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ABSTRACT 
 
Detecting vulnerabilities in software source code has become a critical aspect of developing secure 

systems. Traditional methods are increasingly limited in processing complex code structures and 

generalizing to previously unseen scenarios. In response, advanced deep learning models such as CNN, 

LSTM, Bi-LSTM, Self-Supervised Learning (SSL), and Transformer have demonstrated potential in 

automatically capturing the semantic and contextual characteristics embedded in code. This paper serves 

as both a guided review and a quantitative comparison of the performance of deep learning models for 

vulnerability detection. Key evaluation indicators, such as accuracy, F1-score, and computational cost, are 

used to benchmark the models. Results highlight that Transformer achieves the highest accuracy (96.8%), 

while CNN remains favorable in low-resource environments. The paper concludes with model selection 

guidelines and suggestions for future enhancements in real-world deployment. 
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1. INTRODUCTION 
 

In recent years, the frequency and impact of cyberattacks targeting software vulnerabilities have 

grown significantly, posing serious threats to the stability of global information systems. These 

vulnerabilities not only expose sensitive data to unauthorized access but also undermine the 

operational and reputational security of organizations. 

 

Security reports in recent years have highlighted a concerning trend: vulnerabilities in software 

are being exploited faster than ever. For instance, Mandiant's 2024 report [1] noted that the 

average time between disclosure and exploitation has fallen to just four days—an all-time low. 

Meanwhile, Rapid7 reported [2] that more than 25,000 new vulnerabilities were identified in 

2023 alone, reflecting the growing urgency of proactive vulnerability detection in modern 

software systems. 

 

To address these challenges, researchers have increasingly turned to deep learning techniques for 

automated vulnerability detection at the source code level. Unlike traditional methods that rely on 

handcrafted features, deep learning models can identify intricate syntactic and semantic 

relationships within source code, enabling more accurate and scalable solutions. 

 

This paper aims to serve as both a guided survey and a quantitative evaluation of deep learning 

models for source code vulnerability detection. We examine five representative architectures, 

namely CNN, LSTM, Bi-LSTM, SSL, and Transformer, on widely used benchmark datasets [3]. 

By comparing their effectiveness based on common metrics such as accuracy, F1-score, and 

computational cost, we provide a structured comparison and offer practical insights for selecting 
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appropriate models in different deployment scenarios. 

 

2. MODELS AND DATASETS 
 

Detecting vulnerabilities in source code requires models capable of deeply analyzing both the 

semantic and structural aspects of programs. In this section, we introduce representative deep 

learning architectures that have been widely adopted in recent research, along with commonly 

used datasets for training and comparative evaluation of different approaches. 

 

The combination of selecting an appropriate model and utilizing high-quality datasets is crucial 

for building safe, accurate, and practically deployable vulnerability detection systems. 

 

2.1. Deep Learning Models for Vulnerability Detection 
 

The use of deep learning models in detecting vulnerabilities in source code has gained increasing 

attention over the past few years. This is largely due to their ability to automatically learn 

meaningful patterns and capture contextual dependencies in complex program structures. The 

following popular architectures have been widely adopted in studies since 2019: 

 

a) Convolutional Neural Network (CNN): CNN utilizes convolutional layers to extract local 

features from source code, followed by pooling layers to reduce data dimensionality, and finally 

fully, connected layers are combined with a softmax function for classification. Akter et al. [4] 

demonstrated the effectiveness of CNN in predicting software vulnerabilities, particularly when 

working with code representations such as embeddings or abstract syntax trees (ASTs). 

 

b) Long Short-Term Memory (LSTM): LSTM treats source code as a sequential input, using 

embedding layers to map tokens into a vector space, enabling the retention of long-term 

information and the extraction of deep logical relationships between code components. 

Wartschinski et al. [5] applied LSTM in their VUDENC system for detecting vulnerabilities in 

natural open-source projects. 

 

c) Bidirectional Long Short-Term Memory (Bi-LSTM): Bi-LSTM enhances standard LSTM 

by analyzing input sequences in two directions—forward and backward—thereby enabling the 

model to learn contextual dependencies from both past and future tokens within the code. The 

study by Zhang et al. [6] further incorporated an Attention Mechanism to prioritize critical code 

regions, thereby enhancing the accuracy of vulnerability identification, especially in smart 

contract applications. 

 

d) Self-Supervised Learning (SSL): SSL leverages large volumes of unlabeled source code to 

learn semantic representations through Masked Language Modeling (MLM), followed by fine-

tuning on labeled datasets. CodeBERT, introduced by Feng et al. [7], is a notable example of a 

pre-trained model using this technique, based on a robust Transformer backbone and supporting 

various programming-related tasks. 

 

e) Transformer-based Models (CodeBERT, CodeT5): Transformer-based models such as 

CodeBERT [7] and CodeT5+ [8] utilize dynamic attention mechanisms to capture deep 

relationships within source code. While CodeBERT is trained using Masked Language Modeling, 

CodeT5+ extends this approach with Masked Span Prediction techniques to better understand 

long and complex code fragments. These models have demonstrated superior performance in 

tasks involving vulnerability detection and classification. 
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Although each deep learning architecture possesses unique characteristics, conducting a 

comparative overview will help clarify their strengths, limitations, and appropriate application 

conditions. Table 1 below summarizes key comparison criteria across the five representative 

architectures commonly used in source code vulnerability detection. 

 
Table 1. Comparison of Deep Learning Models for Detecting Source Code Vulnerabilities. Transformer-

based models provide the best contextual learning but at higher resource cost, while CNNs are more 

efficient and suitable for lightweight deployment. 

 
Criterion CNN LSTM Bi-LSTM SSL CodeT5 

Processing approach Localized One-way Two-way Nonlinear Two-way 

Context learning Low Moderate Good High Very high 

Data requirements Labeled Labeled Labeled Unlabeled Unlabeled 

Suitable for Short code Sequential Complex Unlabeled Long code 

Deployment flexibility High Moderate Moderate High Low (GPU) 

 

Although each deep learning model has its own strengths, this comparison highlights key trade-

offs. Transformer-based models offer strong contextual understanding but require more 

resources, while CNNs are lightweight and easier to deploy, albeit with limited context learning. 
 

2.2. Training Datasets 
 

High-quality training data is essential for developing and benchmarking deep learning models 

aimed at detecting vulnerabilities in source code.. A high-quality dataset not only requires a 

sufficiently large size but must also ensure diversity in vulnerability types, code contexts, and a 

balanced distribution between classes to enhance the generalization capability of models. 

Moreover, accurate labeling and the ability to reflect critical characteristics of real-world 

vulnerabilities are crucial factors, enabling deep learning models to fully exploit information 

from the input data. Selecting appropriate datasets significantly contributes to improving training 

effectiveness, mitigating bias issues, and enhancing the reliability of model evaluation. Several 

representative datasets commonly used in recent research on software vulnerability detection are 

presented below. 

 
Table 2. Overview of Commonly Used Datasets in Source Code Vulnerability Detection 

 
Dataset Description Source / Application 

Juliet Test Suite [9] 
Code samples covering various 

CWE vulnerabilities 

Benchmark for evaluating 

machine learning models 

SATE IV 
Labeled errors generated by 

testing tools 

Used for benchmarking detection 

systems 

Vuldeepecker 

Dataset 

GitHub/NVD code labeled for 

CNN-based detection 

Feature extraction for vulnerable 

lines 

Devign Dataset [10] 
Code samples for GNN and 

Transformer training 

Real-world dataset with rich 

semantic context 

CodeXGLUE 
Multi-task dataset: detection, 

translation, summarization 

Comprehensive benchmark for 

deep learning models 

 

The aforementioned datasets vary in their intended scope and construction purposes. Specifically, 

the Juliet Test Suite and SATE IV were primarily designed for evaluating traditional machine 

learning models, featuring clearly structured and well-controlled samples of vulnerabilities. In 

contrast, VulDeePecker and Devign provide real-world data, making them more suitable for 

training modern deep learning models such as CNNs and Transformers. Notably, CodeXGLUE 

stands out due to its diversity of tasks and its strong support for pre-trained multi-context models, 
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making it highly suitable for advanced applications in the field of software vulnerability 

detection. 

 
Table 3. Comparative Analysis of Datasets Based on Key Evaluation Criteria 

 
Criterion Juliet SATE IV VulDeePecker Devign CodeXGLUE 

Vulnerability 

labeling 
Available Available Available Available Available 

Nature of 

samples 
Synthetic Synthetic Real-world Real-world Both 

Multi-language 

support 
Yes Yes C++/C C++/Python 

Multiple 

languages 

Suitable for 

model type 

Machine 

learning 

Traditional 

ML 

CNN-based 

models 

GNN, 

Transformer 
Transformer 

Dataset size Very large Moderate Medium Moderate Large 

 

Choosing suitable datasets is vital in developing machine learning models, since the effectiveness 

of training is closely linked to the variety and quality of data. Recent research also encourages the 

use of synthetic data and the combination of supervised and unsupervised learning techniques to 

improve the performance of vulnerability detection in practical software environments. 

 

3. RELATED WORK 
 

Recently, many research efforts have focused on enhancing source code vulnerability detection 

by leveraging deep learning techniques. Each research direction tends to focus on a specific 

technique, ranging from extracting local features using Convolutional Neural Networks (CNNs), 

to processing sequential data using Long Short-Term Memory networks (LSTMs), and further 

advancing with the adoption of cutting-edge models such as Self-Supervised Learning (SSL) and 

Transformer architectures. Evaluating the effectiveness of these deep learning models often 

involves widely used machine learning metrics, including: 

 

• Accuracy: A metric that measures overall correctness, reflecting the proportion of correct 

predictions over the entire test dataset, calculated using the following formula: 

TP TN
Accuracy

TP TN FP FN




  
  (1) 

 

where: 

 

TP (True Positive): correctly predicted positives, 

TN (True Negative): correctly predicted negatives, 

FP (False Positive): negatives misclassified as positives, 

FN (False Negative): positives misclassified as negatives. 

 

• Precision:Indicates how many predicted positive cases are actually correct, showing the 

model’s reliability in identifying positives. Precision is calculated using the following formula: 

 

TP
Precision

TP FP



    (2) 
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• Recall:Measures the model’s success in finding all actual positive samples, reflecting its 

sensitivity to positive instances. 

 

TP
Recall

TP FN



    (3) 

 

where the symbols TP, TN, FP, and FN used in formulas (2) and (3) have the same meanings as 

those defined in formula (1). 

 

• F1-score:Represents the harmonic mean of precision and recall, offering a balanced metric 

between correctness and completeness, and is defined by the following formula: 

 

2
1

Precision Recall
F score

Precision Recall

 
 


        (4) 

 

where Precision and Recall are determined according to formulas (2) and (3), respectively. 

 

In recent studies, F1-score, together with Precision and Recall, has been widely adopted to 

comprehensively evaluate model performance, rather than relying solely on overall Accuracy. 

The following presents several representative studies that illustrate different approaches to source 

code vulnerability detection. 

 

a) Akter et al. (2023): Source Code Vulnerability Detection Using CNN [11]  

 

Input: The training dataset was compiled from various sources to ensure diversity and real-world 

representation, including code snippets from the Juliet Test Suite (standardized CWE types), 

SATE IV (synthetic vulnerability samples), VulDeePecker and Devign (real-world code collected 

from GitHub), along with multi-task data from CodeXGLUE. All data were standardized and 

labeled into two classes: vulnerable and non-vulnerable. 

 

Processing: The input source code fragments were transformed into feature sequences, then 

passed through 1D convolutional layers to extract local patterns. Pooling layers were 

subsequently applied to reduce data dimensionality and mitigate overfitting. Extracted features 

were passed through dense layers, with classification performed via softmax activation. Training 

was optimized using Adam and categorical cross-entropy as the loss function. 

 

Output: The model achieved an Accuracy of 90.7%, a Precision of 89.8%, a Recall of 88.9%, and 

an F1-score of 89.3% during experimental evaluation. 

 

Advantages: Thanks to its lightweight structure, the CNN model is suitable for deployment in 

systems with constrained computing capacity. Additionally, its ability to learn local patterns 

enhances the rapid detection of potential vulnerabilities in short code fragments. 

 

Limitations: Since the model primarily focuses on local feature extraction, it does not fully 

capture the global context or long-range semantic dependencies in source code, limiting its 

effectiveness in detecting more complex vulnerabilities compared to modern deep learning 

models. 

 

 

 

b) Tang et al. (2023): Source Code Vulnerability Detection Using LSTM and Code 
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Embedding Techniques [12] 

 

Input: The training dataset consists of C/C++ code fragments collected from various open-source 

projects. Each code sample was labeled into two classes: vulnerable and non-vulnerable. The 

dataset was standardized and preprocessed to ensure consistency before being fed into the model. 

Processing: The input source code was tokenized and mapped into a vector space using code 

embedding techniques. The resulting vector sequences were then passed through a two-layer 

LSTM model to capture sequential information over time. The outputs of the LSTM network 

were passed through dense layers for classification using a softmax activation. Training was 

conducted using the Adam algorithm with binary cross-entropy as the loss function. 

 

Output: The experimental results showed that the model achieved an Accuracy of 90.5%, a 

Precision of 89.7%, a Recall of 89.2%, and an F1-score of 89.4%. 

 

Advantages: The LSTM model effectively captures sequential information in source code and 

achieves high accuracy in vulnerability detection. Additionally, the use of code embedding 

techniques enhances the model’s understanding of the semantic structure of the code.  

 

Limitations: Since the model learns sequential information in a unidirectional manner, it faces 

challenges in handling complex semantic dependencies that require deeper contextual 

understanding, which may limit its ability to detect more intricate vulnerabilities. 

 

c) Yin et al. (2021): Source Code Vulnerability Detection Using Bi-LSTM Combined with 

Ensemble Voting [13] 

 

Input: The training dataset consists of 45,622 smart contracts collected from multiple sources, 

including the Juliet Test Suite, SATE IV, VulDeePecker, Devign, and CodeXGLUE. The dataset 

includes both safe and vulnerable code samples, providing a balance between synthetic examples 

and real-world code. All data were standardized and labeled into two classes before training. 

 

Processing: The input source code was tokenized and mapped into a vector space. The tokenized 

input was passed through a two-layer Bi-LSTM, allowing the model to learn bidirectional 

semantic dependencies within the code sequence. Finally, the model employed an Ensemble 

Voting strategy to aggregate results from multiple sub-models, optimizing classification 

performance.The training process utilized the Adam optimizer with binary cross-entropy as the 

loss function. 

 

Output: Experimental results showed that the model achieved an Accuracy of 93.4%, a Precision 

of approximately 92.7%, a Recall of approximately 93.0%, and an F1-score of approximately 

92.8%. 

 

Advantages: Combining Bi-LSTM with Ensemble Voting enabled the model to achieve high and 

stable performance across different programming languages. Bi-LSTM effectively captured 

bidirectional semantic relationships within the source code, while Ensemble Voting improved 

prediction reliability.  

 

Limitations: This approach increases computational complexity and demands more hardware 

resources compared to simpler models such as CNN or traditional unidirectional LSTM 

architectures. 

 

 

d) Zhang et al. (2023): Source Code Vulnerability Detection Using Self-Supervised 
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Learning (SSL) [14] 

 

Input: The pre-training dataset consisted of approximately 10 million code snippets collected 

from various GitHub repositories, without labels (BigCode Dataset). For fine-tuning, a labeled 

dataset (Devign Dataset) containing around 24,000 code samples with vulnerability annotations 

was utilized. 

 

Processing: The model was first pre-trained under the MLM objective using a Transformer 

architecture, where masked tokens in source code were predicted during training. It was then 

fine-tuned on a vulnerability-labeled dataset to adapt to the detection task. CodeBERT served as 

the backbone, combined with a multi-layer perceptron (MLP) classifier to distinguish between 

vulnerable and non-vulnerable code segments. 

 

Output: According to experimental evaluation, the model achieved 95.2% accuracy, with 93.5% 

precision, 96.0% recall, and an F1-score of 94.7%. 

 

Advantages: This approach does not require a large amount of labeled data, thereby reducing the 

cost of data collection and labeling. Additionally, learning feature representations from a massive 

amount of source code significantly improved the model's detection performance. 

 

Limitations: The pre-training process demands substantial computational resources and extended 

training time, requiring multi-GPU setups to achieve optimal performance. 

 

e) Li et al. (2024): Source Code Vulnerability Detection Using an Optimized Transformer 

Model [15] 

 

Input: The pre-training dataset included approximately 12 million code snippets sourced from the 

BigCode Dataset. For fine-tuning, the model utilized the VulnDB Dataset, which contains around 

30,000 labeled code samples related to vulnerabilities. 

 

Processing: The model employed CodeT5, a variant of the T5 (Text-to-Text Transfer 

Transformer) architecture, optimized specifically for source code tasks. A dynamic-weighted 

attention mechanism was integrated to enable the model to focus more effectively on code 

regions likely to contain vulnerabilities. Pre-training was conducted using the Masked Span 

Prediction (MSP) objective, requiring the model to predict masked spans within code sequences 

to enhance its contextual understanding. Following pre-training, fine-tuning was performed on a 

labeled vulnerability dataset, with a multi-layer perceptron (MLP) used for the final classification 

task. 

 

Output: According to experimental evaluation, the model achieved 96.8% accuracy, with 95.2% 

precision, 97.5% recall, and an F1-score of 96.3%. 

 

Advantages: The optimized Transformer model achieved the highest vulnerability detection 

performance among deep learning-based approaches. It effectively captures the contextual and 

relational dependencies between different components of the source code and is applicable across 

multiple programming languages (C/C++, Python, Java, JavaScript, etc.). 

 

Limitations:The model requires substantial computational resources for training and deployment 

due to its complexity. Additionally, it has not yet been extensively validated on large-scale real-

world codebases. 

 

4. EVALUATION AND RECOMMENDATIONS 
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This section presents the experimental evaluation of deep learning models for source code 

vulnerability detection and provides comparative insights across the approaches. The evaluation 

is based on accuracy, F1-score, and computational cost, using benchmark datasets to ensure 

objectivity. 

 

4.1. Evaluation 
 

Deep learning models including CNN, LSTM, Bi-LSTM with Attention, Self Supervised 

Learning and Transformer have been applied in various approaches to source code vulnerability 

detection. These models differ in learning strategies and show varying levels of effectiveness 

based on the characteristics of the detection task. Each model exhibits its own strengths in terms 

of feature representation, contextual understanding, and computational efficiency. 

 

This section summarizes the experimental results using visual comparisons of model performance 

based on standard evaluation metrics, including Accuracy, Precision, Recall, and F1-score. These 

comparisons reveal not only the top-performing models but also the trade-offs between predictive 

accuracy and computational demands, supporting more informed decisions for real-world 

applications. The charts not only help identify models with outstanding performance but also 

highlight the trade-offs between accuracy and computational cost, providing a foundation for 

selecting the most appropriate model according to real-world requirements regarding 

performance, resource constraints, and accuracy. 

 

 
 

Figure 1. Comparison of Deep Learning Models for Vulnerability Detection 

 

Based on the experimental results, it can be observed that the Transformer model (Li et al., 2024) 

achieved the highest performance among all the studies considered. With an Accuracy of 96.8%, 

a Precision of 95.2%, a Recall of 97.5%, and an F1-score of 96.3%, the Transformer model 

demonstrated outstanding capability in vulnerability detection, largely due to its deep contextual 

learning and the ability to capture complex relationships within source code. 

 

Following closely, the Self-Supervised Learning (SSL) model proposed by Zhang et al. (2023) 

also exhibited very impressive performance, achieving an Accuracy of 95.2%, a Precision of 

93.5%, a Recall of 96.0%, and an F1-score of 94.7%. This approach leverages a large amount of 

unlabeled source code for pre-training, significantly reducing the cost of data collection while 

maintaining a high detection accuracy. 

Notably, the Bi-LSTM model introduced by Yin et al. (2021) achieved an Accuracy of 93.4%, a 
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Precision of 92.7%, a Recall of 93.0%, and an F1-score of 92.8%, indicating a performance level 

comparable to that of SSL. Despite not utilizing complex pre-training techniques like SSL or 

Transformer, Bi-LSTM maintains stable performance by effectively capturing bidirectional 

contextual information within source code sequences. 

 

The LSTM model by Tang et al. (2023) achieved an Accuracy of 90.5%, a Precision of 89.7%, a 

Recall of 89.2%, and an F1-score of 89.4%, reflecting decent vulnerability detection capabilities. 

However, due to its unidirectional sequential learning nature, LSTM has limitations in capturing 

complex semantic dependencies compared to Bi-LSTM and Transformer models. 

 

Finally, although the CNN model presented by Akter et al. (2023) achieved an Accuracy of 

90.7%, a Precision of 89.8%, a Recall of 88.9%, and an F1-score of 89.3%, and offers a simple 

architecture with fast training speed, its performance lags behind sequential models and 

Transformer architectures. This is likely because CNN focuses primarily on local feature 

extraction without fully capturing deep contextual relationships in the source code. 

 

Overall, it can be concluded that Transformer-based and Self-Supervised Learning models 

currently lead in vulnerability detection performance, albeit at the cost of significant 

computational resources. LSTM-based models, particularly Bi-LSTM, still demonstrate 

promising potential by balancing accuracy and computational efficiency. Meanwhile, CNN 

continues to be a viable option in real-time or resource-limited environments thanks to its speed 

and simplicity, although it is less suitable for tasks demanding high detection precision. 

 

4.2. Our Recommendations 
 

Based on the analysis and comparison presented in Section 4.1, it is evident that each deep 

learning model possesses its own advantages and limitations, depending on the application 

context, input data characteristics, and deployment objectives. To advance the development of 

more effective vulnerability detection systems in practice, we propose several future directions 

for model improvement as follows: 

 

a) Integrating Deep Learning with Traditional Code Analysis Techniques 

 

Deep learning methods can be significantly enhanced when combined with the outputs of 

traditional static analysis (e.g., AST, CFG, PDG) or dynamic analysis (e.g., execution traces, call 

graphs). Instead of training models solely on pure token sequences, incorporating structural 

features extracted from program representations would enable models to better understand 

context, control flows, and data dependencies. 

 

We propose constructing a hybrid model where a Transformer-based architecture is combined 

with static/dynamic analysis features as part of the input embeddings, thereby improving 

detection capability and reducing false positives. 

 

b) Designing Specialized Transformer Models for Vulnerability Detection 

 

Although models like CodeBERT, GraphCodeBERT, and CodeT5 have demonstrated strong 

performance in code understanding, they are not specifically optimized for vulnerability detection 

tasks. We recommend developing a specialized Transformer architecture that integrates both 

sequence-level and graph-level (e.g., CPG, AST) representations, specifically trained for the 

classification of vulnerable functions or code lines. 

 

Incorporating control-flow or dependency-aware attention mechanisms (graph-aware attention) is 
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expected to significantly improve detection performance compared to traditional embedding-

based approaches.. 

 

c) Strengthening Deep Learning Models for Unseen Vulnerability Detection 

 

A typical weakness of current deep learning models lies in their inclination to memorize training 

data, which diminishes their effectiveness in identifying previously unseen or zero-day 

vulnerabilities. To address this, we propose combining Transfer Learning from pre-trained 

models like CodeBERT with domain-specific Data Augmentation techniques for source code—

such as variable renaming, statement reordering, and mixing safe code with vulnerable code 

snippets. 

 

Additionally, implementing adversarial training could further improve model robustness against 

uncommon code variations and adversarial examples. 

 

Among these three directions, we believe that combining deep learning with traditional code 

analysis techniques (a), along with enhancing generalization capabilities through Transfer 

Learning and Data Augmentation (c), are the most feasible and impactful approaches at the 

current stage. These strategies not only improve detection performance but also ensure better 

adaptability to diverse and complex real-world data. 

 

5. CONCLUSION 
 

This paper presents a comprehensive review and comparative analysis of five well-established 

deep learning models for source code vulnerability detection, including CNN, LSTM, Bi-LSTM 

with Attention, SSL, and Transformer. 

 

The analysis highlights that modern models such as Transformer and SSL have increasingly 

asserted their superiority due to their deep contextual learning capabilities, effective exploitation 

of large-scale datasets, and adaptability to various source code mining tasks. 

 

Meanwhile, traditional deep learning models like CNN and Bi-LSTM still play important roles, 

particularly in scenarios requiring a balance between detection accuracy, training speed, and 

computational resource constraints. 

 

Nonetheless, this study has some limitations. The evaluation mainly focused on classification 

performance (e.g., accuracy and F1-score), without assessing real-time inference latency or 

robustness against obfuscated or adversarial code. In addition, the models have not been deployed 

or validated in practical software development environments such as IDEs or CI/CD pipelines. 

However, high training costs and limited model interpretability remain significant challenges for 

practical deployment. Therefore, future research should focus on designing more structurally 

efficient models, reducing dependence on labeled data, and enhancing interpretability and 

scalability. 

 

Moreover, integrating deep learning with traditional code analysis techniques, as well as 

effectively leveraging pre-trained models through Transfer Learning, holds great promise for 

developing intelligent, accurate, and industrially deployable vulnerability detection systems. 
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