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ABSTRACT 
 
Network Intrusion Detection Systems (NIDS) are essential for securing networks by identifying and 

mitigating unauthorized activities indicative of cyberattacks. As cyber threats grow increasingly 

sophisticated, NIDS must evolve to detect both emerging threats and deviations from normal behavior. This 

study explores the application of machine learning (ML) methods to improve the NIDS accuracy through 

analyzing intricate structures in deep-featured network traffic records. Leveraging the 1999 KDD CUP 

intrusion dataset as a benchmark, this research evaluates and optimizes several ML algorithms, including 

Support Vector Machines (SVM), Naïve Bayes variants (MNB, BNB), Random Forest (RF), k-Nearest 

Neighbors (k-NN), Decision Trees (DT), AdaBoost, XGBoost, Logistic Regression (LR), Ridge Classifier, 

Passive-Aggressive (PA) Classifier, Rocchio Classifier, Artificial Neural Networks (ANN), and Perceptron 

(PPN). Initial evaluations without hyper-parameter optimization demonstrated suboptimal performance, 

highlighting the importance of tuning to enhance classification accuracy. After hyper-parameter 
optimization using grid and random search techniques, the SVM classifier achieved 99.12% accuracy with 

a 0.0091 False Alarm Rate (FAR), outperforming its default configuration (98.08% accuracy, 0.0123 FAR) 

and all other classifiers. This result confirms that SVM accomplishes the highest accuracy among the 

evaluated classifiers. We validated the effectiveness of all classifiers using a tenfold cross-validation 

approach, incorporating Recursive Feature Elimination (RFE) for feature selection to enhance the 

classifiers accuracy and efficiency. Our outcomes indicate that ML classifiers are both adaptable and 

reliable, contributing to enhanced accuracy in systems for detecting network intrusions. 
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1. INTRODUCTION 
 

The rapid growth of digital technology has improved efficiency and connectivity but also 
intensified sophisticated cyber threats such as ransomware, phishing, and DoS attacks. With over 

90% of critical operations relying on online platforms, ensuring the confidentiality, integrity, and 

availability of digital assets is vital. To address these challenges, researchers are developing 
advanced Network Intrusion Detection Systems (NIDS) using machine and deep learning for 

real-time anomaly detection and proactive defense. The integration of Artificial Intelligence (AI), 

especially Machine Learning (ML), has greatly enhanced Network Intrusion Detection Systems 

(NIDS). These systems analyze network traffic to distinguish normal and malicious activities, 
detecting zero-day attacks that evade traditional defenses. According to NIST, intrusion detection 

https://airccse.org/journal/jnsa25_current.html
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ensures data confidentiality, integrity, and availability through continuous monitoring and 
anomaly detection [1]. Unlike signature-based systems, anomaly-based NIDS effectively identify 

previously unseen attacks by learning normal traffic behavior. 

 

Recent advances in machine learning (ML) and deep learning (DL) have enhanced IDS 
performance through adaptive, data-driven detection with fewer false positives [2] [3]. 

Techniques like SVM, RF, DT, KNN, XGBoost, AdaBoost, and BPN are widely used, while 

CNNs and RNNs capture complex traffic patterns [4]. Hyperparameter tuning and feature 
engineering optimize accuracy and scalability [5] [6]. Using the KDD Cup 1999 dataset, this 

study evaluates multiple classifiers based on accuracy, precision, recall, F1-score, false alarm 

rate, and detection rate to strengthen IDS robustness. 
 

 
 

Fig.1. A snapshot of systems for detecting network intrusions 

 

Fig. 1 illustrates the system layout of a system for detecting network intrusions, engineered to 

observe and assess network traffic, identifying potential intrusions or suspicious activities. The 

system connects to the internet through a firewall that filters traffic according to established 
security rules. NIDS sensors are positioned at both external and internal points to examine 

network packets. Traffic is routed through a switch that connects various workstations within the 

network. When anomalies or suspicious behavior are detected, the NIDS sends alerts to 
monitoring servers, which evaluate the threat's severity and manage response actions. This 

centralized setup enables continuous surveillance, strengthening the network’s defense against 

cyber-attacks by allowing real-time threat detection and proactive response. 
 

This research highlights the following major contributions: 

 

 The initial investigation establishes baseline performance metrics for machine learning 

classifiers applied to systems for detecting network intrusions using the 1999 KDD Cup 
intrusion detection dataset without hyper-parameter tuning. A diverse range of ML 

algorithms was systematically assessed through tenfold cross-validation without applying 

any feature selection techniques. This analysis provides critical perspectives on their 
performance, highlighting capabilities and restrictions and emphasizing the need for 

further optimization to improve accuracy and lower false alarm rates. The findings serve as 

a valuable benchmark for guiding future advancements in network security solutions. 

 The second investigation applies sophisticated hyper-parameter optimization strategies like 

grid search and random search to boost the performance of ML classifiers. Subsequently, 
all classifiers were evaluated through tenfold cross-validation with RFE, improving 

accuracy, efficiency, and emphasizing essential features. The results clearly show that 

systematic tuning of hyper-parameter configurations leads to significant improvements, 
enhancing detection accuracy while minimizing the rate of incorrect positive detections. 
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This investigation emphasizes the importance of hyper-parameter optimization in 
improving the durability and trustworthiness of systems for detecting network intrusions, 

contributing to facilitating the progress of more effective and efficient classifiers for 

practical deployment in network security applications. 

 
Section 2 presents a comprehensive investigation into recent advancements in systems for 

detecting network intrusions, emphasizing a critical analysis of methodologies, emerging trends, 

prevailing challenges, and a systematic comparative evaluation of relevant research studies. 
Section 3 outlines an enhanced framework for detecting network intrusions utilizing the 1999 

KDD intrusion detection dataset. It provides a detailed depiction of a machine learning-based 

NIDS architecture, emphasizing its procedural framework components and optimization 
strategies. Section 4 presents an ML-driven design for detecting network intrusions, emphasizing 

the impact of prominent ML classifiers in improving detection efficiency and ensuring 

comprehensive performance evaluation. Section 6 clarifies the experimental setup and 

performance evaluation executed utilizing the 1999 KDD Cup intrusion dataset. It includes an 
analysis of confusion matrices, hyper-parameter tuning, and a comparative analysis of results 

before and after optimization, emphasizing the influence of hyper-parameter optimization on 

accuracy and false positive rates. Section 7 wraps up by outlining the significant outcomes of the 
study and proposing future avenues of research to advance next-generation NIDS. 

 

2. RELATED WORK 
 

A study [7] employed an XGBoost-based feature selection approach, identifying 17 and 22 
optimal features for the NSL-KDD and UNSW-NB15 datasets, respectively. The XGBoost-

LSTM hybrid achieved 99.49% validation accuracy and 88.13% test accuracy on NSL-KDD, 

while XGBoost-Simple-RNN attained 87.07% on UNSW-NB15. Another study [8] introduced 
HCRNNIDS, a hybrid CRNN integrated with logistic regression, decision trees, and XGBoost, 

achieving 97.75% accuracy on CSE-CIC-DS2018 and outperforming several traditional and deep 

learning IDS models. In [9], a hybrid anomaly detection model integrating a classical 
autoencoder (CAE) with a deep neural network (DNN) was applied to the UNSW-NB15 dataset. 

The CAE enhanced DNN performance through sparse feature extraction, achieving 91.29% 

accuracy and outperforming baseline models. Similarly, [10] proposed a deep learning-based 

IDPS using an MLP trained on KDD CUP 1999, optimized with Adam, achieving 91.4% 
accuracy compared to DT (74%) and SVM (83%) classifiers. 

 

In [11], a hybrid IoT intrusion detection model combined random forest-based feature selection 
with neural classifiers (B-ANN and DR-NN), achieving 98% accuracy on KDD CUP 1999 and 

demonstrating strong adaptability across intelligent networks. Similarly, [12] evaluated NB, DT, 

KNN, RF, SVM, MLP, and LSTM on NSL-KDD, reporting accuracies of 89.6% (with scaling), 

89.2% (without), 96.89% (MLP), and 97.77% (LSTM), confirming LSTM’s superiority in 
modeling temporal dependencies. The study in [13] highlighted CNNs as highly effective for IoT 

intrusion detection, demonstrating deep learning’s advantage over traditional methods. In [14], 

DNN and LSTM models on NSL-KDD showed that a three-layer LSTM with 32 neurons per 
layer achieved 98.3% accuracy, outperforming enlarged DNNs and conventional models. 

Reference [15] applied a deep autoencoder for five-class IDS on NSL-KDD, achieving 99% 

training and 91.28% testing accuracy. In [16], an LSTM-based IDS on CIDDS reached 0.85 
accuracy, surpassing SVM, MLP, and Naïve Bayes. 

 

A CNN-IDS in [17] applied dimensionality reduction on KDD 1999 data, converting traffic into 

image-like representations to reduce complexity. Results demonstrated higher accuracy and lower 
FAR compared with conventional methods. The study in [18] proposed a deep belief network 

(DBN) framework optimized with PSO, clustering, and genetic operators, reducing detection 
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time by 24.69% and improving five-class accuracy by 1.3–14.8%. An improved LeNet-5 CNN in 
[19] integrated normalization and one-hot encoding, achieving over 99% training and evaluation 

accuracy with FAR below 0.1%, emphasizing reliability and precision. DL-IDS in [20] combined 

CNN and LSTM for feature extraction, with category weight optimization to handle class 

imbalance. On CICIDS2017, multi-class accuracy reached 98.67%, with over 99.5% for certain 
attack classes, showing its effectiveness for diverse intrusion patterns. In [21], a DBN-ELM 

hybrid applied feature extraction and classification on NSL-KDD, using majority voting to refine 

predictions, achieving 97.82% accuracy and a 1.81% false alarm rate, outperforming individual 
DBN or ELM models. The deep multilayer framework in [22], incorporating feedback, 

autoencoding, preprocessing, database management, and classification, attained 96.70% accuracy 

on NSL-KDD, highlighting the advantage of integrated architectures. In [23], a stacked 
nonsymmetric deep autoencoder (NDAE) enhanced unsupervised feature extraction on KDD 

1999 and NSL-KDD, significantly improving detection performance over traditional NIDS. 

 
Table 1. Comparative Analysis of Related Works on Network Intrusion Detection Systems 

 

Refer

ence 

Datas

et 

Classifie

rs 

Applied 

Detected 

Assaults 
Evaluated Matrix With Accuracy Findings 

Kason

go, S. 

M [7] 

NSL 

KDD, 

UNS

W-

NB15 

XGBoost

-LSTM, 

XGBoost

-Simple-

RNN, 

XGBoost
-GRU 

Dos, Probe, 

R2L, U2R, 

Normal 

Normal, 

Generic, 

Exploits, 

Fuzzers, 

DoS, 

Reconnaissa

nce, 
Analysis, 

Backdoor, 

Shellcode, 

Worms 

F1-Score, TAC, VAC 

Accuracy 

XGBoost-LSTM (TAC) = 88.13% 

and VAC of 99.49% 

(NSL KDD) 

For Multiclass Classification, 

XGBoost –LSTM (TAC) = 86.93% 

(NSL KDD) 

XGBoost-Simple-RNN (TAC) = 
87.07% (UNSW NB15) 

XGBoost-GRU (TAC) = 78.40% 

(UNSW NB15) 

 

XGBoost-LSTM Model 

Performance 

• Outperformed other 

approaches with TAC of 

88.13%. 

• An assessment 

proficiency of 99.49%. 

• A training period of 

225.46 seconds for     
binary classification tasks. 

 

 

Khan, 

M.A. 

[8] 

CSE-

CIC-

DS201

8 

LR, 

XGB, 

DT, 

HCRNN 

Brute-force 

DOS attacks, 

DDOS 

attacks, 

Brute-force 

SSH, 

Infiltration, 

Heartbleed, 
Web attacks, 

and Botnet. 

FP, TP, FN, TN 

Prec, Rec, F1-Score, DR, FPR 

Accuracy 

LR = 80% 

XGB = 83% 

DT = 88% 

HCRNN = 97.75% 
 

HCRNNIDS Deep 

Learning Model 

Simulation Results 

• Accurately calculates 

malicious attack events. 

• Overall accuracy: 

97.75%. 
• Effective security 

solution. 

Dutta, 

Vibek

anand

a & 

Pawlic

ki, 

Marek 

et al. 

[9] 

 
 

UNS

W-

NB15 

RF,DNN

,Hybrid 

(CAE+D

NN) 

Normal, 

Generic, 

Exploits, 

Fuzzers, 

DoS, 

Reconnaissa

nce, 

Analysis, 

Backdoor, 

Shellcode, 
Worms 

 

Prec, Rec, Acc, F1-score, FPR, ROC 

curve 

Accuracy 

RF = 85.14% 

DNN = 88.15% 

Hybrid (CAE+DNN) = 91.29% 

Hybrid Approach 

Performance 

• Superior in 

distinguishing attacks from 

routine activities. 

• Comparable to other 

baseline algorithms. 
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Akhil 

Krishn

a, 

Ashik 

Lal 

M.A, 
et al. 

[10] 

 

KDD 

CUP’9

9 

DT, 

SVM, 

MLP 

DOS, Probe, 

U2R, R2L 

and Normal 

Accuracy 

DT = 74.63% 

SVM = 83.06% 
MLP = 91.41% 

Deep Learning MLP 

Model Improvement 

• Improved accuracy to 

91.41%. 

• Completed intrusion 

detection system model. 
• Utilized sparse 

categorical cross-entropy 

loss function. 

 

M.Ra

maiah, 

V. 

Chand

raseka

ran et 

al. 

[11] 

 

KDD 

CUP’9

9 

Proposed 

S-NN, 

D-ONN 

Normal, 

DOS, Probe, 

U2R, R2L 

TP, TN, FP, FN 

Acc, Prec, Rec, F1-Score 

Accuracy 

S-NN (Shallow neural network 

model) =96% 

D-ONN (Deep-optimized neural 

network) = 98% 

Intrusion Detection 

Framework: 98% 

Accuracy" 

• Utilizes correlation tools 

and Random Forest. 

• Focuses on cyber-

physical system IDS. 

Hossai

n, Md 

& 

Ghose, 

Dipay

an et 

al. 

[12] 

NSL 

KDD 

MLP,LS

TM,NB,

DT,KNN

,RF,SV

M 

Normal, 

Dos, Probe, 

,R2L, U2R 

Acc, Prec, Rec, and F1-Score 
Accuracy 

LSTM = 97.77% 

MLP = 96.89% 

NB = 75.9% 

DT = 88.2% 

KNN = 87.0% 

RF = 89.6% 

SVM = 87.6% 

 

NSL KDD dataset 

accuracy 

• LSTM (97.77%) and 

MLP (96.89%) has been 

implemented. 

• The dataset consists of 

two labels and 41 traffic-

related input features for 

each record. 

Jose, 

Jinsi 

& 
Jose, 

Deepa 

[13] 

 

NSL 

KDD 

DT, 
DNN, 

CNN, 

Dos, Probe, 

,R2L, U2R 

Acc, Prec, Rec and F1-Score, FPR, 

TPR 

Accuracy 
DT = 80% 

DNN = 86% 

CNN = 89% 

 

DL for IDS 

• Networks of 
convolutional neurons 

show 89% accuracy. 

• High-prediction assault 

detection. 

Zarai, 

R., 

Kacho

ut, M. 

et al. 

[14] 

 

KDD 

CUP’9

9 

Proposed 

LSTM 

and DNN 

Normal, 

Dos, Probe, 

,R2L, U2R 

Acc, Prec, Rec, and F1-Score 

Accuracy 

LSTM = 98.3% 

DNN = 93% 

Three-Layer LSTM 

Outperforms Traditional 

Machine Learning 

• Accuracy: 98.3% 

B. 

Alsug
hayyir, 

A. M. 

Qamar 

et al. 

[15] 

 

NSL 

KDD 

Deep 

Auto 

Encoder 

Dos, Probe, 

,R2L, 

U2R,Normal 

Prec, Rec, F1-Score, Support 

Accuracy 

Deep Auto Encoder = 99.90% 

Proposed DL Strategy 
Outperforms Traditional 

Methods 

• 99% training accuracy 

• 91.28% testing accuracy. 

S. A. 

Althub

iti, E. 

M. 

Jones, 

et al. 

CIDD

S-001 

LSTM, 

SVM, 

NB, 

MLP 

probes, user-

to-root, 

remote-to-

local attacks 

Acc, Prec, Rec, FPR 

Accuracy 

LSTM = 0.8483 

SVM = 0.7942 

NB = 0.7756 

MLP = 0.8124 

LSTM Model Outperforms 

SVM, MLP, Naïve Bayes 

in Multiclassification 

• Achieves acceptable 

accuracy of 0.8483. 
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[16] 

 

 

Y. 

Xiao, 

C. 

Xing, 

T.et al. 
[17] 

 

 

 

KDD 

CUP’9
9 

CNN-

IDS 

Dos, Probe, 

,R2L, 
U2R,Normal 

ACC, DR, FAR 

Accuracy 
CNN-IDS = 94% 

CNN-IDS Model: 94% 

Timeliness, FAR, AC 

Outperformance 

• Beneficial for research 
and real-world 

applications. 

P. 

Wei, 

Y. Li, 

Z. 

Zhang 

et al. 

[18] 

 

NSL 

KDD 

DBN 

(Deep 

Belief 

Network) 

Dos, Probe, 

,R2L, U2R 

Accuracy, FNR, FPR, DR 

Accuracy 

DBN = 82.36% 

DBN-IDS Model 

Optimization 

• Achieved 82.36% 

detection accuracy. 

• Demonstrated faster 

detection speed. 

Liu, 

Pengju 

[19] 

KDD 

CUP’9

9 

CNN 

Dos, Probe, 

,R2L, 

U2R,Normal 

ACC, DR, FPR 

Accuracy 

CNN = 99% 

Model's High Testing, 
Training, and Detection 

Accuracy 

• DR less than 0.1% 

• Performs well in actual 

detection tests. 

 

Sun, 

Pengfe

i & 

Liu, 

Pengju 
eta al. 

[20] 

CICID

S2017 

hybrid 

model 

using 

CNN and 
LSTM 

Brute Force 

FTP, Brute 

Force SSH, 

DoS, 

Heartbleed, 

Web Attack, 

Infiltration, 
Botnet, and 

DDoS 

 

ACC, TPR, FPR, Prec, Rec, F1-Score 

Accuracy 

CNN-LSTM = 98.67% 

 

 
 

DL-IDS Outperforms 

Machine Learning Models 

• Achieves 98.67% 

accuracy 

• Achieves 93.32% F1-

score. 
 

 

 

D. 

Liang 

and P. 

Pan 

[21] 

NSL 

KDD 

DBN-

ELM 

Dos, Probe, 

,R2L, U2R 

Accuracy 

DBN-ELM = 97.82% 

Model Accuracy 

Enhancement: 97.82% 

• Reduced false alarm rates 

to 1.81%. 

• Attained competitive 

accuracy compared to 

DBN, ELM, DBN-ELM. 

Ugend

har, A. 
& 

Illuri, 

Babu 

at al. 

[22] 

NSL 

KDD 

Deep 

multilaye

r 
classifica

tion 

network 

 

 

 

Dos, Probe, 

,R2L, U2R 

Accuracy 

Deep multilayer classification = 

96.70% 

Deep Multilayer Classifier 

Performance 
• Outperformed all 

methods in accuracy. 

• Achieved 96.70% score 

in comparative results. 
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N. 

Shone, 

T. N. 
Ngoc, 

V. D. 

Phai, 

et al. 

[23] 

 

 

KDD 
CUP’9

9 and 

NSL 

KDD 

Non-

symmetri

c deep 

auto-

encoder 
(NDAE) 

 

 

 

 

 

 

 

 

Normal, 

Dos, Probe, 

,R2L, U2R 

Accuracy 

KDD CUP’99 = 97.85% 

NSL KDD = 85.42% 

Evaluation of the 

framework by NDAE 

• Offers high acc, prec, and 

rec. 

• Reduces training time. 

• Comparatively compared 
with mainstream       DBN 

technique. 

• Shows up to 5% accuracy 

improvement and 98.81% 

training time reduction. 

• Model's capabilities 

across both reference      

datasets. 

• Steady classification 

performance. 

 

3. AN OPTIMAL APPROACH TO SYSTEMS FOR DETECTING NETWORK   

INTRUSION APPLYING THE 1999 KDD CUP DATASET 
 

 

 
                                                                    

Fig. 2 ML Based NIDS architecture 

 

Fig. 2 depicts the optimal workflow for NIDS using the 1999 KDD Cup intrusion dataset, which 
involves several well-defined steps to support accurate and timely detection and classification of 

cyber intrusions targeting network infrastructure: 

 
 Dataset Utilization: The 1999 KDD Cup intrusion dataset serves as the foundational input 

applicable to the NIDS architecture. It is broadly adopted for detecting malicious intrusions in 

networks, offering a diverse range of assigning network traffic data to normal activity or 

specific cyberattack classifications. 
 Data Pre-Processing: The raw data undergoes pre-processing to enhance its quality. This step 

includes handling missing values, eliminating redundant logs, and applying normalization or 

scaling to features. Pre-processing verifies that the dataset remains accurate and prepared for 
evaluation. 

 Feature Selection: Before model training, Recursive Feature Elimination (RFE) was utilized 

to optimize the feature space, ensuring that only the most relevant attributes were used in 

classification. By iteratively eliminating less significant features, RFE streamlines the dataset, 
which leads to faster processing times and improved model accuracy. This targeted approach 
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allows classifiers to focus on essential indicators of network intrusions, thereby strengthening 
their detection capabilities. 

 Data Splitting: The dataset is divided into separate segments for training and evaluating the 

classifier. The training set is used to build and fine-tune the ML classifiers, while the testing 

set assesses how well the trained model performs and generalizes to unseen data. 
 Classifier Training with ML Algorithms: Multiple ML algorithms are trained on the dataset 

to uncover patterns and correlations in the network traffic. This allows the models to 

accurately classify traffic as either normal or belonging to specific types of attacks. 
 Hyper-parameter Optimization: Optimization of hyper-parameters is implemented to fine- 

tune the classifier’s accomplishment. This process includes fine-tuning parameters like the 

learning rate, the size of estimators in ensemble methods, or the depth of decision trees to 
achieve the best possible results. 

 Trained Classifier: Using the optimal hyper-parameters, the classifier is modeled using the 

training data inputs. This yields a classifier capable of accurately forecasting the category of 

novel, unobserved occurrences based on learned patterns. 
 Multi-Class Prediction: The trained classifier generates predictions for each instance, 

assigning them to one of the following categories: 

 
0: Normal Activity 

1: Denial-of-Service (DoS) Attack 

2: Probing/Scanning Attempt 
3: Remote-to-Local (R2L) Intrusion 

4: User-to-Root (U2R) Privilege Escalation 

 

  Decision Block (Normal or Attack): A decision block is implemented to verify whether the 
prediction corresponds to the "Normal" class (prediction = 0). If the prediction equals 0, the 

instance is classified as normal. Otherwise, if the prediction matches any attack class, the 

instance is categorized as an attack 
 Attack Classification: For instances categorized as attacks, the system further classifies 

them into specific attack types such as DoS, probe, R2L, or U2R. This fine-grained 

classification enables precise identification and differentiation of attack types within the 

broader category of malicious activities.  
 

4. NETWORK INTRUSION DETECTION SYSTEMS WITH ML CLASSIFIERS 
 

4.1. Classifiers and Techniques in Machine Learning 
 

Machine learning enhances NIDS by enabling autonomous intrusion detection through data-

driven pattern recognition [24], [25]. Supervised learning offers high accuracy using labeled data 

[26], while unsupervised learning detects anomalies without labels but with lower accuracy [27]. 
Both approaches improve NIDS performance, strengthen security, and reduce false positives 

[28]. 

 

4.2. Classification Approach Using Support Vector Machines 
 

SVMs are widely used in NIDS for their high accuracy in detecting and classifying network 
anomalies. They classify data by finding a maximum-margin separator between normal and 

malicious traffic, relying on support vectors for efficiency even with limited training data. For 

non-linear patterns, kernel methods map inputs to higher-dimensional spaces, enabling complex 
decision boundaries [29]. This approach minimizes classification errors and false positives, 

making SVMs robust and versatile for both linear and non-linear intrusion detection scenarios. 
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4.3. Probabilistic Learning Classifier Using Naïve Bayes 
 

The Naive Bayes classifier, based on Bayes’ theorem, predicts class probabilities by assuming 

conditional independence among features. Variants such as Multinomial Naive Bayes (MNB) 
handle count data, while Bernoulli Naive Bayes (BNB) processes binary features. In NIDS, it is 

valued for simplicity, scalability, and computational efficiency, enabling effective analysis of 

high-dimensional network data. Despite the strong independence assumption, Naive Bayes 
reliably differentiates normal from malicious connections, providing a lightweight intrusion 

detection solution [30]. 

 

P (S|T) =                                                       (1) 

Where: 
 

       T: Observed features or data. 

       S: Target class or category. 
       P(S|T): Probability of class S given data T. 

       P(S): Prior probability of class S. 

       P(T|S): Probability of data T given class S. 

       P(T): Overall probability of data T. 
 

4.4. Classification Technique Using a Decision Tree 
 

Decision trees (DTs) are a popular supervised learning method for classification and regression, 

structured as hierarchical trees with internal nodes for feature-based decisions, branches for 

outcomes, and leaves for predictions. In NIDS, DTs effectively detect normal and malicious 
traffic using features such as connection duration, protocol, and service type. Their 

interpretability and feature-driven decision process allow efficient handling of complex datasets, 

providing accurate and real-time intrusion detection with computational efficiency in large-scale 
networks [31]. 

 

4.5. K-Nearest Neighbor based Classification Technique 
 

K-Nearest Neighbors (KNN) is a non-parametric, distance-based, instance-based learning method 

widely used in NIDS for its simplicity and effectiveness. It classifies a data point based on the 
majority label among its K nearest neighbors, using metrics such as Euclidean distance. By 

comparing network connections with labeled training instances, KNN identifies normal and 

malicious patterns. Although computationally intensive for large datasets, techniques like 

dimensionality reduction and approximate neighbor search enhance its scalability and efficiency 
[32]. 

 

4.6. Classification Approach Using Logistic Regression 
  

Logistic Regression (LR) is a supervised algorithm used in intrusion detection to classify network 

traffic as normal or malicious. It applies the logistic function to generate outputs between 0 and 1, 
estimating the probability of each class and making predictions based on a threshold. LR is 

efficient, interpretable, and computationally lightweight, providing probabilistic predictions. 

However, its simplicity may limit performance on complex, high-dimensional data, where more 
advanced models often perform better [33]. 
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In logistic regression, a linear model is derived from the provided attributes and processed 
through a sigmoid curve, resulting in a probabilistic output. The sigmoid function is 

mathematically expressed as: 

 

                                  F(x) = 1 / 1+e-x                                                                             (2) 
 

In this equation, F(x) yields a probability between 0 and 1, with "e" standing for the natural 

exponential base, and "x" acting as the function’s input. 
 

4.7. Classifier Using Linear Discriminant Analysis Technique 
 
Linear Discriminant Analysis (LDA) is a supervised method used in intrusion detection to 

classify network traffic and reduce feature dimensionality. It maximizes differences between 

classes while minimizing within-class variance, identifying linear combinations of features that 
enhance separability. LDA effectively classifies traffic into normal or specific attack types, 

supports multi-class detection, and improves computational efficiency by preserving class 

separability in lower-dimensional space [34]. 
 

4.8. Optimized Extreme Gradient Boosting (XGBOOST) Classifier 
 
XGBoost is a scalable gradient boosting algorithm widely used in network-level intrusion 

detection for its efficiency with large and complex datasets. It combines multiple weak learners, 

typically decision trees, to iteratively improve predictive performance by correcting previous 
errors. This approach effectively handles high-dimensional and imbalanced data, enabling 

accurate detection of diverse and novel intrusion types, making XGBoost a robust solution for 

precise NIDS implementation [35]. 

 

4.9. AdaBoost Classifier 
 

AdaBoost is a boosting algorithm commonly used in network intrusion detection for its ability to 
improve accuracy by combining weak learners into a strong classifier. It assigns higher weights 

to misclassified instances, ensuring subsequent models focus on difficult or ambiguous patterns. 

This adaptive approach reduces false positives and effectively handles high-dimensional, 

imbalanced network data, enhancing detection of normal and malicious activities, including 
emerging or unknown threats 

 

4.10. Random Forest Classifier 
 

Random Forest (RF) is an ensemble learning method widely used in network-layer intrusion 

detection for its accuracy and robustness against overfitting. It constructs multiple decision trees 
on varied data subsets and aggregates their predictions, capturing complex, non-linear patterns in 

high-dimensional NIDS datasets. RF effectively detects both known and zero-day threats, handles 

imbalanced data, and ranks critical features to enhance accuracy while reducing computational 
demands [36]. 

 

4.11. Artificial Neural Network (ANN) 
 

Artificial Neural Networks (ANNs) are widely used in network intrusion detection for their 

ability to model complex, non-linear data. They comprise an input layer for network features, 
hidden layers for feature extraction, and an output layer for classification. Neurons are 

interconnected with weighted links, and activation functions such as ReLU, Sigmoid, Tanh, and 

Softmax process inputs. Methods like Perceptron, SGD, and backpropagation optimize the 
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network by minimizing errors. Deep ANN architectures improve detection accuracy, enhance 
system performance, and reduce false alarms [37]. 

 

4.12. Ridge Classifier 
 

The Ridge classifier assumes that data points of each class lie within a linear subspace, enabling 

continuous analysis for classification [38]. In NIDS, it addresses multicollinearity among network 
features through L2 regularization, stabilizing predictions and reducing variance. By controlling 

model complexity, Ridge regression minimizes overfitting and ensures accurate, reliable 

detection of network anomalies, making it suitable for high-dimensional intrusion detection tasks. 

 

4.13. Passive Aggressive (PA) Classifier 
 
Passive-Aggressive (PA) classifiers are scalable online learning algorithms that update models 

incrementally as new data arrives, unlike traditional batch methods. In NIDS, they adapt to 

evolving network conditions by processing streaming data efficiently. Using a regularization 

parameter (C) instead of a learning rate, PA classifiers penalize misclassifications to balance 
accuracy and model simplicity. This enables real-time anomaly detection with low computational 

overhead, making them well-suited for high-traffic networks [39]. 

 

4.14. Rocchio (RC) Classifier 
 

The Rocchio algorithm, originating from relevance feedback in information retrieval, is applied 
in NIDS for classification. During training, it computes a centroid for each class as a prototype. 

In testing, class labels are assigned based on the Euclidean distance between incoming data points 

and centroids. This proximity-based method efficiently detects anomalies, distinguishing normal 
traffic from potential intrusions while helping minimize false positives. 

 

5. RESULTS AND DISCUSSION 
 

5.1. Experimental Setup 
 

Machine learning computations were performed using Python's Scikit-learn library. Experiments 
were conducted on Google Colaboratory, a cloud-based platform equipped with a Tesla K20 

GPU (2,496 CUDA cores, 16 GB RAM, and 500 GB storage), as well as locally on a Windows 

11 system powered by an Intel Core i5-1240P processor (4.40 GHz, 12th generation), identified 

as DESKTOP-UFN62J4. This dual setup facilitated a comprehensive evaluation of machine 
learning classifiers in both cloud and local computing environments. 

 

5.2. Dataset Description 
 

NIDS monitor network activity to identify abnormal patterns indicative of security threats while 

allowing normal traffic. Machine learning classifiers, trained on datasets containing both normal 
and attack patterns, improve detection by recognizing diverse network behaviors. In this study, 

the 1999 KDD Cup dataset was used, with 70% of data for training and 30% for testing to 

preserve class distribution. A 10-fold cross-validation was also applied to rigorously evaluate 
model accuracy, generalization, and robustness against overfitting. 
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5.3. The 1999 KDD CUP Intrusion Dataset 
 

The 1999 KDD Cup intrusion dataset is a widely used benchmark for evaluating network 

intrusion detection mechanisms. Developed for the KDD 1999 data mining challenge, it contains 
simulated network traffic with both normal and malicious connections. The dataset includes 

approximately 4.9 million records, each described by 41 features capturing key aspects of 

network behavior, such as connection duration, protocol type, and error rate, making it a 
foundational resource for anomaly detection and machine learning in cybersecurity. The 1999 

KDD Cup dataset categorizes malicious activity into four types: Denial of Service (DoS), 

Remote-to-Local (R2L), User-to-Root (U2R), and Probe attacks. Normal network traffic is also 

included to provide a baseline for training and evaluation. The dataset is typically split into 
training and testing subsets, with cross-validation used to assess detection performance. Despite 

criticisms such as data redundancy, it remains a widely accepted benchmark for developing and 

evaluating NIDS. 

 

(i) Denial-of-Service (DoS) Assaults: These types of exploits focus on disrupting network 

infrastructure or system operations by inundating them with excessive traffic or requests, such as 
in a SYN Flood attack. 

 

(ii) Remote-to-Local (R2L) Intrusion: These occur when a malicious agent gains access to a 

local computer remotely without valid credentials, often through techniques like password 
cracking. 

 

(iii) Probing/Scanning Attempt: These involve reconnaissance activities aimed at collecting 
information about a network’s structure and identifying vulnerabilities, such as through port 

scanning. 

 
(iv) User-to-Root (U2R) Privilege Escalation: In these breach attempts, an intruder attempts to 

elevate privileges from a regular user account to administrator (root) access, often using methods 

like buffer overflow exploits. 

 

 
 

Fig 3. Feature and Label Structure of the 1999 KDD Cup intrusion detection dataset 

 

Fig. 3 illustrates the process of loading and displaying the 1999 KDD Cup dataset using Python’s 
pandas library. The CSV files, kddtrain.csv and kddtest.csv, are imported into DataFrames 

traindata and testdata, with header=None indicating no header row. The command traindata. head 

(8) displays the first eight rows, showing 42 columns indexed from 0 to 41. Each row represents a 
network connection, and each column corresponds to attributes such as protocol type, connection 

duration, and status. 
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The 1999 KDD Cup dataset is widely used for detecting malicious network activity and includes 
four types of features: basic, content, traffic, and class labels, as summarized in Table 2. Basic 

features describe connection properties, such as duration, protocol type (TCP, UDP, ICMP), 

service (HTTP, FTP), flags, and data transfer metrics (src_bytes, dst_bytes). Content features 

capture connection-level activities, including failed logins, user login status, and system-level 
actions like root_shell or su_attempted. Traffic features aggregate session details, such as number 

of shells, accessed files, and login types (host_login, guest_login). Class labels distinguish 

normal traffic from attacks, including DoS, R2L, U2R, and Probe. These features are critical for 
training machine learning classifiers for effective intrusion detection. 

 
Table 2. Highlights the frequency distribution of cases among multiple attack classes in the 1999   KDD 

Cup intrusion dataset 

 

Sets Traffic Categories Authentic Logs Unique Data Points 

Training Set 

Intrusions 3,925,650 262,178 

Benign Traffic 972,781 812,814 

Overall Count 4,898,431 10,74,992 

Testing 
Set 

Intrusions 2,46,150 29,378 

Benign Traffic 60,591 47,911 

Total 306,741 77,289 

 

5.4. Performance Evaluation Metrics of NIDS 
 

Evaluating network monitoring and intrusion detection systems is crucial for enhancing threat 

detection, refining algorithms, reducing false positives, and ensuring operational reliability. 
Performance is measured using metrics such as Accuracy (Acc), Precision (Prec), Recall (Rec), 

F1-score, False Alarm Rate (FAR), and Detection Rate (DR). Table 3 summarizes four key 

outcomes: true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN), 

which form the basis for performance assessment. A confusion matrix organizes these outcomes, 
allowing computation of the key metrics and providing a structured framework for evaluating 

machine learning classifiers in intrusion detection. 

 
True Positive (TP): An intrusion attempt is correctly recognized by the system as malicious, 

confirming successful threat detection. 

 

False Positive (FP): Benign traffic is incorrectly flagged as a threat, triggering an unnecessary 
alert. 

 

True Negative (TN): Safe network activity is accurately classified as non-malicious, resulting in 
no false warning. 

 

False Negative (FN): A harmful activity passes through undetected and is wrongly classified as 
legitimate, signifying a lapse in the detection mechanism. 

 
Table 3. Calculating NIDS Performance Metrics 

 

Actual \ Predicted Attack (Positive) Normal (Negative) 

Attack (Positive) True Positive (TP) False Negative (FN) 

Normal (Negative) False Positive (FP) True Negative (TN) 
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Accuracy: Accuracy measures the proportion of correctly classified normal and attack instances, 
offering an overall evaluation of NIDS performance across all predictions. Mathematically: 

 

Accuracy
NIDS

 =                                           (3) 

 

Precision: Precision indicates NIDS reliability in detecting attacks. It reflects how accurately 

alerts are raised, with higher precision values representing fewer false alarms: 
  

                                          Precision
NIDS

 =                                                         (4)        

     

Recall: Recall measures how effectively NIDS detects actual attacks. It reflects the system’s 
ability to capture malicious activities without missing threats, ensuring comprehensive detection 

coverage: 

 

                                               Recall
NIDS

 =  
 

                                                            (5)                           

 

F1 Score:  F1-score balances precision and recall through their harmonic mean. It is especially 

useful for NIDS evaluation on imbalanced datasets, ensuring neither metric dominates 
performance assessment. 

 

                                           F1 Score
NIDS

 =                                                      (6) 

 
False Alarm Rate: False Alarm Rate in NIDS measures the frequency of normal traffic 

misclassified as attacks. Lower values indicate higher reliability and reduced unnecessary 

security alerts. 
 

                                      FAR
NIDS

 =                                                                             (7) 

5.5. Confusion Matrices for ML Classifiers on the 1999 KDD Cup Intrusion Dataset 
 

 

 
Fig 4. Confusion Matrix 

representing SVM 
Fig 5. Confusion Matrix 

representing RF 
RFFig 6. Confusion Matrix 

representing DT 
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Fig 7. Confusion Matrix 

representing KNN 

Fig 8. Confusion Matrix 

representing XGBOOST 

Fig 9. Confusion Matrix 

representing BPN 

        

 
 

Fig 10. Confusion Matrix 

representing SGD 

Fig 11. Confusion Matrix 

representing PPN       

Fig 12. Confusion Matrix 

representing PA 

 

 
 

Fig 13. Confusion Matrix 

representing ADABOOST 

Fig 14. Confusion Matrix 

representing LR 

Fig 15. Confusion Matrix 

representing BNB 

 

 
 

Fig 16. Confusion Matrix 

representing MNB 

Fig 17. Confusion Matrix 

representing Ridge 

Fig 18. Confusion Matrix 

representing RC 

 

5.6. Hyper-Parameter Tuning     
 

In the experimental setup shown in Table 4, hyper-parameter optimization is employed to improve 

NIDS detection accuracy by fine-tuning key parameters. Techniques such as Grid Search and 
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Random Search systematically explore parameter combinations to identify optimal settings. Cross-
validation assesses classifier generalization across datasets, mitigating overfitting and enhancing 

reliability in detecting malicious activities. This tuning ensures effective real-world performance, 

balancing accurate detection with minimal false alarms. 

 
Table 4. Setup of Hyper-parameters for Different Classification Techniques 

 

Classifiers Parameters 

KNN 

K=10 (Best value) 
K= 

(1,2,3,4,5,6,7,8,9,10,

11,12,13,14,15) 

Metric= “minkowski” 

 

weights= “distance” 

 
algorithm= “auto” 

DT 

Splitting= “Gini” 

(Best value) 

Splitting= “Entropy” 

Splitting= “Gini” 

Splitting= “Entropy” 

Splitting= “Gini” 

splitter= “best” 

splitter= “best” 

splitter= “random” 

splitter= “best” 

splitter= “random” 

min_samples_split=2 

min_samples_split=5 

min_samples_split=4 

min_samples_split=10 

min_samples_split=8 

random state=3 

random state=42 

random state=7 

random state=0 

random state=12 

MNB 

alpha=0.01 (Best 

value) 

alpha=0.1 

alpha=0.5 
alpha=1.0 

alpha=0.001 

fit_prior=True 

fit_prior=True 

fit_prior=True 
fit_prior=True 

fit_prior=True 

class_prior=None 

class_prior=None 

class_prior=None 
class_prior=None 

class_prior=None 

force_alpha=True 

force_alpha=True 

force_alpha=True 
force_alpha=True 

force_alpha=True 

BNB 

alpha=0.01 (Best 

value) 

alpha=0.05 

alpha=0.001 

alpha=0.1 

alpha=0.5 

binarize= “1.0” 

binarize= “1.0” 

binarize= “1.0” 

binarize= “1.0” 

binarize= “1.0” 

fit_prior=True 

fit_prior=True 

fit_prior=True 

fit_prior=True 

fit_prior=True 

class_prior= None 

class_prior= None 

class_prior= None 

class_prior= None 

class_prior= None 

RF 

n_estimators= “200” 

(Best value) 

n_estimators= “100” 

n_estimators= “150” 

n_estimators= “300” 
n_estimators= “250” 

Splitting= “gini” 

Splitting= “entropy” 

Splitting= “gini” 

Splitting= “gini” 

Splitting= “entropy” 

min_samples_split=2 

min_samples_split=2 

min_samples_split=3 

min_samples_split=4 

min_samples_split=2 

max_features= “None” 

max_features= “sqrt” 

max_features= “auto” 

max_features= “None” 

max_features= “sqrt” 

SVM 

C= 1.0 (Best value) 

 

C= 0.5 

 

C= 1.5 

 

C= 0.8 

Penality factor= “l2” 

 

Penality factor= “l1” 

 

Penality factor= “l2” 

 

Penality factor= “l1” 

tolerance(tol)="1e-4" 

 

tolerance(tol)="1e-3" 

 

tolerance(tol)="1e-4" 

 

tolerance(tol)="1e-3" 

Loss= “square_hinge” 

Kernel= “rbf” 

Loss= “square_hinge” 

Kernel= “rbf” 

Loss= “hinge” 

Kernel= “linear” 

Loss= “square_hinge” 

Kernel= “sigmoid” 

 

PPN 

 

max_iter= “150” 

(Best value) 

 

max_iter= “100” 
 

max_iter= “200” 

 

 

Penalty= “elasticnet” 

 

Penalty= “l2” 
 

Penalty= “elasticnet” 

 

tolerance(tol)= "1e-3" 

 

tolerance(tol)= "1e-4" 
 

tolerance(tol)= "1e-3" 

 

n_iter_no_change= “20” 

 

n_iter_no_change= “10” 
 

n_iter_no_change= “15” 

LR 

max_iter= “150” 

(Best value) 

max_iter= “200” 

solver= “saga” 

solver= “saga” 

penalty= “l2” 

penalty= “l1” 

class_weight= 

“balanced” 

class_weight= “none” 
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max_iter= “150” 

max_iter= “180” 

solver= “saga” 

solver= “newton-cg” 

penalty= “l2” 

penalty= “l2” 

class_weight= 

“balanced” 

class_weight= 

“balanced” 

XGBOOST 

 

n_estimators= 

“200” (Best value) 

n_estimators= “150” 
n_estimators= “100” 

n_estimators= “200” 

learning_rate= “0.05” 

learning_rate= “0.2” 

learning_rate= “0.1” 
learning_rate= “0.01” 

max_depth= “4” 

max_depth= “4” 

max_depth= “4” 
max_depth= “5” 

random_state= “2” 

 

random_state= “2” 
 

AdaBoost 

n_estimators= 

“150” (Best value) 

n_estimators= “100” 

n_estimators= “200” 

n_estimators= “120” 

n_estimators= “250” 

algorithm= 

“SAMME.R” 

algorithm= “SAMME” 

algorithm= 

“SAMME.R” 

algorithm= “SAMME” 

algorithm= 

“SAMME.R” 

learning_rate= “0.05” 

learning_rate= “0.1” 

learning_rate= “0.05” 

learning_rate= “0.2” 

learning_rate= “0.075” 

max_depth= “2” 

max_depth= “1” 

max_depth= “2” 

max_depth= “3” 

max_depth= “2” 

SGD 

alpha= “0.0001” 

(Best value) 

alpha= “0.0005” 
alpha= “0.001” 

max_iter= “150” 

max_iter= “100” 

max_iter= “200” 

loss= “hinge” 

loss= “log” 

loss= “hinge” 

penalty= "l1" 

penalty= "l2" 

penalty= "l1" 

 

Ridge 

 

solver="sag" (Best 

value) 

solver="lsqr" 

solver="sag" 

max_iter= “300” 

max_iter= “150” 

max_iter= “200” 

tolerance(tol)="1e-4" 

tolerance(tol)="1e-4" 

tolerance(tol)="1e-3" 

alpha= “0.015” 

alpha= “0.005” 

alpha= “0.001” 

 

RC 

metric= 

“manhattan” (Best 

value) 

metric= “euclidean”' 

shrink_threshold= “0.4” 

shrink_threshold= “0.6” 

alpha= “0.01” 

alpha= “0.005” 
 

 

PA 

max_iter= “200” 

(Best value) 

max_iter= “250” 

max_iter= “150” 

n_iter_no_change= “30” 

n_iter_no_change= “40” 

n_iter_no_change= “20” 

loss= “hinge” 

loss= “squared_hinge” 

loss= “hinge” 

tol=0.01 

tol=0.005 

tol=0.001 

BPN 

max_iter= “250 

(Best value) 

max_iter= “150 

max_iter= “300” 

max_iter= “200” 

hidden_layer_sizes= 

“100” 

hidden_layer_sizes= 
“50” 

hidden_layer_sizes= 

“100” 

hidden_layer_sizes= 

“100” 

          Activation 

function= “relu” 

          Activation 
function= “relu” 

          Activation 

function= “tanh” 

          Activation 

function= “relu” 

learning_rate_init= 

“0.01” 

learning_rate_init= 
“0.02” 

learning_rate_init= 

“0.005” 

learning_rate_init= 

“0.001” 
 

 

5.7. Results Before Hyper-Parameter Optimization     
 

This section presents evaluation results of various machine learning methods for intrusion detection 
using the 1999 KDD Cup dataset, implemented with Scikit-learn. A ten-fold cross-validation was 

employed, dividing the dataset into ten equal parts, with nine folds for training and one for testing in 

each iteration. Performance metrics were averaged across folds to assess consistency. All classifiers 
were first evaluated using Scikit-learn’s default hyper-parameters to establish baseline performance 

prior to hyper-parameter tuning. 
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Table 5. Performance comparisons of ML classifiers on the 1999 KDD Cup intrusion dataset for Network 

IDS before Hyper-Parameter Optimization 

 

Classificatio

n 

Algorithms 

Accuracy Precision Recall F1-Score FAR Detection Rate 

KNN 
0.9724±0.055

1 
0.9806±0.031

1 
0.9724±0.0551 0.9741±0.0499 0.0173 0.9724±0.0551 

DT 
0.9713±0.055

6 

0.9809±0.301

1 
0.9713±0.0556 0.9731±0.0502 0.0175 0.9713±0.0556 

MNB 
0.9329±0.386

9 

0.9399±0.287

0 
0.9329±0.3868 0.9298±0.0389 0.0383 0.9329±0.3868 

BNB 
0.9473±0.055

5 

0.9594±0.027

2 
0.9473±0.0555 0.9487±0.0497 0.0338 0.9473±0.0555 

RF 
0.9714±0.059

0 

0.9811±0.030

9 
0.9714±0.0590 0.9733±0.0531 0.0188 0.9714±0.0590 

SVM 
0.9808±0.006

1 

0.9815±0.005

3 
0.9808±0.0061 0.9808±0.0059 0.0123 0.9808±0.0061 

PPN 
0.9101±0.130

3 

0.9539±0.043

0 
0.9101±0.1303 0.9157±0.1186 0.0492 0.9101±0.1303 

LR 
0.9667±0.059

5 

0.9777±0.028

9 
0.9667±0.0595 0.9689±0.0534 0.0247 0.9667±0.0595 

XGBoost 
0.9464±0.082

7 

0.9646±0.032

5 
0.9464±0.0827 0.9496±0.0736 0.0267 0.9464±0.0827 

AdaBoost 
0.9431±0.059

8 

0.9556±0.028

8 
0.9431±0.0598 0.9449±0.0530 0.0271 0.9431±0.0598 

SGD 
0.9046±0.125

5 

0.9457±0.038

9 
0.9046±0.1255 0.9097±0.1136   0.0424 0.9046±0.1255 

Ridge 
0.9495±0.039

5 
0.9562±0.024

1 
0.9495±0.0395 0.9499±0.0359 0.0339 0.9495±0.0395 

RC 
0.9487±0.038

8 

0.9549±0.025

1 
0.9487±0.0388 0.9488±0.0350 0.0357 0.9487±0.0388 

PA 
0.9443±0.065

0 

0.9576±0.027

8 
0.9443±0.0650 0.9462±0.0532 0.0373 0.9443±0.0650 

BPN 
0.9704±0.593

4 

0.9810±0.029

0 
0.9704±0.0594 0.9725±0.0534 0.0167 0.9704±0.0594 

               

The average values and standard deviations of the classification outcomes are shown in 

Table 5 
 

                     
Table 5 summarizes the detection performance of various ML classifiers on the 1999 KDD Cup 

dataset using default parameters, considering accuracy and false alarm rate (FAR). SVM 

achieved the highest accuracy of 98.08% with the lowest FAR of 0.0123, demonstrating superior 
intrusion detection. KNN, RF, BPN, and DT also performed well, with accuracies above 97% and 

low FARs, while SGD had the lowest accuracy (90.46%) and higher FAR (0.0424). MNB 

recorded 93.29% accuracy with FAR 0.0383, and XGBoost, AdaBoost, and Ridge ranged 
between 94–95% accuracy. Fig. 19 illustrates these results, highlighting SVM’s superior 

performance and SGD’s relative ineffectiveness in its default configuration.  
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Fig. 19: Performance Comparisons of ML Classification Algorithms before hyper-parameter optimization 

in NIDS 

 

5.8. Results After Hyper-Parameter Optimization 
 
This section evaluates the performance of multiple ML classifiers on the 1999 KDD Cup 

intrusion dataset, a widely used benchmark in NIDS research. Classifiers were implemented 

using Scikit-learn and assessed via ten-fold cross-validation, splitting the dataset into ten folds 

with nine for training and one for testing per iteration to reduce variance and overfitting. To 
optimize the feature space and improve classifier efficiency, Recursive Feature Elimination 

(RFE) was applied to retain the most significant features while discarding less impactful ones. 

Combining RFE with cross-validation provides insights into classifier generalization and real-
world applicability. 

 

The key hyper-parameters for each classifier, including learning rate, maximum tree depth, and 
regularization factors, were initially set to Scikit-learn’s default values. Parameters such as alpha 

for Ridge and C for SVM controlled model complexity and mitigated overfitting. For tree-based 

models like Random Forest and XGBoost, n_estimators and max_depth was adjusted to balance 

performance and overfitting. Hyper-parameters were further fine-tuned empirically to optimize 
generalization and enhance detection of multiple attack types in the 1999 KDD Cup dataset. Ten-

fold cross-validation provides a reliable and unbiased evaluation of classifiers such as SVM, 

XGBoost, AdaBoost, RF, BNB, MNB, LR, KNN, DT, and BPN. This method enables 
assessment of key performance metrics, including Accuracy, Precision, Recall, F1-score, FAR, 

and DR, offering a comprehensive view of each classifier’s effectiveness. Comparing these 

metrics helps identify the most suitable ML approaches for detecting and classifying network 

intrusions. 
 
Table 6. Performance comparisons of ML classifiers on the 1999 KDD Cup intrusion dataset for Network 

IDS with Hyper Parameter Optimization 

 
 

Classification 

Algorithms 
Accuracy Precision Recall F1-Score FAR Detection Rate 

KNN (K=10)  

(Best Value) 

 

 

 

    

0.9829±0.0649 

 

 

 

0.9899±0.0409 

 

 

 

 

0.9829±0.0649 

 

 

 

 

0.9847±0.0596 

 

 

   0.0148 0.9829±0.0649 

DT 

(Best Value) 

 

 

0.9812±0.058

9 

 
0.9904±0.3088 

 

 

 
0.9812±0.0589 

 

 

 
0.9821±0.0556 

 

 

0.0162 0.9812±0.0589 
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MNB 

(Best Value) 

 

0.9568±0.086

9 

 

0.9638±0.2980 

 

 

0.9568±0.0869 

 

 

0.9537±0.0491 

 

 

0.0345 0.9568±0.0869 

BNB 

(Best Value) 

0.9612±0.068

2 

 

0.9732±0.0372 

 

 

0.9612±0.0682 

 

 

0.9626±0.0572 

 

 

0.0301 0.9612±0.0682 

RF 

(Best Value) 

0.9827±0.062
7 

 

0.9899±0.0498 
 

 

                

0.9827±0.0627 
 

 

 

0.9849±0.5890 
 

 

0.0169 0.9827±0.0627 

SVM 

(Best Value) 

0.9912±0.009

7 

 

0.9919±0.0088 

 

 

0.9912±0.0097 

 

 

0.9912±0.0095 

 

 

0.0091 0.9912±0.0097 

PPN 

(Best Value) 

    

0.9477±0.0410 

 

0.9563±0.0573 

 

 

0.9477±0.0402 

 

 

0.9533±0.1254 

 

 

0.0467 0.9477±0.0402 

LR 

(Best Value) 

 

0.9769±0.069

5 

 

0.9849±0.0398 

 

 

0.9769±0.0695 

 

 

0.9789±0.0634 

 

 

0.0220 0.9769±0.0695 

XGBoost 

(Best Value) 

 

 

0.9787±0.047

6 

 

   0.9850±0.0308 

 

 

0.9787±0.0476 

 

 

0.9811±0.0420 

 

 

0.0237 0.9787±0.0476 

AdaBoost 

(Best Value) 

0.9776±0.059

4 

 

0.9879±0.0292 

 

0.9776±0.0594 

 

 

0.9897±0.0534 

 

 

0.0241      0.9776±0.0594 

SGD 

(Best Value) 

 

0.9488±0.049

8 

 

0.9565±0.0368 

 

 

 

0.9488±0.0498 

 

 

0.9511±0.1386 

 

 

0.0396 0.9488±0.0498 

Ridge 

(Best Value) 

 

0.9618±0.050

8 

 

 

0.9689±0.0346 

 

 

 

0.9618±0.0508 

 

 

 

0.9625±0.0389 

 

 

0.0310 0.9618±0.0508 

RC 

(Best Value) 

 

 

0.9561±0.046

2 

 

 

0.9626±0.0296 

 

 

 

0.9561±0.0462 

 

 

 

0.9562±0.0410 

 

 

0.0330 0.9561±0.0462 

PA 

(Best Value) 

 

0.9533±0.069

9 

 

 
0.9616±0.0375 

 

 

 
0.9533±0.0699 

 

 

 
0.9554±0.0632 

 

 

0.0352 0.9533±0.0699 

BPN 

(Best Value) 

 

0.9821±0.093

8 

 

0.9915±0.0392 

 

 

0.9821±0.0938 

 

 

 

0.9830±0.0638 

 

 

0.0152 0.9821±0.0938 

 
The average values and standard deviations of the classification outcomes are shown in Table 6 

 

Table 6 highlights SVM as the top-performing classifier, achieving 99.12% Accuracy, 99.19% 

Precision, 99.12% Recall, 99.12% F1-score, and the lowest FAR of 0.0091. KNN and BPN 
closely followed with accuracies of 98.29% and 98.21% and low FARs of 0.0148 and 0.0152. DT 

and RF showed similar reliability, with accuracies of 98.12% and 98.27% and FARs of 0.0162 

and 0.0169. Ensemble methods, XGBoost (97.87%) and AdaBoost (97.76%), delivered strong 
performance, though below SVM. Lightweight classifiers, BNB (96.12%) and MNB (95.68%), 
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were suitable for resource-limited scenarios but had higher FARs (0.0301 and 0.0345). Logistic 
Regression achieved 97.69% accuracy with FAR 0.0220. PA, SGD, and Perceptron 

underperformed, with detection rates below 95.50%, limiting their suitability for critical intrusion 

detection tasks. Figs. 20–34 present line graphs illustrating classifier performance after hyper-

parameter tuning across various metrics. 
 

 
 
Fig 20. Hyper-Parameter Tuning 

for KNN 
Fig 21. Performance of DT 

 
Fig 22. Performance of MNB 

 

 
 

Fig 23. Performance of BNB Fig 24. Performance of RF Fig 25. Performance of SVM 

 

 
 

Fig 26 Performance of PPN Fig 27. Performance of LR Fig 28. Performance of XGBoost 

 

 
 
Fig 29. Performance of AdaBoost Fig 30. Performance of PA Fig 31. Performance of Ridge 
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Fig 32. Performance of SGD Fig 33. Performance of RC Fig 34. Performance of BPN 
 
 

 
 

Fig 35. Heat map representation of prediction accuracy for different machine learning algorithms in NIDS 

 

Fig. 35 presents a heatmap comparing 15 ML classifiers across Accuracy, Precision, Recall, F1-
score, FAR, and Detection Rate. The color gradient highlights detection performance and false 

alarm control, helping identify the most effective classifier for network intrusion detection. 

 

5.9. Analysis of ROC Curves for Machine Learning Classifiers on the 1999 KDD 

Cup Intrusion Data 
 

 
 

Fig 36. Performance Evaluation Using ROC Curves: ML Classifiers on the 1999 KDD Cup Intrusion 

Dataset 

 
Fig. 36 shows ROC analysis on the KDD Cup 1999 dataset, where SVM, BPN, and RF achieved 

the highest AUC (~0.98). KNN, DT, and BNB followed (0.89–0.94), while XGBoost and 

AdaBoost performed moderately (0.86–0.88). All models surpassed the random baseline, 
confirming effective intrusion detection. 
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Fig 37. Performance Comparisons of ML Classification Algorithms with hyper-parameter               

optimization in NIDS 

 

Fig. 37 presents a bar chart comparing classifiers across Accuracy, Precision, Recall, F1-score, 
and FAR. SVM achieves the highest performance, with 99.12% accuracy, strong Precision, 

Recall, and F1-score, and a minimal FAR, highlighting its effectiveness in detecting network 

intrusions on the 1999 KDD Cup dataset. KNN, RF, BPN, DT, and LR also show strong results, 
while ensemble methods like XGBoost and AdaBoost perform well but do not surpass SVM. 

Linear models such as Ridge and SGD exhibit moderate performance, reflecting challenges in 

handling dataset complexity. These results underscore SVM’s superiority for NIDS and provide 

guidance for selecting and tuning classifiers for robust intrusion detection.     
       

6. CONCLUSION AND FUTURE SCOPE          
 

Detecting network intrusions is critical for maintaining cybersecurity, and machine learning (ML) 

has proven effective in identifying malicious activities within network traffic. Supervised ML 
algorithms enable systems to distinguish legitimate from suspicious behavior, enhancing 

protection against evolving threats. Using the 1999 KDD Cup intrusion dataset, this study applied 

hyper-parameter tuning to optimize classifiers. SVM, KNN, RF, and XGBoost achieved high 
accuracy and reliable detection rates, while Perceptron (PPN) and Stochastic Gradient Descent 

(SGD) performed less effectively. Classifiers such as Naïve Bayes, Ridge, and Passive 

Aggressive showed moderate performance, highlighting variability in algorithm effectiveness for 
NIDS. As cyber threats evolve, future research will focus on advanced techniques capable of 

handling large-scale, dynamic datasets. Unsupervised methods, including K-means, OC-SVM, 

Isolation Forest, DBSCAN, and Autoencoders, are essential for detecting novel attacks, such as 

zero-day threats, without labeled data. Hybrid approaches combining multiple learning paradigms 
can improve adaptability and detection accuracy. Moreover, integrating Explainable AI (XAI) 

will enhance transparency and interpretability, fostering trust in real-world deployment. These 

advancements promise more adaptive, scalable, and robust intrusion detection systems capable of 
mitigating increasingly sophisticated cyber threats. 
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