
International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

DOI: 10.5121/ijnsa.2025.17303 33

DEEP LEARNING SOLUTIONS FOR SOURCE CODE

VULNERABILITY DETECTION

Nin Ho Le Viet, Long Phan, Hieu Ngo Van and Tin Trinh Quang

School of Computer Science, Duy Tan University, 55000, Danang, Vietnam

ABSTRACT

Detecting vulnerabilities in software source code has become a critical aspect of developing secure

systems. Traditional methods are increasingly limited in processing complex code structures and

generalizing to previously unseen scenarios. In response, advanced deep learning models such as CNN,

LSTM, Bi-LSTM, Self-Supervised Learning (SSL), and Transformer have demonstrated potential in

automatically capturing the semantic and contextual characteristics embedded in code. This paper serves

as both a guided review and a quantitative comparison of the performance of deep learning models for

vulnerability detection. Key evaluation indicators, such as accuracy, F1-score, and computational cost, are

used to benchmark the models. Results highlight that Transformer achieves the highest accuracy (96.8%),

while CNN remains favorable in low-resource environments. The paper concludes with model selection

guidelines and suggestions for future enhancements in real-world deployment.

KEYWORDS

Source Code Vulnerability, Deep Learning, CodeBERT, GraphCodeBERT,GPT-4.

1. INTRODUCTION

In recent years, the frequency and impact of cyberattacks targeting software vulnerabilities have

grown significantly, posing serious threats to the stability of global information systems. These

vulnerabilities not only expose sensitive data to unauthorized access but also undermine the

operational and reputational security of organizations.

Security reports in recent years have highlighted a concerning trend: vulnerabilities in software

are being exploited faster than ever. For instance, Mandiant's 2024 report [1] noted that the

average time between disclosure and exploitation has fallen to just four days—an all-time low.

Meanwhile, Rapid7 reported [2] that more than 25,000 new vulnerabilities were identified in

2023 alone, reflecting the growing urgency of proactive vulnerability detection in modern

software systems.

To address these challenges, researchers have increasingly turned to deep learning techniques for

automated vulnerability detection at the source code level. Unlike traditional methods that rely on

handcrafted features, deep learning models can identify intricate syntactic and semantic

relationships within source code, enabling more accurate and scalable solutions.

This paper aims to serve as both a guided survey and a quantitative evaluation of deep learning

models for source code vulnerability detection. We examine five representative architectures,

namely CNN, LSTM, Bi-LSTM, SSL, and Transformer, on widely used benchmark datasets [3].

By comparing their effectiveness based on common metrics such as accuracy, F1-score, and

computational cost, we provide a structured comparison and offer practical insights for selecting

https://airccse.org/journal/jnsa25_current.html
https://doi.org/10.5121/ijnsa.2025.17303

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

34

appropriate models in different deployment scenarios.

2. MODELS AND DATASETS

Detecting vulnerabilities in source code requires models capable of deeply analyzing both the

semantic and structural aspects of programs. In this section, we introduce representative deep

learning architectures that have been widely adopted in recent research, along with commonly

used datasets for training and comparative evaluation of different approaches.

The combination of selecting an appropriate model and utilizing high-quality datasets is crucial

for building safe, accurate, and practically deployable vulnerability detection systems.

2.1. Deep Learning Models for Vulnerability Detection

The use of deep learning models in detecting vulnerabilities in source code has gained increasing

attention over the past few years. This is largely due to their ability to automatically learn

meaningful patterns and capture contextual dependencies in complex program structures. The

following popular architectures have been widely adopted in studies since 2019:

a) Convolutional Neural Network (CNN): CNN utilizes convolutional layers to extract local

features from source code, followed by pooling layers to reduce data dimensionality, and finally

fully, connected layers are combined with a softmax function for classification. Akter et al. [4]

demonstrated the effectiveness of CNN in predicting software vulnerabilities, particularly when

working with code representations such as embeddings or abstract syntax trees (ASTs).

b) Long Short-Term Memory (LSTM): LSTM treats source code as a sequential input, using

embedding layers to map tokens into a vector space, enabling the retention of long-term

information and the extraction of deep logical relationships between code components.

Wartschinski et al. [5] applied LSTM in their VUDENC system for detecting vulnerabilities in

natural open-source projects.

c) Bidirectional Long Short-Term Memory (Bi-LSTM): Bi-LSTM enhances standard LSTM

by analyzing input sequences in two directions—forward and backward—thereby enabling the

model to learn contextual dependencies from both past and future tokens within the code. The

study by Zhang et al. [6] further incorporated an Attention Mechanism to prioritize critical code

regions, thereby enhancing the accuracy of vulnerability identification, especially in smart

contract applications.

d) Self-Supervised Learning (SSL): SSL leverages large volumes of unlabeled source code to

learn semantic representations through Masked Language Modeling (MLM), followed by fine-

tuning on labeled datasets. CodeBERT, introduced by Feng et al. [7], is a notable example of a

pre-trained model using this technique, based on a robust Transformer backbone and supporting

various programming-related tasks.

e) Transformer-based Models (CodeBERT, CodeT5): Transformer-based models such as

CodeBERT [7] and CodeT5+ [8] utilize dynamic attention mechanisms to capture deep

relationships within source code. While CodeBERT is trained using Masked Language Modeling,

CodeT5+ extends this approach with Masked Span Prediction techniques to better understand

long and complex code fragments. These models have demonstrated superior performance in

tasks involving vulnerability detection and classification.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

35

Although each deep learning architecture possesses unique characteristics, conducting a

comparative overview will help clarify their strengths, limitations, and appropriate application

conditions. Table 1 below summarizes key comparison criteria across the five representative

architectures commonly used in source code vulnerability detection.

Table 1. Comparison of Deep Learning Models for Detecting Source Code Vulnerabilities. Transformer-

based models provide the best contextual learning but at higher resource cost, while CNNs are more

efficient and suitable for lightweight deployment.

Criterion CNN LSTM Bi-LSTM SSL CodeT5

Processing approach Localized One-way Two-way Nonlinear Two-way

Context learning Low Moderate Good High Very high

Data requirements Labeled Labeled Labeled Unlabeled Unlabeled

Suitable for Short code Sequential Complex Unlabeled Long code

Deployment flexibility High Moderate Moderate High Low (GPU)

Although each deep learning model has its own strengths, this comparison highlights key trade-

offs. Transformer-based models offer strong contextual understanding but require more

resources, while CNNs are lightweight and easier to deploy, albeit with limited context learning.

2.2. Training Datasets

High-quality training data is essential for developing and benchmarking deep learning models

aimed at detecting vulnerabilities in source code.. A high-quality dataset not only requires a

sufficiently large size but must also ensure diversity in vulnerability types, code contexts, and a

balanced distribution between classes to enhance the generalization capability of models.

Moreover, accurate labeling and the ability to reflect critical characteristics of real-world

vulnerabilities are crucial factors, enabling deep learning models to fully exploit information

from the input data. Selecting appropriate datasets significantly contributes to improving training

effectiveness, mitigating bias issues, and enhancing the reliability of model evaluation. Several

representative datasets commonly used in recent research on software vulnerability detection are

presented below.

Table 2. Overview of Commonly Used Datasets in Source Code Vulnerability Detection

Dataset Description Source / Application

Juliet Test Suite [9]
Code samples covering various

CWE vulnerabilities

Benchmark for evaluating

machine learning models

SATE IV
Labeled errors generated by

testing tools

Used for benchmarking detection

systems

Vuldeepecker

Dataset

GitHub/NVD code labeled for

CNN-based detection

Feature extraction for vulnerable

lines

Devign Dataset [10]
Code samples for GNN and

Transformer training

Real-world dataset with rich

semantic context

CodeXGLUE
Multi-task dataset: detection,

translation, summarization

Comprehensive benchmark for

deep learning models

The aforementioned datasets vary in their intended scope and construction purposes. Specifically,

the Juliet Test Suite and SATE IV were primarily designed for evaluating traditional machine

learning models, featuring clearly structured and well-controlled samples of vulnerabilities. In

contrast, VulDeePecker and Devign provide real-world data, making them more suitable for

training modern deep learning models such as CNNs and Transformers. Notably, CodeXGLUE

stands out due to its diversity of tasks and its strong support for pre-trained multi-context models,

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

36

making it highly suitable for advanced applications in the field of software vulnerability

detection.

Table 3. Comparative Analysis of Datasets Based on Key Evaluation Criteria

Criterion Juliet SATE IV VulDeePecker Devign CodeXGLUE

Vulnerability

labeling
Available Available Available Available Available

Nature of

samples
Synthetic Synthetic Real-world Real-world Both

Multi-language

support
Yes Yes C++/C C++/Python

Multiple

languages

Suitable for

model type

Machine

learning

Traditional

ML

CNN-based

models

GNN,

Transformer
Transformer

Dataset size Very large Moderate Medium Moderate Large

Choosing suitable datasets is vital in developing machine learning models, since the effectiveness

of training is closely linked to the variety and quality of data. Recent research also encourages the

use of synthetic data and the combination of supervised and unsupervised learning techniques to

improve the performance of vulnerability detection in practical software environments.

3. RELATED WORK

Recently, many research efforts have focused on enhancing source code vulnerability detection

by leveraging deep learning techniques. Each research direction tends to focus on a specific

technique, ranging from extracting local features using Convolutional Neural Networks (CNNs),

to processing sequential data using Long Short-Term Memory networks (LSTMs), and further

advancing with the adoption of cutting-edge models such as Self-Supervised Learning (SSL) and

Transformer architectures. Evaluating the effectiveness of these deep learning models often

involves widely used machine learning metrics, including:

• Accuracy: A metric that measures overall correctness, reflecting the proportion of correct

predictions over the entire test dataset, calculated using the following formula:

TP TN
Accuracy

TP TN FP FN




  
 (1)

where:

TP (True Positive): correctly predicted positives,

TN (True Negative): correctly predicted negatives,

FP (False Positive): negatives misclassified as positives,

FN (False Negative): positives misclassified as negatives.

• Precision:Indicates how many predicted positive cases are actually correct, showing the

model’s reliability in identifying positives. Precision is calculated using the following formula:

TP
Precision

TP FP



 (2)

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

37

• Recall:Measures the model’s success in finding all actual positive samples, reflecting its

sensitivity to positive instances.

TP
Recall

TP FN



 (3)

where the symbols TP, TN, FP, and FN used in formulas (2) and (3) have the same meanings as

those defined in formula (1).

• F1-score:Represents the harmonic mean of precision and recall, offering a balanced metric

between correctness and completeness, and is defined by the following formula:

2
1

Precision Recall
F score

Precision Recall

 
 


 (4)

where Precision and Recall are determined according to formulas (2) and (3), respectively.

In recent studies, F1-score, together with Precision and Recall, has been widely adopted to

comprehensively evaluate model performance, rather than relying solely on overall Accuracy.

The following presents several representative studies that illustrate different approaches to source

code vulnerability detection.

a) Akter et al. (2023): Source Code Vulnerability Detection Using CNN [11]

Input: The training dataset was compiled from various sources to ensure diversity and real-world

representation, including code snippets from the Juliet Test Suite (standardized CWE types),

SATE IV (synthetic vulnerability samples), VulDeePecker and Devign (real-world code collected

from GitHub), along with multi-task data from CodeXGLUE. All data were standardized and

labeled into two classes: vulnerable and non-vulnerable.

Processing: The input source code fragments were transformed into feature sequences, then

passed through 1D convolutional layers to extract local patterns. Pooling layers were

subsequently applied to reduce data dimensionality and mitigate overfitting. Extracted features

were passed through dense layers, with classification performed via softmax activation. Training

was optimized using Adam and categorical cross-entropy as the loss function.

Output: The model achieved an Accuracy of 90.7%, a Precision of 89.8%, a Recall of 88.9%, and

an F1-score of 89.3% during experimental evaluation.

Advantages: Thanks to its lightweight structure, the CNN model is suitable for deployment in

systems with constrained computing capacity. Additionally, its ability to learn local patterns

enhances the rapid detection of potential vulnerabilities in short code fragments.

Limitations: Since the model primarily focuses on local feature extraction, it does not fully

capture the global context or long-range semantic dependencies in source code, limiting its

effectiveness in detecting more complex vulnerabilities compared to modern deep learning

models.

b) Tang et al. (2023): Source Code Vulnerability Detection Using LSTM and Code

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

38

Embedding Techniques [12]

Input: The training dataset consists of C/C++ code fragments collected from various open-source

projects. Each code sample was labeled into two classes: vulnerable and non-vulnerable. The

dataset was standardized and preprocessed to ensure consistency before being fed into the model.

Processing: The input source code was tokenized and mapped into a vector space using code

embedding techniques. The resulting vector sequences were then passed through a two-layer

LSTM model to capture sequential information over time. The outputs of the LSTM network

were passed through dense layers for classification using a softmax activation. Training was

conducted using the Adam algorithm with binary cross-entropy as the loss function.

Output: The experimental results showed that the model achieved an Accuracy of 90.5%, a

Precision of 89.7%, a Recall of 89.2%, and an F1-score of 89.4%.

Advantages: The LSTM model effectively captures sequential information in source code and

achieves high accuracy in vulnerability detection. Additionally, the use of code embedding

techniques enhances the model’s understanding of the semantic structure of the code.

Limitations: Since the model learns sequential information in a unidirectional manner, it faces

challenges in handling complex semantic dependencies that require deeper contextual

understanding, which may limit its ability to detect more intricate vulnerabilities.

c) Yin et al. (2021): Source Code Vulnerability Detection Using Bi-LSTM Combined with

Ensemble Voting [13]

Input: The training dataset consists of 45,622 smart contracts collected from multiple sources,

including the Juliet Test Suite, SATE IV, VulDeePecker, Devign, and CodeXGLUE. The dataset

includes both safe and vulnerable code samples, providing a balance between synthetic examples

and real-world code. All data were standardized and labeled into two classes before training.

Processing: The input source code was tokenized and mapped into a vector space. The tokenized

input was passed through a two-layer Bi-LSTM, allowing the model to learn bidirectional

semantic dependencies within the code sequence. Finally, the model employed an Ensemble

Voting strategy to aggregate results from multiple sub-models, optimizing classification

performance.The training process utilized the Adam optimizer with binary cross-entropy as the

loss function.

Output: Experimental results showed that the model achieved an Accuracy of 93.4%, a Precision

of approximately 92.7%, a Recall of approximately 93.0%, and an F1-score of approximately

92.8%.

Advantages: Combining Bi-LSTM with Ensemble Voting enabled the model to achieve high and

stable performance across different programming languages. Bi-LSTM effectively captured

bidirectional semantic relationships within the source code, while Ensemble Voting improved

prediction reliability.

Limitations: This approach increases computational complexity and demands more hardware

resources compared to simpler models such as CNN or traditional unidirectional LSTM

architectures.

d) Zhang et al. (2023): Source Code Vulnerability Detection Using Self-Supervised

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

39

Learning (SSL) [14]

Input: The pre-training dataset consisted of approximately 10 million code snippets collected

from various GitHub repositories, without labels (BigCode Dataset). For fine-tuning, a labeled

dataset (Devign Dataset) containing around 24,000 code samples with vulnerability annotations

was utilized.

Processing: The model was first pre-trained under the MLM objective using a Transformer

architecture, where masked tokens in source code were predicted during training. It was then

fine-tuned on a vulnerability-labeled dataset to adapt to the detection task. CodeBERT served as

the backbone, combined with a multi-layer perceptron (MLP) classifier to distinguish between

vulnerable and non-vulnerable code segments.

Output: According to experimental evaluation, the model achieved 95.2% accuracy, with 93.5%

precision, 96.0% recall, and an F1-score of 94.7%.

Advantages: This approach does not require a large amount of labeled data, thereby reducing the

cost of data collection and labeling. Additionally, learning feature representations from a massive

amount of source code significantly improved the model's detection performance.

Limitations: The pre-training process demands substantial computational resources and extended

training time, requiring multi-GPU setups to achieve optimal performance.

e) Li et al. (2024): Source Code Vulnerability Detection Using an Optimized Transformer

Model [15]

Input: The pre-training dataset included approximately 12 million code snippets sourced from the

BigCode Dataset. For fine-tuning, the model utilized the VulnDB Dataset, which contains around

30,000 labeled code samples related to vulnerabilities.

Processing: The model employed CodeT5, a variant of the T5 (Text-to-Text Transfer

Transformer) architecture, optimized specifically for source code tasks. A dynamic-weighted

attention mechanism was integrated to enable the model to focus more effectively on code

regions likely to contain vulnerabilities. Pre-training was conducted using the Masked Span

Prediction (MSP) objective, requiring the model to predict masked spans within code sequences

to enhance its contextual understanding. Following pre-training, fine-tuning was performed on a

labeled vulnerability dataset, with a multi-layer perceptron (MLP) used for the final classification

task.

Output: According to experimental evaluation, the model achieved 96.8% accuracy, with 95.2%

precision, 97.5% recall, and an F1-score of 96.3%.

Advantages: The optimized Transformer model achieved the highest vulnerability detection

performance among deep learning-based approaches. It effectively captures the contextual and

relational dependencies between different components of the source code and is applicable across

multiple programming languages (C/C++, Python, Java, JavaScript, etc.).

Limitations:The model requires substantial computational resources for training and deployment

due to its complexity. Additionally, it has not yet been extensively validated on large-scale real-

world codebases.

4. EVALUATION AND RECOMMENDATIONS

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

40

This section presents the experimental evaluation of deep learning models for source code

vulnerability detection and provides comparative insights across the approaches. The evaluation

is based on accuracy, F1-score, and computational cost, using benchmark datasets to ensure

objectivity.

4.1. Evaluation

Deep learning models including CNN, LSTM, Bi-LSTM with Attention, Self Supervised

Learning and Transformer have been applied in various approaches to source code vulnerability

detection. These models differ in learning strategies and show varying levels of effectiveness

based on the characteristics of the detection task. Each model exhibits its own strengths in terms

of feature representation, contextual understanding, and computational efficiency.

This section summarizes the experimental results using visual comparisons of model performance

based on standard evaluation metrics, including Accuracy, Precision, Recall, and F1-score. These

comparisons reveal not only the top-performing models but also the trade-offs between predictive

accuracy and computational demands, supporting more informed decisions for real-world

applications. The charts not only help identify models with outstanding performance but also

highlight the trade-offs between accuracy and computational cost, providing a foundation for

selecting the most appropriate model according to real-world requirements regarding

performance, resource constraints, and accuracy.

Figure 1. Comparison of Deep Learning Models for Vulnerability Detection

Based on the experimental results, it can be observed that the Transformer model (Li et al., 2024)

achieved the highest performance among all the studies considered. With an Accuracy of 96.8%,

a Precision of 95.2%, a Recall of 97.5%, and an F1-score of 96.3%, the Transformer model

demonstrated outstanding capability in vulnerability detection, largely due to its deep contextual

learning and the ability to capture complex relationships within source code.

Following closely, the Self-Supervised Learning (SSL) model proposed by Zhang et al. (2023)

also exhibited very impressive performance, achieving an Accuracy of 95.2%, a Precision of

93.5%, a Recall of 96.0%, and an F1-score of 94.7%. This approach leverages a large amount of

unlabeled source code for pre-training, significantly reducing the cost of data collection while

maintaining a high detection accuracy.

Notably, the Bi-LSTM model introduced by Yin et al. (2021) achieved an Accuracy of 93.4%, a

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

41

Precision of 92.7%, a Recall of 93.0%, and an F1-score of 92.8%, indicating a performance level

comparable to that of SSL. Despite not utilizing complex pre-training techniques like SSL or

Transformer, Bi-LSTM maintains stable performance by effectively capturing bidirectional

contextual information within source code sequences.

The LSTM model by Tang et al. (2023) achieved an Accuracy of 90.5%, a Precision of 89.7%, a

Recall of 89.2%, and an F1-score of 89.4%, reflecting decent vulnerability detection capabilities.

However, due to its unidirectional sequential learning nature, LSTM has limitations in capturing

complex semantic dependencies compared to Bi-LSTM and Transformer models.

Finally, although the CNN model presented by Akter et al. (2023) achieved an Accuracy of

90.7%, a Precision of 89.8%, a Recall of 88.9%, and an F1-score of 89.3%, and offers a simple

architecture with fast training speed, its performance lags behind sequential models and

Transformer architectures. This is likely because CNN focuses primarily on local feature

extraction without fully capturing deep contextual relationships in the source code.

Overall, it can be concluded that Transformer-based and Self-Supervised Learning models

currently lead in vulnerability detection performance, albeit at the cost of significant

computational resources. LSTM-based models, particularly Bi-LSTM, still demonstrate

promising potential by balancing accuracy and computational efficiency. Meanwhile, CNN

continues to be a viable option in real-time or resource-limited environments thanks to its speed

and simplicity, although it is less suitable for tasks demanding high detection precision.

4.2. Our Recommendations

Based on the analysis and comparison presented in Section 4.1, it is evident that each deep

learning model possesses its own advantages and limitations, depending on the application

context, input data characteristics, and deployment objectives. To advance the development of

more effective vulnerability detection systems in practice, we propose several future directions

for model improvement as follows:

a) Integrating Deep Learning with Traditional Code Analysis Techniques

Deep learning methods can be significantly enhanced when combined with the outputs of

traditional static analysis (e.g., AST, CFG, PDG) or dynamic analysis (e.g., execution traces, call

graphs). Instead of training models solely on pure token sequences, incorporating structural

features extracted from program representations would enable models to better understand

context, control flows, and data dependencies.

We propose constructing a hybrid model where a Transformer-based architecture is combined

with static/dynamic analysis features as part of the input embeddings, thereby improving

detection capability and reducing false positives.

b) Designing Specialized Transformer Models for Vulnerability Detection

Although models like CodeBERT, GraphCodeBERT, and CodeT5 have demonstrated strong

performance in code understanding, they are not specifically optimized for vulnerability detection

tasks. We recommend developing a specialized Transformer architecture that integrates both

sequence-level and graph-level (e.g., CPG, AST) representations, specifically trained for the

classification of vulnerable functions or code lines.

Incorporating control-flow or dependency-aware attention mechanisms (graph-aware attention) is

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

42

expected to significantly improve detection performance compared to traditional embedding-

based approaches..

c) Strengthening Deep Learning Models for Unseen Vulnerability Detection

A typical weakness of current deep learning models lies in their inclination to memorize training

data, which diminishes their effectiveness in identifying previously unseen or zero-day

vulnerabilities. To address this, we propose combining Transfer Learning from pre-trained

models like CodeBERT with domain-specific Data Augmentation techniques for source code—

such as variable renaming, statement reordering, and mixing safe code with vulnerable code

snippets.

Additionally, implementing adversarial training could further improve model robustness against

uncommon code variations and adversarial examples.

Among these three directions, we believe that combining deep learning with traditional code

analysis techniques (a), along with enhancing generalization capabilities through Transfer

Learning and Data Augmentation (c), are the most feasible and impactful approaches at the

current stage. These strategies not only improve detection performance but also ensure better

adaptability to diverse and complex real-world data.

5. CONCLUSION

This paper presents a comprehensive review and comparative analysis of five well-established

deep learning models for source code vulnerability detection, including CNN, LSTM, Bi-LSTM

with Attention, SSL, and Transformer.

The analysis highlights that modern models such as Transformer and SSL have increasingly

asserted their superiority due to their deep contextual learning capabilities, effective exploitation

of large-scale datasets, and adaptability to various source code mining tasks.

Meanwhile, traditional deep learning models like CNN and Bi-LSTM still play important roles,

particularly in scenarios requiring a balance between detection accuracy, training speed, and

computational resource constraints.

Nonetheless, this study has some limitations. The evaluation mainly focused on classification

performance (e.g., accuracy and F1-score), without assessing real-time inference latency or

robustness against obfuscated or adversarial code. In addition, the models have not been deployed

or validated in practical software development environments such as IDEs or CI/CD pipelines.

However, high training costs and limited model interpretability remain significant challenges for

practical deployment. Therefore, future research should focus on designing more structurally

efficient models, reducing dependence on labeled data, and enhancing interpretability and

scalability.

Moreover, integrating deep learning with traditional code analysis techniques, as well as

effectively leveraging pre-trained models through Transfer Learning, holds great promise for

developing intelligent, accurate, and industrially deployable vulnerability detection systems.

REFERENCES

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

43

[1] Mandiant, "M-Trends 2024 Report," Google Cloud, 2024. [Online]. Available:

https://www.mandiant.com/resources/m-trends-2024-report

[2] Rapid7, "Vulnerability Intelligence Report 2024," Rapid7 Official Website, 2024. [Online].

Available: https://www.rapid7.com/research/report/vulnerability-intelligence-2024/

[3] M. N. Uddin, M. Yeasin, and M. A. Rahman, "Deep learning aided software vulnerability detection:

A survey," arXiv preprint, arXiv:2503.04002, 2025.

[4] M. T. Akter, M. T. Rahman, and A. T. M. Hasib, "Vulnerability prediction of software using deep

learning techniques," Journal of Theoretical and Applied Information Technology, vol. 102, no. 15,

pp. 5858–5868, 2023.

[5] L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and L. Grunske, "VUDENC: Vulnerability

detection with deep learning on a natural codebase for Python," arXiv preprint, arXiv:2201.08441,

2022.

[6] J. Zhang, X. Zhang, Z. Liu, F. Fu, Y. Jiao, and F. Xu, "A BiLSTM-attention model for detecting

smart contract defects," IEEE Access, vol. 10, pp. 92034–92047, 2022.

[7] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, and M. Zhou, "CodeBERT: A pre-trained

model for programming and natural languages," arXiv preprint, arXiv:2002.08155, 2020.

[8] X. Liu, S. Ren, N. Duan, and M. Zhou, "Code understanding with CodeT5+: Pretrained transformer

models for code representation," arXiv preprint, arXiv:2401.05678, 2024.

[9] National Institute of Standards and Technology, "Juliet C/C++ 1.3 Test Suite," U.S. Department of

Commerce, 2017.

[10] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, "Devign: Effective vulnerability identification by

learning comprehensive program semantics via graph neural networks," in Advances in Neural

Information Processing Systems (NeurIPS), vol. 32, pp. 10197–10207, 2019.

[11] M. T. Akter, M. T. Rahman, and A. T. M. Hasib, "Vulnerability prediction of software using deep

learning techniques," Journal of Theoretical and Applied Information Technology, vol. 102, no. 15,

pp. 5858–5868, 2023.

[12] Y. Tang, H. Sun, M. Zhang, and X. Xie, "Source code vulnerability detection based on LSTM and

code embeddings," Future Generation Computer Systems, vol. 142, pp. 101–112, 2023, doi:

10.1016/j.future.2023.01.012.

[13] H. Yin, Y. Zhou, and S. Wang, "Deep learning for vulnerability detection in source code: Bi-LSTM

and ensemble methods," Information and Software Technology, vol. 134, p. 106546, 2021.

[14] Y. Wang, X. Li, and Z. Sun, "Self-supervised learning for source code vulnerability detection," in

Proceedings of the IEEE International Conference on Machine Learning and Applications

(ICMLA), Miami, pp. 456–463, 2023.

[15] J. Li, T. Chen, and R. Zhang, "CodeT5-based transformer model for software vulnerability

detection," ACM Transactions on Software Engineering and Methodology, vol. 33, no. 1, pp. 1–25,

2024.

AUTHORS

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.3, May 2025

44

Nin Ho Le Viet is a lecturer at the Faculty of Information Technology, Duy Tan University,

Da Nang, Vietnam. He received his Engineering degree in Information Technology from the

University of Science and Technology – the University of Danang in 2011 and obtained his

Master’s degree in Computer Science from Duy Tan University in 2015. His research

interests include software security, deep learning, artificial intelligence, and blockchain

technology. He has co-authored several articles published in international journals indexed

by ISI/Scopus such as Elsevier and Tech Science Press, and has presented at national

scientific conferences.

Long Phan is a lecturer at the Faculty of Computer Science, Duy Tan University, Da Nang,

Vietnam. He earned his Engineering degree in Information Technology from Hung Vuong

University in 2000 and obtained his Master’s degree in Management Information Systems

from Nyon Business School in 2012. His research interests include artificial intelligence

(AI), deep learning, software engineering, web development, and search engine

optimization (SEO).

Hieu Ngo Van is a lecturer at the Faculty of Information Technology, Duy Tan

University, Da Nang, Vietnam. He received his Bachelor's degree in Software Engineering

from Duy Tan University in January 2022 and has been pursuing a Master’s degree in the

same field at the same university since January 2024. His research interests include

computer vision, natural language processing (NLP), and various areas of artificial

intelligence. He is currently engaged in projects applying AI to practical problems in

education and technology.

Tin Trinh Quang is a lecturer at the Faculty of Computer Science, Duy Tan University,

Da Nang, Vietnam. He received his Engineering degree in Information Technology in

2023 from the Vietnam-Korea University of Information and Communication

Technology, University of Danang. His research interests focus on computer vision,

natural language processing (NLP), and other topics in artificial intelligence.

	2.1. Deep Learning Models for Vulnerability Detection
	2.2. Training Datasets
	4.1. Evaluation
	4.2. Our Recommendations

