    
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