
International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

DOI: 10.5121/ijnsa.2025.17404 53

TRUSTWITHOUTEXPOSURE: VERIFIABLE
OBSERVABILITYWITH CAPABILITY-NATIVE

WEBASSEMBLY AT THEEDGE
Bala Subramanyan

Verifoxx, London, UK

ABSTRACT

In modern data ecosystems, where edge autonomy, privacy, and verifiability are essential, enabling
trustworthy observability without compromising data control remains a significant challenge. This paper
presents cWAMR, a capability-native WebAssembly runtime adapted for the CHERI (Capability
Hardware Enhanced RISC Instructions) architecture, enabling fine-grained, hardware-enforced
compartmentalization of untrusted code.

We demonstrate how cWAMR enables the construction of Verifiable Observability Pipelines (VoP)—
modular, staged execution flows deployed across edge environments. Each pipeline stage is implemented
as an isolated WebAssembly module running in a CHERI-sealed cWAMR compartment, with capability-
based delegation enforcing tamper-evident data flow and memory safety without shared linear memory or
enclave-based trust models.

Deployed and validated on the Arm Morello platform under the UK DSbD initiative, cWAMR supports both
interpreted and ahead-of-time WebAssembly execution, integrated with CHERI-aware system interfaces
(cWASI). The result is a lightweight, privacy-aligned foundation for building observable, compliant edge
pipelines—enabling cryptographically anchored provenance and lifecycle assurance without cloud
dependency or centralised attestation infrastructure.

KEYWORDS

WebAssembly, CHERI, Capability-Based Security, Verifiable Observability, Memory Safety, Data
Provenance, Privacy Preserving Pipelines, Data as a Product (DaaP)

1. INTRODUCTION

1.1 MOTIVATION

As digital ecosystems increasingly embrace the paradigm of “Data as a Product” [39], the need
for verifiable observability pipelines [38][40] at the edge has become urgent. Institutions and data
providers require the ability to process data locally - close to the source, without ceding control,
exposing raw datasets, or relying on heavy cloud infrastructure and centralized attestation
schemes [4]. This demand is particularly pronounced in regulated domains, where privacy,
auditability, and governance requirements conflict with monolithic, cloud-first architectures.

WebAssembly (WASM) [12] has emerged as a versatile and language-neutral runtime format,
now widely deployed across browsers, cloud-native microservices, edge gateways, and embedded
devices. By abstracting execution into a platform-independent bytecode model with a linear
memory interface, WASM offers a portable, lightweight, and sandboxed mechanism to run



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

54

untrusted workloads [30].

However, WASM’s sandboxing is enforced entirely in software, through dynamic bounds checks
and memory protections. These mechanisms introduce significant runtime overhead and remain
vulnerable to speculative and transient execution attacks [33]. Moreover, when WASM is
embedded within Trusted Execution Environments (TEEs) such as Intel SGX [11], new
challenges arise: enclave transition penalties, side-channel risks, and centralized trust
dependencies. These limitations make TEEs ill-suited for large-scale edge deployments or multi-
tenant data pipelines [25][28].

1.2 OBJECTIVES AND CONTRIBUTIONS

To address the limitations of current WASM-based or enclave based execution in
privacy-sensitive, decentralized environments—particularly the reliance on software-managed
sandboxing or centralized enclave infrastructures—we propose a new architecture that combines
hardware-enforced compartmentalization with verifiable, edge-resident data observability.
Specifically, this paper presents:

● cWAMR (capability-based WebAssembly Micro Runtime) [37]:

A CHERI-adapted execution environment derived from WAMR, designed for secure
deployment of WASM modules at the edge. cWAMR integrates:

● A sealed, capability-aware memory allocator
● A capability-restricted system interface (cWASI)
● Secure handling ofWASM externref objects

This runtime eliminates the need for traditional enclave-based models, offering
fine-grained isolation, pointer provenance, and hardware-level spatial safety—even
under speculative execution conditions. cWAMR [37] ensures that transformation logic
can run securely at the data owner's premises or on constrained edge devices, without
cloud dependency or attestation infrastructure.

● Staged Verifiable Observability Pipeline (VoP)

Built atop cWAMR [37], the Verifiable Observability Pipeline (VoP) enables staged,
tamper-evident data processing through capability-enforced WebAssembly
compartments. Each stage operates as an isolated cWAMR runtime, with cryptographic
delegation of execution outputs—eliminating shared memory and ensuring directional
data flow.

Rather than transmitting raw data, the pipeline supports the extraction of structured,
non-reversible execution artifacts that reflect processing state. These artifacts can be
securely dispatched to our decentralized Source of Truth (SoT) nodes for future
verifications.

While the internal logic of transformation and extraction remains proprietary, cWAMR
enables the secure composition and isolation of such pipelines at the edge—laying the
groundwork for downstream capabilities like Proof of Provenance (PoP) and
Predicate Disclosure Proofs (PDPs), without requiring trusted third parties or
enclave-based attestation.



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

55

● Edge-first deployment and Validation
●

We validate the architecture on the Arm Morello [23] CHERI [2] platform, developed
under the UK’s Digital Security by Design (DSbD) [18] program. Our experiments
confirm secure execution of both AoT-compiled and interpreted WASM modules under
hardware-enforced capability models, demonstrating low runtime overhead and
eliminating the complexity of enclave-based systems.

These contributions enable the realization of decentralized, privacy-enhancing observability
pipelines—where verifiability and trust are embedded into the architecture itself, and not
dependent on cloud-native infrastructure or external validators. This marks a shift toward secure,
hardware-backed accountability for modern edge data systems.

1.3 PAPER ORGANIZATION

The remainder of this paper is structured as follows:

● Section 2 provides background on WebAssembly runtimes, Trusted Execution
Environments (TEEs), and the CHERI architecture. It also reviews related efforts in
secure runtime isolation and privacy-preserving computation.

● Section 3 presents the design of cWAMR, detailing how CHERI [1][2] capabilities are
integrated into the WebAssembly Micro Runtime (WAMR) [13], including memory
allocation, system interface enforcement (cWASI) [37], and secure reference handling.

● Section 4 outlines the implementation of the Verifiable Observability Pipeline (VoP)
using cWAMR’s compartmentalized runtime, staged processing and secure delegation.

● Section 5 validates cWAMR and VoP on the Arm Morello [23] platform, demonstrating
correct execution, memory safety, and compatibility with Ahead-of-Time (AoT) and
interpreted WASM modules under CHERI enforcement.

● Section 6 concludes the paper, summarizing key contributions and future directions in
capability-based, privacy-aligned data execution pipelines.

2. BACKGROUND AND RELATED WORK

2.1 WEBASSEMBLY AND LANGUAGE AGNOSTIC RUNTIMES

WebAssembly (WASM) [6][19] is a compact, portable bytecode format designed to serve as a
compilation target for high-level languages such as C, C++, and Rust. Unlike conventional virtual
machines (e.g., JVM, CLR) that rely on rich object models and managed memory, WASM adopts
a minimalist execution stack and a linear memory model—representing the module's heap as a
contiguous, byte-addressable array. Indexing is performed using raw integer offsets, decoupling
execution semantics from any specific hardware architecture.

WASM’s strength lies in its cross-platform portability and fast startup characteristics. The
ecosystem is further enhanced by the WebAssembly System Interface (WASI) [14], which
standardizes host access to system resources and networking interfaces, allowing WASM to
operate as a general-purpose runtime outside the browser.



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

56

However, WASM’s default isolation model is implemented entirely in software. Spatial safety is
enforced via dynamic bounds checks and host memory protections (e.g., mprotect), [33] which
introduce performance overheads and remain susceptible to attacks exploiting speculative
execution leveraging the characteristics of the underlying target host CPUs or side channels.
Studies like "Leaps and Bounds" [33] report overheads of up to 650% under certain runtimes and
workloads, especially when sandboxing and fine-grained checks are enforced via user-space
mechanisms.

In the context of sensitive edge workloads and privacy-critical data, these limitations constrain
the applicability of standard WASM runtimes. Without hardware-backed compartmentalization or
pointer provenance, runtimes must rely on cryptographic wrappers (e.g., TEEs) or trust the host
OS—both of which contradict the principle of minimal trust surfaces in decentralized or regulated
environments [32].

This motivates a shift toward integrating WebAssembly runtimes with architectural enforcement
of memory and security boundaries. In this work, we extend the WebAssembly Micro Runtime
(WAMR) [13] with CHERI capabilities, enabling a hardware-backed execution layer that
supports secure, efficient, and privacy-respecting observability pipelines on the edge.

2.2 TRUSTED EXECUTION ENVIRONMENTS (TEE)

Trusted Execution Environments (TEEs) provide a hardware-supported isolation zone for code
and data, shielding them from the host operating system and other privileged software. Examples
include Intel SGX [11], AMD SEV [17], and AWS Nitro Enclaves [16]. These environments
create a trust boundary between secure workloads and potentially compromised infrastructure.

Intel SGX partitions memory into a dedicated Enclave Page Cache (EPC), encrypting memory
outside the CPU and supporting remote attestation for workload verification [32]. However, SGX
imposes notable limitations:

● Transition Overheads: Calls to and from the enclave (OCALLs/ECALLs) incur heavy
marshalling and protection costs.

● Memory Constraints: EPC sizes are statically limited (e.g., 128–256MB), causing
paging penalties when exceeded.

● Microarchitectural Leaks: SGX enclaves remain vulnerable to speculative execution
and side-channel attacks (e.g., Spectre [7], LVI [26]).

AMD SEV [17] encrypts memory at the virtual machine level, protecting entire guest OSes but
lacking intra-application or per-module compartmentalization. AWS Nitro Enclaves provide
isolated execution environments but require VM-like lifecycle management and coarse-grained
memory control.

In addition to these performance and scalability drawbacks, TEEs often require vendor-specific
provisioning, attestation protocols, and opaque configuration, making them cumbersome for
decentralized deployments or data owner-controlled environments. TEEs also do not address fine-
grained control within a process—memory safety still depends on software discipline.
In this paper, we circumvent these constraints by replacing traditional enclave-based execution
with capability-based security using CHERI, enabling lightweight but strong hardware isolation
for WASM modules without the runtime and management burden of TEEs.



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

57

2.3 CHERI: ARCHITECTURAL CAPABILITY ENFORCEMENT

CHERI (Capability Hardware Enhanced RISC Instructions) [1][2] fundamentally rethinks
memory safety by embedding protection directly into processor instructions and registers. Instead
of untyped pointers, CHERI employs capabilities—128-bit enriched references that tightly couple
memory addresses with metadata describing what can be accessed and how.

Each capability contains:

● A 64-bit virtual address, indicating the base location.
● Compressed bounds, specifying the lower and upper memory limits.
● Permission bits, detailing allowed operations (e.g., load, store, execute).
● A hidden validity tag, atomically tracked in hardware, which ensures the capability’s

authenticity.

These attributes are enforced by the CPU on every memory access or control transfer:

● Spatial safety: Memory loads, stores, and jumps outside the authorized bounds
automatically fault, blocking buffer overflows.

● Permission safety: Even within valid bounds, operations must match the capability’s
permissions, preventing writes to read-only segments or unauthorized instruction
fetches.

● Provenance and integrity: Capabilities can only be derived (through explicit
instructions like bounds narrowing or sealing) from other valid capabilities. This
directly enforces temporal safety by invalidating stale references.

CHERI introduces sealed capabilities, which are cryptographically guarded by the hardware so
they cannot be dereferenced or modified until explicitly unsealed. This allows creating software
compartments (e.g., isolating libraries or WASMmodules) where cross-compartment interaction
must occur through explicitly granted capabilities, enforcing strict least-privilege boundaries
within a single address space.

Furthermore, CHERI’s guarantees persist even under speculative execution, where typical
software checks fail. Formal models [34] have verified that CHERI enforces security invariants in
presence of speculative attacks, elevating it as a trustworthy alternative to TEEs for secure
execution environments.

In this work, we leverage CHERI to harden WebAssembly runtimes against memory corruption
and isolation failures. By modifying WAMR to operate on capabilities and execute inside sealed
compartments, we build cWAMR [37], the first WASM runtime with CHERI-native memory
protection, suitable for privacy-critical edge deployments.

2.4 RELATED WORK

WebAssembly runtimes and bounds enforcement

A wide body of work has explored the performance and security characteristics of WebAssembly
runtimes. Early investigations like Jangda et al. [35] highlighted the cost of dynamic safety
checks in WASM, showing that bounds checking for linear memory and indirect call tables can
introduce overheads ranging from 10% to over 200% on real workloads. More recent empirical
studies, such as Leaps and Bounds [33], benchmarked multiple WASM runtimes across x86, Arm,
and RISC-V architectures, isolating the substantial cost of mprotect()-based memory protections



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

58

and userfaultfd schemes typically employed by runtimes like V8 and Wasmtime [3] to implement
sandboxing. These studies confirm that WASM remains sensitive to leaks and incurs notable
performance tradeoffs under memory protection.

TEEs and double sandboxing of WASM

To mitigate risks in untrusted platforms, multiple efforts have embedded WASM runtimes inside
Trusted Execution Environments (TEEs), layering a software sandbox within a hardware enclave
to achieve "double sandboxing." For instance, TWINE [9] runs unmodified WASM inside Intel
SGX enclaves, relying on SGX’s encrypted memory and attestation to protect against
compromised hosts. Similarly, AccTEE [10] executes WASM workloads inside AMD SEV
virtual machines, leveraging full-VM memory encryption.

While these approaches raise the security bar, they inherit TEE-specific limitations: SGX suffers
from EPC paging bottlenecks and costly OCALL/ECALL transitions, while SEV lacks intra-
application compartmentalization [25][32]. Both remain exposed to speculative execution attacks
on shared microarchitectural state, as demonstrated by Spectre [7], Meltdown [8], and LVI [26]
variants. Moreover, TEEs still follow conventional ISA rules without intrinsic bounds or
provenance enforcement.

Capability hardware for fine-grained memory safety

Outside TEEs, CHERI (Capability Hardware Enhanced RISC Instructions) represents a
fundamentally different approach by embedding unforgeable capabilities with bounds,
permissions, and validity tags directly into the CPU pipeline [1][2]. This enables
hardware-enforced spatial safety, provenance-based temporal safety, and sealed capabilities for
software-defined compartments, all without relying on encrypted memory or heavyweight
enclave mechanisms.

To our knowledge, our work is the first to adapt a portable language-neutral WebAssembly
runtime (WAMR) to execute directly within CHERI compartments, enforcing capability bounds
and pointer integrity at the hardware level.

3. CWAMRARCHITECTURE

3.1 OVERVIEW OF THE CHERI-ENHANCED WEBASSEMBLY RUNTIME

The Capability-Aware WebAssembly Runtime (cWAMR) [24] is a CHERI-augmented variant
of the WebAssembly Micro Runtime (WAMR) [13], designed to provide hardware-
enforced memory safety, secure module isolation, and native execution compatibility for
unmodified WebAssembly binaries.

Unlike traditional WASM runtimes, which rely on software-based sandboxing within a flat linear
memory model, cWAMR [24] leverages CHERI (Capability Hardware Enhanced RISC
Instructions) [1][2] to enforce fine-grained, hardware-level memory protection. CHERI replaces
untyped pointers with capability-enforced references that include bounds, permissions, and
integrity constraints, eliminating common vulnerabilities such as buffer overflows, use-after-
free errors, and speculative execution attacks.

A central challenge in integrating CHERI with WebAssembly is the mismatch between WASM’s
linear memory abstraction and CHERI’s capability-based memory model. Additionally, to



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

59

support native interoperability and compatibility with the WebAssembly System Interface (WASI)
[14], cWAMR [24] must bridge conventional pointer-based host interfaces with CHERI’s strict
capability semantics.

To address these challenges, cWAMR [24] introduces several architectural enhancements:

● A capability-aware WASI layer (cWASI) [24] that mediates all system calls through
CHERI-sealed references, ensuring per-compartment access control.

● Secure handling of externref objects, enabling memory-safe interaction between
WebAssembly modules and host-native functions.

● Support for both hybrid and purecap execution modes [2], allowing developers to
incrementally adopt CHERI’s full security model without sacrificing compatibility.

Through these mechanisms, cWAMR [24] achieves a novel form of double sandboxing, where
WebAssembly’s software-level isolation is nested within CHERI’s hardware-enforced
compartments—eliminating the need for cryptographic attestation mechanisms typically required
in Trusted Execution Environments (TEEs).

3.2 EXECUTION MODELS: HYBRID AND PURECAP

WebAssembly is traditionally designed to operate with a linear memory model, where memory
is accessed through 32-bit or 64-bit untyped integer offsets. While this model supports
platform-independence and predictable sandboxing, it provides limited protection against
low-level memory manipulation and pointer-based vulnerabilities.

By contrast, CHERI [2] replaces raw pointers with capability-enforced references. Each
reference includes metadata encoding valid memory bounds, access permissions, and

Figure 1. Layered Architecture of cWAMR on the CHERI Platform

provenance, enabling hardware-level enforcement of memory safety and compartmentalization.
To accommodate diverse deployment environments and support progressive adoption, cWAMR
[24] supports two execution models:



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

60

HybridMode (Partial CHERI Enforcement):

● WebAssemblymodules operate largely within the traditional linear memory abstraction.
● Selected memory regions and system interactions are protected using CHERI

capabilities.
● This model preserves compatibility with legacy WASI applications and standard

toolchains.
● CHERI-based enforcement can be selectively applied to high-risk operations, such as

system calls and shared memory access.

PurecapMode (Full Capability Enforcement):

● All memory interactions, including function arguments, return values, and heap
allocations, are mediated through CHERI capabilities.

● WebAssembly memory is fully compartmentalized, and pointer manipulation outside
defined bounds is hardware-trapped.

● Purecap execution provides complete memory safety and isolation, but requires
CHERI-aware toolchain support (e.g., CHERI-LLVM [22]).

cWAMR’s dual-mode design allows developers and platform architects to incrementally
transition from traditional sandboxing models to fully hardware-enforced execution. This
flexibility is critical for real-world adoption, enabling compatibility with existing WebAssembly
ecosystems while gradually strengthening trust boundaries through CHERI.

3.3 CWASI - CAPABILITY AWARE SYSTEM INTERFACE FOR WEBASSEMBLY

3.3.1WASILIMITATIONS INCHERICONTEXT

The WebAssembly System Interface (WASI) [14] standardizes access to essential system
resources—such as file I/O, networking, clocks, and entropy—allowing sandboxed
WebAssembly modules to interact with their host environments in a platform-agnostic way.

In conventional runtimes (e.g., WAMR [13], Wasmtime [3], Lucet [31]), WASI is implemented
using raw pointers and integer-based file descriptors within a linear memory model. While
suitable for traditional sandboxing, this design conflicts with capability-based architectures like
CHERI, which embed bounds and permissions directly into memory references.

Key limitations in this context include:

● Incompatibility with CHERI pointers: WASI APIs rely on unbounded raw pointers,
which CHERI explicitly prohibits.

● Assumed trust in the host: WASI presumes a trusted environment, whereas CHERI
enforces per-compartment untrust and requires explicit delegation.

● High-overhead OCALLs in enclave models: In SGX-based runtimes (e.g., TWINE [9]),
WASI calls cross enclave boundaries via OCALLs, introducing cryptographic costs and
side-channel exposure (e.g., Spectre [7], LVI [26]).

3.3.2 CWASI - A SECURE INTERFACE MODEL

To address these issues, we introduce CHERI-WASI (cWASI) [24] —a capability-enforced
WASI implementation tailored for cWAMR. Rather than re-inventing the entire WASI spec,



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

61

cWASI preserves the existing syscall semantics but ensures that:

● Pointer arguments are capabilities: All memory-passing operations expect CHERI
“ capability” types with hardware-enforced validity.

● File descriptors and handles are sealed: cWASI binds resources (like files or sockets)
to a module’s compartment using fine-grained tokens instead of ambient authority.

● System calls run in-process: No boundary transitions or OCALLs are needed, unlike
SGX. Instead, capability checks are performed prior to system dispatch, maintaining
latency and integrity.

Figure 2. cWAMR Execution Pipeline Overview

3.3.3 IMPLEMENTATION REALITIES

Raw Pointer Replacement

Many WASI [14] functions (e.g., fd_read) were adapted to use “ capability” parameters.
However, direct substitution wasn't trivial—WAMR’s internals relied on linear memory
assumptions. This required rewriting memory access logic in mem_alloc and memcpy paths to
validate bounds via CHERI instructions instead of manual offsets.

File Access Control

Standard WASI permits open-ended path access. In cWASI, resource delegation uses sealed
capability tokens, stored in per-module descriptor tables. path_open was rewritten to enforce
token validation prior to every open syscall.

AvoidingOCALLs

By keeping WASI syscalls in-process and validating all capability arguments via CHERI
intrinsics, cWASI removed the need for TEE-like attestation or memory copying across enclave
edges. This significantly reduced syscall latency.



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

62

Figure 3. Comparative Models of WASI Integration in Traditional, Enclave-Based, and CHERI-Based
WebAssembly Runtimes

This design enables cWAMR to support secure, low-overhead system interactions while
preserving compatibility with standard WebAssembly tooling. As a result, cWAMR stands apart
as the first runtime to offer capability-native system calls, delivering a scalable and
hardware-enforced foundation for secure execution beyond the limitations of TEE-based models.

3.4 EXTERNREF HANDLING

3.4.1 PROBLEM: UNSAFE NATIVE BRIDGING

The externref [29][30] construct in WebAssembly was designed for flexibility—allowing
modules to hold opaque references to host-managed objects. Unfortunately, most runtimes
implemented these using global raw pointer tables. This model breaks on CHERI for two reasons:

1. It allows type-unsafe access: An externref [30] could be used across modules with
incompatible layouts.

2. It lacks memory provenance: Once allocated, externrefs could outlive their owners,
risking stale or hijacked pointers.

3.4.2 OUR SOLUTION: CAPABILITY WRAPPED OBJECT REFERENCES

In cWAMR [24], we redesigned externref handling to behave more like capability-based handles
instead of raw table indices:

● Reference Table Rewritten: We replaced WAMR’s static externref table with a
dynamic slab allocator that stores CHERI-sealed capabilities per module context.

● Lifetime Linking: Capabilities were bound to the lifecycle of their owning module.
Once a module is deallocated, all associated capabilities are invalidated using CHERI’s
provenance model—removing the need for manual reference counting or finalization
hooks.

● Cross-Compartment Passing: To support externref usage across modules, cWAMR
uses sealed delegation. Only capabilities explicitly passed through host exports (e.g., via
wasm_export_function) are valid in downstream modules.



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

63

Figure 4. Secure wasm interop using capability-wrapped externrefs

3.4.3 NATIVE EXECUTION WITH SECURE REFERENCES

cWAMR allows WASM modules to call native functions using externrefs [29] that are now
CHERI capabilities. Here’s how we enforce safety without performance compromise:

● Native functions only dereference memory through capability-validated pointers.
● If a module tries to pass a forged or expired reference, the CPU triggers a hardware

fault—pre-empting attack attempts.
● Because all operations are in-process, there’s no cryptographic attestation step (as in

SGX), and calls occur at near-native speed.

By enforcing memory provenance, compartment scoping, and revocation at the hardware level,
cWAMR’s externref system brings deterministic safety to a historically error-prone interaction
layer. It ensures that native interoperability no longer undermines the isolation promised by
WebAssembly.

3.5 FINE GRAINED COMPARTMENTALIZATION IN CWAMR

In conventional TEE-backed WebAssembly runtimes like TWINE [9] (SGX) or Enarx [15]
(SEV/TDX), all WebAssembly modules typically execute within a monolithic secure enclave.
While this offers memory confidentiality against untrusted OS or hypervisors, it fails to enforce
intra-enclave isolation between multiple modules. Modules share the same virtual address space,
creating risks of:

● Intra-tenant data leakage
● Unbounded pointer misuse
● Privilege escalation across modules
● Exposure to speculative attacks (e.g., Spectre [7], LVI [26])

cWAMR’s Capability-Enforced Isolation

Unlike enclave-based models, cWAMR uses CHERI’s architectural primitives [1] to allocate and
seal individual capability domains per module. Each WebAssembly module is executed inside its
own capability-constrained compartment, configured at runtime by a capability manager. This
enforces hardware-enforced compartment boundaries that cannot be bypassed in software,
eliminating reliance on encrypted paging or cryptographic attestation.



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

64

Key Design Features

● Compartment-ScopedMemoryMaps
Each WASM module’s heap, operand stack, and frame stack are sealed as independent
capability regions. Memory accesses outside a compartment’s bounds trigger
hardware-enforced CHERI faults, protecting against out-of-bounds memory
manipulation or pointer aliasing.

● Cross-Module Delegation via Sealed Capabilities
Unlike enclave models that rely on RPC [9] marshalling or OCALL [11] patterns,
cWAMR implements capability transfer through explicitly delegated sealed objects.
Capabilities passed across modules are derived from narrowed parent objects, limiting
authority propagation.

● No Shared Linear Memory by Default
WebAssembly’s default linear memory model is kept private to each compartment
unless explicitly shared via CHERI-sealed objects (e.g., shared memory pools or
cross-compartment tables), avoiding unintentional leakage.

● Secure Code Re-Entrancy and Switching
Module calls, recursion, and system interactions use a capability-aware call stack
switcher that preserves isolation and avoids capability corruption during context
transitions.

Figure 5. Per-Module Isolation and Capability Delegation in cWAMR Implementation
Considerations



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

65

● The CHERI-LLVM–compiled [22] AoT modules embed per-function sealed entry
points, allowing controlled invocation by a capability dispatcher.

● Runtime validation enforces that entry capabilities are not reused or passed backward
from callee to caller, maintaining directional integrity of access.

● Interactions via cWASI or externref are scoped to the current compartment's derived
capabilities, ensuring that host-facing calls cannot be misused by other tenants.

Unlike enclave models constrained by cryptographic boundaries and shared secure memory,
cWAMR ensures that each module is an isolated, non-overlapping security domain enforced by
CHERI's hardware. This architecture eliminates privilege flattening, prevents capability reuse,
and supports scalable multi-tenant isolation without performance-heavy TEE constructs.

Table 1. Runtime Isolation Features: cWAMR vs. Enclave based approaches

Feature cWAMR (CHERI) SGX-basedWebAssembly
Memory Isolation Per-module, capability enforced Enclave-wide; shared threads
System Call Semantics In-process, sealed via cWASI;

capability bound
OCALL-based; boundary
transitions

Externref handling Sealed delegated references Raw pointers; manual
validation

Module Switching Hardware-regulated
compartment transitions

Software switcheswithin single
enclave

Inter-Module Communication Delegated capabilities only Sharedmemory or manual
software guards

Speculative Attack Surface Narrowed via per-compartment
CHERI sealing

Shared enclave state
susceptible to leakage

3.6 SECURITY MODEL

The security design of cWAMR is rooted in CHERI’s hardware-backed capability system, which
enforces spatial memory integrity, provenance validity, and explicit compartment boundaries at
the instruction level—eliminating dependence on cryptographic attestation, encrypted paging, or
external marshalling commonly required in TEE-based designs.

Hardware-EnforcedMemory Integrity and Capability Provenance

In cWAMR, all internal runtime structures—including stack frames, linear memories, and
external references—are represented as CHERI capabilities. Each capability tightly couples:

● bounds that constrain valid address ranges,
● fine-grained permissions (read, write, execute, seal),
● and provenance metadata that tracks derivation chains.

This ensures that memory accesses cannot exceed their authorized object boundaries, fabricated
pointers are invalidated by tag checks, and stale references after deallocation cannot regain
privileges—directly preventing classes of vulnerabilities such as buffer overflows, use-



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

66

after-free, and pointer aliasing attacks.

Speculative and Out-of-Order Safety

Unlike traditional sandboxed runtimes or TEEs that remain vulnerable to transient execution
attacks due to speculative misuse of stale or forged pointers, cWAMR leverages CHERI’s
architectural guarantees. Specifically:

● The capability check pipeline ensures that speculative loads cannot dereference invalid
or out-of-bounds pointers, in alignment with CHERI’s proposed Capability Speculation
Contracts (CSC).

● This prevents speculative memory leaks through bounds or permissions violations,
maintaining the invariant that no memory access can occur without architectural
authorization.

By executing within a sealed, capability-constrained compartment, cWAMR inherently
minimizes side-channel exposure surfaces tied to speculative control flow or indirect jumps.

Explicit Capability-Scoped Multi-Tenancy

cWAMR [37] implements a strict multi-compartment model, where each WebAssembly module
runs inside its own CHERI compartment with dedicated sealed capabilities. There is no implicit
sharing of memory or resources:

● Inter-module communication, shared buffers, or host API accesses require explicit
capability delegation.

● This zero-trust design sharply contrasts with enclave-based TEEs, which typically
assume a single large trusted memory region for all enclave code, raising risks of
internal privilege escalation.

Eliminated Trusted Host Dependence

By enforcing strict memory boundaries and execution provenance at the hardware level, cWAMR
[37] creates trustworthy isolation domains from which cryptographic transformation fingerprints
can be reliably extracted. This provides the basis for later verifiability steps—such as proving the
origin and context of data processing (Proof of Provenance)—without requiring enclave
attestation or trusted intermediaries.

Traditional TEEs or sandboxed runtimes often rely on external marshalled OCALLs (e.g., for file
I/O or cryptographic operations) that expose privileged host interfaces to untrusted guest data. In
contrast, cWAMR’s integration of cWASI [37] ensures that all system interactions are mediated
through capability-qualified interfaces, with:

● no unbounded raw pointers crossing runtime boundaries,
● no dependence on privileged host code outside the CHERI trust perimeter.

This substantially reduces the trusted computing base (TCB) and simplifies formal reasoning
about security, aligning with CHERI’s goals of minimal, well-defined hardware-enforced
software compartments.

cWAMR’s architectural design aligns closely with privacy-enhancing technologies (PETs) [20],
offering a low-trust, formally bounded environment ideal for edge-based data processing



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

67

pipelines. It supports cryptographic accountability without disclosing source data or depending on
centralized control.

4. IMPLEMENTATION AND SYSTEM INTEGRATION

The cWAMR [24] runtime is derived from the WebAssembly Micro Runtime (WAMR) [13] and
has been deeply refactored to align with CHERI's capability system. The implementation focuses
on replacing unsafe linear memory operations with CHERI-enforced references while preserving
compatibility with unmodified WebAssembly binaries.

4.1 CHERI ADAPTATIONS IN WAMR

Tomake theWAMR runtime CHERI-compliant, several subsystems were overhauled:

● Memory Allocation: The mem_alloc, heap_malloc, and runtime linear memory
initialization functions were updated to use CHERI-safe memory via
builtin_cheri_bounds_set and related intrinsics. This ensures that memory blocks
returned from the allocator are bounds-restricted and provenance-tracked.

● ExecEnv Refactoring: The exec_env context was modified to hold sealed capabilities
for the stack and runtime frame pointers. This prevents frames or modules from forging
or traversing invalid stack memory during WASM invocation.

● CHERI-Safe Host Intrinsics: Built-in hostcalls (e.g., memcpy, strcpy, and indirect
function tables) were patched to validate capabilities before dereferencing. Unsafe
constructs like mem_access_addr = base + offset were eliminated and replaced with
capability-aware access patterns.

● System Call Interface: WASI call sites were entirely rewritten in native_wasi_api.c to
replace raw pointer arguments with capability-qualified parameters. The internal
function tables, WASM-native to host mappings, and argument unwrapping logic were
modified to decode and enforce CHERI metadata.

Figure 6. Implementation

4.2 TOOLCHAIN AND BUILD INTEGRATION

cWAMR modules are compiled using a multi-stage CHERI-native pipeline to ensure end-to-end
capability safety:

● AoT Path (wasm2c → CHERI-LLVM): WebAssembly modules are converted to
ANSI C using wasm2c. The resulting source is then compiled using CHERI-Clang
(cheri-clang) [22] targeting hybrid or purecap mode (-mabi=purecap)[23]. This



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

68

preserves the WASM logic while emitting capability-enforced ELF modules.
● Object Wrapping: Each compiled module is statically linked with a minimal

CHERI-safe runtime shim, which initializes the exec_env, populates sealed memory
regions, and registers capability-secure host imports. The linker script ensures that
function pointers and tables reside in compartmentalized address spaces.

● Linkage with cWAMR Core: The CHERI-safe ELF [22] objects are integrated with
the modified cWAMR runtime, including patched app_manager, runtime_memory, and
native_symbol modules to handle sealed references, validated host imports, and
cross-module delegation.

● Target Validation: The final binary is deployable on CHERI-enabled QEMU [23] and
Morello platforms. Execution is validated using capability trap monitoring
(cheri_ccheck_fail), runtime permission tracing, and AoT validation against native
WAMR output to ensure semantic consistency.

This toolchain enables capability-native WebAssembly execution with hardware-enforced
security guarantees. This toolchain forms the secure execution foundation over which verifiable
observability pipelines can extract data transformations with minimal runtime overhead.

4.3 VERIFIABLE OBSERVABILITY PIPELINE

The Verifiable Observability Pipeline (VoP) is a staged, compartmentalized framework built atop
the cWAMR runtime [24], designed to support cryptographically verifiable transformations at the
edge—without disclosing raw data, fingerprinting logic, or relying on centralized trust anchors.

At its core, VoP leverages cWAMR’s CHERI-enforced compartments [24] to isolate and
orchestrate WebAssembly (WASM) modules, enabling traceable, bounded, and non-reversible
execution. Each stage operates within an independent memory-safe runtime compartment,
communicating only via explicit capability delegation, thus forming a privacy-preserving,
tamper-evident execution chain.

Note: While the architectural flow is presented here in full, the internal logic of
fingerprinting, transformation, and sealing modules remains proprietary. These
operations are securely deployed within compartments, and are not disclosed in this
paper.



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

69

Pipeline Staging and Execution Flow

The Verifiable Observability Pipeline operates as a sequence of capability-isolated cWAMR
stages, with no shared memory or raw pointer exchange between them. Instead, intermediate
outputs are passed via sealed, unforgeable capabilities, preserving compartmental boundaries
and preventing reuse or leakage. Below is a high-level view of the staged execution:

Figure 7. Sample Verifiable Observability Pipeline with cWAMR Isolation Stage 1:
Preprocessing (cWAMR Compartment)

Raw input data is prepared by WASM modules provisioned into sealed cWAMR compartments.
This includes normalization, schema validation, or anomaly detection—executed entirely within
hardware-bounded memory.

● Output is passed forward via sealed capability handles only.

Stage 2: Fingerprint Extraction (cWAMRCompartment)

Preprocessed data is consumed by a separate, isolated fingerprinting module. Within this
compartment, data is transformed into non-reversible cryptographic representations.

● Delegated references, not raw data, are used to access prior outputs.

Stage 3: Sealing &Compartmental Packaging (cWAMRCompartment)

A downstream compartment derives session-specific secrets and seals the fingerprint outputs.

● Sealing is contextual and traceable—linked to prior-stage metadata and runtime
attestations.

● Payloads are made non-linkable and scoped strictly to the compartment's authority.
● At no point does unsealed data or raw computation leave any compartment boundary.
● This model eliminates the need for enclave-based marshalling or shared state across the

pipeline.

Security and Deployment Guarantees of VoP

The Verifiable Observability Pipeline (VoP) enforces strong security boundaries and trustable



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

70

execution across all stages:

● Isolated Execution: Each WASM module runs within its own CHERI-enforced
cWAMR compartment, with hardware-level enforcement of bounds, memory
provenance, and access permissions.

● Directional, Verifiable Linking: Data transitions between stages are strictly directional
and cryptographically scoped.

● Dynamic and Auditable Deployment: Modules can be orchestrated, updated, or
revoked without altering the trust assumptions or leaking execution state—supporting
edge agility and compliance.

● Privacy-Preserving Metadata Capture: Execution never leaks source data or internal
module logic, supporting selective disclosure and regulatory alignment.

This model, forms the foundation for privacy-aligned, edge-resident analytics where data
sovereignty, security, and verifiability are preserved across stages. Built on open-source
cWAMR under DSbD [18], the VoP model enables secure collaboration and trusted data
workflows—without the complexity or opacity of enclave-based systems.

5. VALIDATION

To verify cWAMR’s correctness and readiness for CHERI-enforced environments, we built a
comprehensive validation framework integrated into the Verifoxx cWAMR repository.
Benchmarks are automated via a custom autorun script and organized for both hybrid-mode and
purecap deployments on the Arm Morello SoC [23].

Benchmark Suites

Adapted to CHERI via dedicated scripts:

● CoreMark, Dhrystone, Polybench, and Sightglass—each includes a cheri_build.sh
wrapper for hybrid and purecap compilation, ensuring seamless integration into the
CMakePresets.json build system.

ExecutionModes

Workloads are exercised in:

● Interpretedmode: using the CHERI-modifiedWAMR core.
● Ahead-of-Time (AoT) mode: employing wasm2c + CHERI-LLVM and sealed memory

regions.

Automated Harness

● The autorun_benchmark script detects the target—Morello hybrid or purecap—launches
applicable runtime, optionally builds AoT modules, executes tests, and aggregates
results for analysis.

5.1 FUNCTIONAL VALIDATION AND VOP EXECUTION INTEGRITY

To validate the correctness and security guarantees of the cWAMR runtime as deployed in the



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

71

Verifiable Observability Pipeline (VoP), we implemented an integrated validation framework
that tests capability enforcement, secure stage chaining, and tamper-evident execution flows on
CHERI-enabled targets, including the Arm Morello SoC and CHERI-QEMU [23].

Key outcomes:

● Each stage ran inside a cWAMR-protected compartment, with successful enforcement
of memory bounds, permission bits, and provenance checks.

● Inter-stage hand-offs occurred through sealed capability delegation, and any attempt to
access unauthorized or expired references triggered CHERI faults.

● No shared linear memory was observed across compartments, confirming strict
hardware isolation.

● Fingerprint outputs sealed in Stage 3 were successfully validated as tamper-evident
when received by the Source of Truth, using only metadata and cryptographic tags—not
raw data.

● System-level interactions were properly scoped via the cWASI layer, with no raw
pointer or ambient authority leakage.

These results validate that:
● The porting of WAMR to CHERI is successful and stable.
● Enforces hardware-rooted compartmentalization across chained WASM stages.
● Enables secure capability-scoped delegation for verifiable inter-stage workflows.

5.2 NEXT STEPS

With the current implementation, cWAMR [37] has successfully demonstrated secure and stable
execution of WebAssembly modules on CHERI-enabled platforms, validating key architectural
goals including memory safety, compartmentalized execution, and CHERI-compliant system
interfacing. These outcomes establish a strong technical foundation for capability-aware
WebAssembly runtimes.

Having established the architectural correctness and stability of cWAMR on CHERI platforms,
our immediate roadmap focuses on:

● Comprehensive benchmarking: quantifying execution overheads introduced by
CHERI capability checks versus software bounds models, under typical WASM
computational and I/O-heavy loads.

● Pipeline Automation and CI Integration: Extend autorun frameworks to support VoP
staging, per-session instantiation, and aggregation for multiple data owners at scale.

● Capability-Aware Audit Trails: Integrate provenance-preserving tracing mechanisms
to track fingerprint generation, sealing, and dispatch—without exposing core logic or
compromising privacy.

● Performance Profiling Under Load: Evaluate end-to-end latency across VoP stages,
comparing cWAMR to enclave-based and software-only sandboxing models.

The benchmarking harness—along with build scripts, test presets, and AoT integrations—is being
actively extended to support these goals. Progress is tracked in the Verifoxx cWAMR repository,
with upcoming updates focused on scaling test suites and reducing integration friction. With
this cWAMR aims to mature into a developer-friendly platform for secure, high-assurance
WebAssembly applications in both research and production environments.



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

72

6. CONCLUSION

This paper presents cWAMR, a capability-native WebAssembly runtime purpose-built to operate
atop CHERI’s hardware-enforced memory protection model. By embedding bounds checking,
permission semantics, and provenance enforcement into the execution layer, cWAMR enables
fine-grained isolation and secure-by-default execution for untrusted WebAssembly modules—
eliminating the need for enclave-based or software-only sandboxing models.

Validated across both hybrid and purecap CHERI configurations, cWAMR supports secure
system interactions via cWASI, sealed externref handling, and per-module compartmentalization.
These properties establish cWAMR as a reliable foundation for secure, scalable, and formally
auditable execution environments.

Building on this foundation, we rearchitect our internal cryptographic operations into a
Verifiable Observability Pipeline (VoP)—a privacy-preserving deployment model that
orchestrates modular WASM binaries across compartmentalized cWAMR runtimes at the edge.
The VoP design enables rapid, secure execution and verifiability without compromising data
locality or introducing centralized trust assumptions, showcasing how cWAMR can support
modern privacy-enhancing workflows.

As an open-source contribution under the UK Digital Security by Design (DSbD) initiative,
cWAMR lays the groundwork for a new class of secure-by-construction WebAssembly runtimes.
Future work will focus on performance tuning, compiler-level optimizations, and broader
deployment enablement—advancing cWAMR and VoP as key enablers for high-assurance,
privacy-preserving, multi-tenant computing systems.

ACKNOWLEDGEMENTS

This work was supported by UK Research and Innovation (UKRI) under the Digital Security
by Design (DSbD) programme. We acknowledge Dr. Georgios Papadakis, Senior Innovation
Lead for DSbD & Cyber Capabilities at UKRI, for his role in coordinating the programme and
providing valuable guidance throughout the project lifecycle.

We also thank the broader DSbD and CHERI Morello ecosystem for the infrastructure, tooling,
and documentation that enabled this research.



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

73

REFERENCES

[1] Watson, R. N. M., Neumann, P. G., Woodruff, J., Anderson, J., & Moore, S. W. (2019). Capability
Hardware Enhanced RISC Instructions (CHERI):.University of Cambridge.

[2] Woodruff, J., Watson, R., Roe, M., et al. (2020). CHERI: A Hybrid Capability-System
Architecture for Scalable Software Compartmentalization. IEEE Symposium on Security and
Privacy (S&P).

[3] Wasmtime Runtime Documentation, Bytecode Alliance. [Online]. Available:
https://docs.wasmtime.dev/

[4] R. Souza, J. Skluzacek, and R. Wilkinson, “Towards Lightweight Data Integration using Multi-
workflow Provenance and Data Observability” arXiv preprint arXiv:2308.09004, 2023.

[5] Shinde, S., et al. (2017). PANOPLY: Low-TCB Linux Applications with SGX Enclaves..
[6] Bhardwaj, P., et al. (2021). Scaling Secure Computation with WebAssembly. IEEE CC.
[7] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, and W. Haas, “Spectre Attacks: Exploiting

Speculative Execution,” in 2019 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 2019, pp. 1–19, doi: [10.1109/SP.2019.00002].

[8] M. Lipp et al., “Meltdown: Reading Kernel Memory from User Space,” in USENIX Security
Symposium, 2018.

[9] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “Twine: An Embedded Trusted Runtime for
WebAssembly,” in Proc. 2021 IEEE 37th Int. Conf. on Data Engineering (ICDE), Apr. 2021, pp.
161–172, doi: 10.1109/ICDE51399.2021.00025

[10]D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza, “AccTEE: A WebAssembly-based Two-way
Sandbox for Trusted Resource Accounting,” in Proc. of the 20th Int. Middleware Conf., 2019, pp.
123–135, doi: [10.1145/3361525.3361541].

[11]V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptology ePrint Archive, Paper
2016/086, 2016. [Online]. Available: [https://eprint.iacr.org/2016/086]

[12]WebAssembly Community Group, “WebAssembly Core Specification,” 2023. [Online]. Available:
[https://webassembly.github.io/spec/core/]

[13]Bytecode Alliance, “WebAssembly Micro Runtime (WAMR),” [Online]. Available:
[https://bytecodealliance.github.io/wamr.dev]

[14]WebAssembly System Interface (WASI), “Official Documentation,” 2023. [Online]. Available:
[https://wasi.dev]

[15]Y. Lu et al., “Enarx: Secure WebAssembly via Hardware Enclaves,” Linux Foundation
Confidential Computing Consortium, 2020. [Online]. Available: [https://enarx.dev]

[16]Amazon Web Services, “AWS Nitro Enclaves,” 2021. [Online]. Available:
[https://aws.amazon.com/ec2/nitro/nitro-enclaves/]

[17]AMD, “Secure Encrypted Virtualization (SEV) Overview,” 2020. [Online]. Available:
[https://www.amd.com/en/developer/sev.html]

[18]D. Clarke et al., “Digital Security by Design (DSbD): Programme Overview,” UKRI, 2023.
[Online]. Available: [https://www.dsbd.tech]

[19] A. Haas et al., “Bringing the Web Up to Speed with WebAssembly,” in Proc. of the 38th ACM
SIGPLAN Conf. on Programming Language Design and Implementation, 2017, pp. 185–200.

[20]OECD, “Emerging Privacy Enhancing Technologies: Current Regulatory and Policy
Approaches,”OECD Digital Economy Papers, No. 3512, Mar. 2023.

[21]B. Özkale and S. Üsküdarlı, “A Survey and Guideline on Privacy Enhancing Technologies (PETs)
for Collaborative Machine Learning,” ResearchGate, 2023.

[22]LLVM Project, “CHERI-LLVM Compiler Infrastructure,” 2023. [Online]. Available:
[https://github.com/CTSRD-CHERI/llvm-project]

[23]ARM Ltd., “Morello Architecture Reference Manual,” Version 1.0, 2022. [Online]. Available:
[https://developer.arm.com/architectures/cpu-architecture/a-profile/morello]

[24]Verifoxx Ltd., “CHERI-WAMR Open Source Repository,” 2023. [Online]. Available:
[https://github.com/Verifoxx-LTD/verifoxx-cheri-wamr]

[25]S. van Schaik et al., “SoK: SGX.Fail: How Stuff Gets Exposed,” IEEE Security & Privacy, 2022.
[Online]. Available: [https://sgx.fail]

[26]LVI Authors, “LVI: Hijacking Transient Execution with Load Value Injection,” 2020. [Online].
Available: [https://lviattack.eu/]



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

74

[27]N. He, S. Cao, H. Wang, Y. Guo, and X. Luo, “The Promise and Pitfalls of WebAssembly:
Perspectives from the Industry,” arXiv preprint arXiv:2503.21240, 2025. [Online]. Available:
https://doi.org/10.48550/arXiv.2503.21240

[28]G. Perrone and S. P. Romano, “WebAssembly and Security: A Review,” arXiv preprint
arXiv:2407.12297, 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2407.12297

[29]externref, Rust documentation. [Online]. Available: https://docs.rs/externref/latest/externref/
[30]P. P. Ray, “An Overview of WebAssembly for IoT: Background, Tools, State-of-the-Art,

Challenges, and Future Directions,” Future Internet, vol. 15, no. 8, p. 275, Aug. 2023. [Online].
Available: https://doi.org/10.3390/fi15080275

[31]Lucet: A WebAssembly Compiler and Runtime, Bytecode Alliance, GitHub repository.
[Online].Available: https://github.com/bytecodealliance/lucet

[32]L. Chen, Z. Li, Z. Ma, Y. Li, B. Chen, and C. Zhang, “EnclaveFuzz: Finding Vulnerabilities in
SGX Applications,” in Proc. 2024 Network and Distributed System Security Symposium (NDSS),
San Diego, CA, USA, Feb. 2024.

[33]Gabriel Sewczyk, Raul Gruber, Paul Patras, and Boris Köpf. “Leaps and Bounds: Analysing
WebAssembly Bounds Checking.” (OOPSLA) Vol. 6, Article 134, 2022.
https://doi.org/10.1145/3563318

[34]Franz A. Fuchs, Jonathan Woodruff, Peter Rugg, Alexandre Joannou, Jessica Clarke, John
Baldwin, Brooks Davis, Peter G. Neumann, Robert N. M. Watson, and Simon W. Moore. "Safe
Speculation for CHERI."

[35] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not So Fast: Analyzing the Performance of
WebAssembly vs. Native Code,” in Proc. 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018, pp. 107–126.

[36]M. El-Hindi, T. Ziegler, M. Heinrich, A. Lutsch, Z. Zhao, and C. Binnig, “Benchmarking the
Second Generation of Intel SGX Hardware,” In Proc. DaMoN'22: Data Management on New
Hardware, Philadelphia, PA, USA, June 2022. DOI: https://doi.org/10.1145/3533737.3535098

[37]Bala Subramanyan, “cWAMR: Reimagining a capability based WebAssembly Runtime via
CHERI-based compartmentalization,” in Proceedings of the 14th International Conference on
Information Processing, Data Computing and Analytics (IPDCA), London, UK, May 2025.
[Online]. Available: https://aircconline.com/csit/papers/vol15/csit151407.pdf

[38]K. Balan, R. Learney, and T. Wood, “A Framework for Cryptographic Verifiability of End-to-End
AI Pipelines,” arXiv preprint arXiv:2503.22573, 2024.

[39]Z. Dehghani, “Data Mesh: Delivering Data-Driven Value at Scale,” O’Reilly Media, 2022.
[40] A.Stage and D. Karastoyanova, “Trusted Provenance of Automated, Collaborative and Adaptive

Data Processing Pipelines,” arXiv preprint arXiv:2310.11442, 2023.



International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.4, July 2025

75

.
AUTHOR

Bala Subramanyan is a technologist and researcher with over 14 years of
experience in secure systems architecture, privacy-preserving computation, and
applied cryptography. He is the Co-Founder and CTO of Verifoxx, where he is
the principal architect of a universal privacy infrastructure layer that leverages
advanced PETs—including zero-knowledge proofs, verifiable computation, and
trusted execution—to enable verifiable insights without exposing raw data. His
work spans confidential computing, WebAssembly-based secure runtimes, and
functional encryption. Bala’s research and applied innovations have been
featured in IEEE conferences and cryptographic forums such as IACR. Prior to co-founding Verifoxx, he
led technical & R&D initiatives at JP Morgan, Lockheed Martin, Nationwide, and IHS, contributing to the
design of scalable, proof-based systems for secure computation across finance, healthcare, and identity
domains.


