
International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

DOI: 10.5121/ijnsa.2025.17601 1

HYPERPARAMETER TUNING-BASED

OPTIMIZED PERFORMANCE ANALYSIS OF
MACHINE LEARNING ALGORITHMS FOR

NETWORK INTRUSION DETECTION

Sudhanshu Sekhar Tripathy and Bichitrananda Behera

Department of Computer Science and Engineering, C.V. Raman Global University,

Bhubaneswar, Odisha, India

ABSTRACT

Network Intrusion Detection Systems (NIDS) are essential for securing networks by identifying and

mitigating unauthorized activities indicative of cyberattacks. As cyber threats grow increasingly

sophisticated, NIDS must evolve to detect both emerging threats and deviations from normal behavior. This

study explores the application of machine learning (ML) methods to improve the NIDS accuracy through

analyzing intricate structures in deep-featured network traffic records. Leveraging the 1999 KDD CUP

intrusion dataset as a benchmark, this research evaluates and optimizes several ML algorithms, including

Support Vector Machines (SVM), Naïve Bayes variants (MNB, BNB), Random Forest (RF), k-Nearest

Neighbors (k-NN), Decision Trees (DT), AdaBoost, XGBoost, Logistic Regression (LR), Ridge Classifier,

Passive-Aggressive (PA) Classifier, Rocchio Classifier, Artificial Neural Networks (ANN), and Perceptron

(PPN). Initial evaluations without hyper-parameter optimization demonstrated suboptimal performance,

highlighting the importance of tuning to enhance classification accuracy. After hyper-parameter
optimization using grid and random search techniques, the SVM classifier achieved 99.12% accuracy with

a 0.0091 False Alarm Rate (FAR), outperforming its default configuration (98.08% accuracy, 0.0123 FAR)

and all other classifiers. This result confirms that SVM accomplishes the highest accuracy among the

evaluated classifiers. We validated the effectiveness of all classifiers using a tenfold cross-validation

approach, incorporating Recursive Feature Elimination (RFE) for feature selection to enhance the

classifiers accuracy and efficiency. Our outcomes indicate that ML classifiers are both adaptable and

reliable, contributing to enhanced accuracy in systems for detecting network intrusions.

KEYWORDS

Machine learning classification systems, Network intrusion detection mechanism, KDD CUP 1999 data
repository, Hyper-parameter tuning, Performance evaluation, Classification accuracy

1. INTRODUCTION

The rapid growth of digital technology has improved efficiency and connectivity but also
intensified sophisticated cyber threats such as ransomware, phishing, and DoS attacks. With over

90% of critical operations relying on online platforms, ensuring the confidentiality, integrity, and

availability of digital assets is vital. To address these challenges, researchers are developing
advanced Network Intrusion Detection Systems (NIDS) using machine and deep learning for

real-time anomaly detection and proactive defense. The integration of Artificial Intelligence (AI),

especially Machine Learning (ML), has greatly enhanced Network Intrusion Detection Systems

(NIDS). These systems analyze network traffic to distinguish normal and malicious activities,
detecting zero-day attacks that evade traditional defenses. According to NIST, intrusion detection

https://airccse.org/journal/jnsa25_current.html
https://doi.org/10.5121/ijnsa.2025.17601

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

2

ensures data confidentiality, integrity, and availability through continuous monitoring and
anomaly detection [1]. Unlike signature-based systems, anomaly-based NIDS effectively identify

previously unseen attacks by learning normal traffic behavior.

Recent advances in machine learning (ML) and deep learning (DL) have enhanced IDS
performance through adaptive, data-driven detection with fewer false positives [2] [3].

Techniques like SVM, RF, DT, KNN, XGBoost, AdaBoost, and BPN are widely used, while

CNNs and RNNs capture complex traffic patterns [4]. Hyperparameter tuning and feature
engineering optimize accuracy and scalability [5] [6]. Using the KDD Cup 1999 dataset, this

study evaluates multiple classifiers based on accuracy, precision, recall, F1-score, false alarm

rate, and detection rate to strengthen IDS robustness.

Fig.1. A snapshot of systems for detecting network intrusions

Fig. 1 illustrates the system layout of a system for detecting network intrusions, engineered to

observe and assess network traffic, identifying potential intrusions or suspicious activities. The

system connects to the internet through a firewall that filters traffic according to established
security rules. NIDS sensors are positioned at both external and internal points to examine

network packets. Traffic is routed through a switch that connects various workstations within the

network. When anomalies or suspicious behavior are detected, the NIDS sends alerts to
monitoring servers, which evaluate the threat's severity and manage response actions. This

centralized setup enables continuous surveillance, strengthening the network’s defense against

cyber-attacks by allowing real-time threat detection and proactive response.

This research highlights the following major contributions:

 The initial investigation establishes baseline performance metrics for machine learning

classifiers applied to systems for detecting network intrusions using the 1999 KDD Cup
intrusion detection dataset without hyper-parameter tuning. A diverse range of ML

algorithms was systematically assessed through tenfold cross-validation without applying

any feature selection techniques. This analysis provides critical perspectives on their
performance, highlighting capabilities and restrictions and emphasizing the need for

further optimization to improve accuracy and lower false alarm rates. The findings serve as

a valuable benchmark for guiding future advancements in network security solutions.

 The second investigation applies sophisticated hyper-parameter optimization strategies like

grid search and random search to boost the performance of ML classifiers. Subsequently,
all classifiers were evaluated through tenfold cross-validation with RFE, improving

accuracy, efficiency, and emphasizing essential features. The results clearly show that

systematic tuning of hyper-parameter configurations leads to significant improvements,
enhancing detection accuracy while minimizing the rate of incorrect positive detections.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

3

This investigation emphasizes the importance of hyper-parameter optimization in
improving the durability and trustworthiness of systems for detecting network intrusions,

contributing to facilitating the progress of more effective and efficient classifiers for

practical deployment in network security applications.

Section 2 presents a comprehensive investigation into recent advancements in systems for

detecting network intrusions, emphasizing a critical analysis of methodologies, emerging trends,

prevailing challenges, and a systematic comparative evaluation of relevant research studies.
Section 3 outlines an enhanced framework for detecting network intrusions utilizing the 1999

KDD intrusion detection dataset. It provides a detailed depiction of a machine learning-based

NIDS architecture, emphasizing its procedural framework components and optimization
strategies. Section 4 presents an ML-driven design for detecting network intrusions, emphasizing

the impact of prominent ML classifiers in improving detection efficiency and ensuring

comprehensive performance evaluation. Section 6 clarifies the experimental setup and

performance evaluation executed utilizing the 1999 KDD Cup intrusion dataset. It includes an
analysis of confusion matrices, hyper-parameter tuning, and a comparative analysis of results

before and after optimization, emphasizing the influence of hyper-parameter optimization on

accuracy and false positive rates. Section 7 wraps up by outlining the significant outcomes of the
study and proposing future avenues of research to advance next-generation NIDS.

2. RELATED WORK

A study [7] employed an XGBoost-based feature selection approach, identifying 17 and 22
optimal features for the NSL-KDD and UNSW-NB15 datasets, respectively. The XGBoost-

LSTM hybrid achieved 99.49% validation accuracy and 88.13% test accuracy on NSL-KDD,

while XGBoost-Simple-RNN attained 87.07% on UNSW-NB15. Another study [8] introduced
HCRNNIDS, a hybrid CRNN integrated with logistic regression, decision trees, and XGBoost,

achieving 97.75% accuracy on CSE-CIC-DS2018 and outperforming several traditional and deep

learning IDS models. In [9], a hybrid anomaly detection model integrating a classical
autoencoder (CAE) with a deep neural network (DNN) was applied to the UNSW-NB15 dataset.

The CAE enhanced DNN performance through sparse feature extraction, achieving 91.29%

accuracy and outperforming baseline models. Similarly, [10] proposed a deep learning-based

IDPS using an MLP trained on KDD CUP 1999, optimized with Adam, achieving 91.4%
accuracy compared to DT (74%) and SVM (83%) classifiers.

In [11], a hybrid IoT intrusion detection model combined random forest-based feature selection
with neural classifiers (B-ANN and DR-NN), achieving 98% accuracy on KDD CUP 1999 and

demonstrating strong adaptability across intelligent networks. Similarly, [12] evaluated NB, DT,

KNN, RF, SVM, MLP, and LSTM on NSL-KDD, reporting accuracies of 89.6% (with scaling),

89.2% (without), 96.89% (MLP), and 97.77% (LSTM), confirming LSTM’s superiority in
modeling temporal dependencies. The study in [13] highlighted CNNs as highly effective for IoT

intrusion detection, demonstrating deep learning’s advantage over traditional methods. In [14],

DNN and LSTM models on NSL-KDD showed that a three-layer LSTM with 32 neurons per
layer achieved 98.3% accuracy, outperforming enlarged DNNs and conventional models.

Reference [15] applied a deep autoencoder for five-class IDS on NSL-KDD, achieving 99%

training and 91.28% testing accuracy. In [16], an LSTM-based IDS on CIDDS reached 0.85
accuracy, surpassing SVM, MLP, and Naïve Bayes.

A CNN-IDS in [17] applied dimensionality reduction on KDD 1999 data, converting traffic into

image-like representations to reduce complexity. Results demonstrated higher accuracy and lower
FAR compared with conventional methods. The study in [18] proposed a deep belief network

(DBN) framework optimized with PSO, clustering, and genetic operators, reducing detection

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

4

time by 24.69% and improving five-class accuracy by 1.3–14.8%. An improved LeNet-5 CNN in
[19] integrated normalization and one-hot encoding, achieving over 99% training and evaluation

accuracy with FAR below 0.1%, emphasizing reliability and precision. DL-IDS in [20] combined

CNN and LSTM for feature extraction, with category weight optimization to handle class

imbalance. On CICIDS2017, multi-class accuracy reached 98.67%, with over 99.5% for certain
attack classes, showing its effectiveness for diverse intrusion patterns. In [21], a DBN-ELM

hybrid applied feature extraction and classification on NSL-KDD, using majority voting to refine

predictions, achieving 97.82% accuracy and a 1.81% false alarm rate, outperforming individual
DBN or ELM models. The deep multilayer framework in [22], incorporating feedback,

autoencoding, preprocessing, database management, and classification, attained 96.70% accuracy

on NSL-KDD, highlighting the advantage of integrated architectures. In [23], a stacked
nonsymmetric deep autoencoder (NDAE) enhanced unsupervised feature extraction on KDD

1999 and NSL-KDD, significantly improving detection performance over traditional NIDS.

Table 1. Comparative Analysis of Related Works on Network Intrusion Detection Systems

Refer

ence

Datas

et

Classifie

rs

Applied

Detected

Assaults
Evaluated Matrix With Accuracy Findings

Kason

go, S.

M [7]

NSL

KDD,

UNS

W-

NB15

XGBoost

-LSTM,

XGBoost

-Simple-

RNN,

XGBoost
-GRU

Dos, Probe,

R2L, U2R,

Normal

Normal,

Generic,

Exploits,

Fuzzers,

DoS,

Reconnaissa

nce,
Analysis,

Backdoor,

Shellcode,

Worms

F1-Score, TAC, VAC

Accuracy

XGBoost-LSTM (TAC) = 88.13%

and VAC of 99.49%

(NSL KDD)

For Multiclass Classification,

XGBoost –LSTM (TAC) = 86.93%

(NSL KDD)

XGBoost-Simple-RNN (TAC) =
87.07% (UNSW NB15)

XGBoost-GRU (TAC) = 78.40%

(UNSW NB15)

XGBoost-LSTM Model

Performance

• Outperformed other

approaches with TAC of

88.13%.

• An assessment

proficiency of 99.49%.

• A training period of

225.46 seconds for
binary classification tasks.

Khan,

M.A.

[8]

CSE-

CIC-

DS201

8

LR,

XGB,

DT,

HCRNN

Brute-force

DOS attacks,

DDOS

attacks,

Brute-force

SSH,

Infiltration,

Heartbleed,
Web attacks,

and Botnet.

FP, TP, FN, TN

Prec, Rec, F1-Score, DR, FPR

Accuracy

LR = 80%

XGB = 83%

DT = 88%

HCRNN = 97.75%

HCRNNIDS Deep

Learning Model

Simulation Results

• Accurately calculates

malicious attack events.

• Overall accuracy:

97.75%.
• Effective security

solution.

Dutta,

Vibek

anand

a &

Pawlic

ki,

Marek

et al.

[9]

UNS

W-

NB15

RF,DNN

,Hybrid

(CAE+D

NN)

Normal,

Generic,

Exploits,

Fuzzers,

DoS,

Reconnaissa

nce,

Analysis,

Backdoor,

Shellcode,
Worms

Prec, Rec, Acc, F1-score, FPR, ROC

curve

Accuracy

RF = 85.14%

DNN = 88.15%

Hybrid (CAE+DNN) = 91.29%

Hybrid Approach

Performance

• Superior in

distinguishing attacks from

routine activities.

• Comparable to other

baseline algorithms.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

5

Akhil

Krishn

a,

Ashik

Lal

M.A,
et al.

[10]

KDD

CUP’9

9

DT,

SVM,

MLP

DOS, Probe,

U2R, R2L

and Normal

Accuracy

DT = 74.63%

SVM = 83.06%
MLP = 91.41%

Deep Learning MLP

Model Improvement

• Improved accuracy to

91.41%.

• Completed intrusion

detection system model.
• Utilized sparse

categorical cross-entropy

loss function.

M.Ra

maiah,

V.

Chand

raseka

ran et

al.

[11]

KDD

CUP’9

9

Proposed

S-NN,

D-ONN

Normal,

DOS, Probe,

U2R, R2L

TP, TN, FP, FN

Acc, Prec, Rec, F1-Score

Accuracy

S-NN (Shallow neural network

model) =96%

D-ONN (Deep-optimized neural

network) = 98%

Intrusion Detection

Framework: 98%

Accuracy"

• Utilizes correlation tools

and Random Forest.

• Focuses on cyber-

physical system IDS.

Hossai

n, Md

&

Ghose,

Dipay

an et

al.

[12]

NSL

KDD

MLP,LS

TM,NB,

DT,KNN

,RF,SV

M

Normal,

Dos, Probe,

,R2L, U2R

Acc, Prec, Rec, and F1-Score
Accuracy

LSTM = 97.77%

MLP = 96.89%

NB = 75.9%

DT = 88.2%

KNN = 87.0%

RF = 89.6%

SVM = 87.6%

NSL KDD dataset

accuracy

• LSTM (97.77%) and

MLP (96.89%) has been

implemented.

• The dataset consists of

two labels and 41 traffic-

related input features for

each record.

Jose,

Jinsi

&
Jose,

Deepa

[13]

NSL

KDD

DT,
DNN,

CNN,

Dos, Probe,

,R2L, U2R

Acc, Prec, Rec and F1-Score, FPR,

TPR

Accuracy
DT = 80%

DNN = 86%

CNN = 89%

DL for IDS

• Networks of
convolutional neurons

show 89% accuracy.

• High-prediction assault

detection.

Zarai,

R.,

Kacho

ut, M.

et al.

[14]

KDD

CUP’9

9

Proposed

LSTM

and DNN

Normal,

Dos, Probe,

,R2L, U2R

Acc, Prec, Rec, and F1-Score

Accuracy

LSTM = 98.3%

DNN = 93%

Three-Layer LSTM

Outperforms Traditional

Machine Learning

• Accuracy: 98.3%

B.

Alsug
hayyir,

A. M.

Qamar

et al.

[15]

NSL

KDD

Deep

Auto

Encoder

Dos, Probe,

,R2L,

U2R,Normal

Prec, Rec, F1-Score, Support

Accuracy

Deep Auto Encoder = 99.90%

Proposed DL Strategy
Outperforms Traditional

Methods

• 99% training accuracy

• 91.28% testing accuracy.

S. A.

Althub

iti, E.

M.

Jones,

et al.

CIDD

S-001

LSTM,

SVM,

NB,

MLP

probes, user-

to-root,

remote-to-

local attacks

Acc, Prec, Rec, FPR

Accuracy

LSTM = 0.8483

SVM = 0.7942

NB = 0.7756

MLP = 0.8124

LSTM Model Outperforms

SVM, MLP, Naïve Bayes

in Multiclassification

• Achieves acceptable

accuracy of 0.8483.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

6

[16]

Y.

Xiao,

C.

Xing,

T.et al.
[17]

KDD

CUP’9
9

CNN-

IDS

Dos, Probe,

,R2L,
U2R,Normal

ACC, DR, FAR

Accuracy
CNN-IDS = 94%

CNN-IDS Model: 94%

Timeliness, FAR, AC

Outperformance

• Beneficial for research
and real-world

applications.

P.

Wei,

Y. Li,

Z.

Zhang

et al.

[18]

NSL

KDD

DBN

(Deep

Belief

Network)

Dos, Probe,

,R2L, U2R

Accuracy, FNR, FPR, DR

Accuracy

DBN = 82.36%

DBN-IDS Model

Optimization

• Achieved 82.36%

detection accuracy.

• Demonstrated faster

detection speed.

Liu,

Pengju

[19]

KDD

CUP’9

9

CNN

Dos, Probe,

,R2L,

U2R,Normal

ACC, DR, FPR

Accuracy

CNN = 99%

Model's High Testing,
Training, and Detection

Accuracy

• DR less than 0.1%

• Performs well in actual

detection tests.

Sun,

Pengfe

i &

Liu,

Pengju
eta al.

[20]

CICID

S2017

hybrid

model

using

CNN and
LSTM

Brute Force

FTP, Brute

Force SSH,

DoS,

Heartbleed,

Web Attack,

Infiltration,
Botnet, and

DDoS

ACC, TPR, FPR, Prec, Rec, F1-Score

Accuracy

CNN-LSTM = 98.67%

DL-IDS Outperforms

Machine Learning Models

• Achieves 98.67%

accuracy

• Achieves 93.32% F1-

score.

D.

Liang

and P.

Pan

[21]

NSL

KDD

DBN-

ELM

Dos, Probe,

,R2L, U2R

Accuracy

DBN-ELM = 97.82%

Model Accuracy

Enhancement: 97.82%

• Reduced false alarm rates

to 1.81%.

• Attained competitive

accuracy compared to

DBN, ELM, DBN-ELM.

Ugend

har, A.
&

Illuri,

Babu

at al.

[22]

NSL

KDD

Deep

multilaye

r
classifica

tion

network

Dos, Probe,

,R2L, U2R

Accuracy

Deep multilayer classification =

96.70%

Deep Multilayer Classifier

Performance
• Outperformed all

methods in accuracy.

• Achieved 96.70% score

in comparative results.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

7

N.

Shone,

T. N.
Ngoc,

V. D.

Phai,

et al.

[23]

KDD
CUP’9

9 and

NSL

KDD

Non-

symmetri

c deep

auto-

encoder
(NDAE)

Normal,

Dos, Probe,

,R2L, U2R

Accuracy

KDD CUP’99 = 97.85%

NSL KDD = 85.42%

Evaluation of the

framework by NDAE

• Offers high acc, prec, and

rec.

• Reduces training time.

• Comparatively compared
with mainstream DBN

technique.

• Shows up to 5% accuracy

improvement and 98.81%

training time reduction.

• Model's capabilities

across both reference

datasets.

• Steady classification

performance.

3. AN OPTIMAL APPROACH TO SYSTEMS FOR DETECTING NETWORK

INTRUSION APPLYING THE 1999 KDD CUP DATASET

Fig. 2 ML Based NIDS architecture

Fig. 2 depicts the optimal workflow for NIDS using the 1999 KDD Cup intrusion dataset, which
involves several well-defined steps to support accurate and timely detection and classification of

cyber intrusions targeting network infrastructure:

 Dataset Utilization: The 1999 KDD Cup intrusion dataset serves as the foundational input

applicable to the NIDS architecture. It is broadly adopted for detecting malicious intrusions in

networks, offering a diverse range of assigning network traffic data to normal activity or

specific cyberattack classifications.
 Data Pre-Processing: The raw data undergoes pre-processing to enhance its quality. This step

includes handling missing values, eliminating redundant logs, and applying normalization or

scaling to features. Pre-processing verifies that the dataset remains accurate and prepared for
evaluation.

 Feature Selection: Before model training, Recursive Feature Elimination (RFE) was utilized

to optimize the feature space, ensuring that only the most relevant attributes were used in

classification. By iteratively eliminating less significant features, RFE streamlines the dataset,
which leads to faster processing times and improved model accuracy. This targeted approach

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

8

allows classifiers to focus on essential indicators of network intrusions, thereby strengthening
their detection capabilities.

 Data Splitting: The dataset is divided into separate segments for training and evaluating the

classifier. The training set is used to build and fine-tune the ML classifiers, while the testing

set assesses how well the trained model performs and generalizes to unseen data.
 Classifier Training with ML Algorithms: Multiple ML algorithms are trained on the dataset

to uncover patterns and correlations in the network traffic. This allows the models to

accurately classify traffic as either normal or belonging to specific types of attacks.
 Hyper-parameter Optimization: Optimization of hyper-parameters is implemented to fine-

tune the classifier’s accomplishment. This process includes fine-tuning parameters like the

learning rate, the size of estimators in ensemble methods, or the depth of decision trees to
achieve the best possible results.

 Trained Classifier: Using the optimal hyper-parameters, the classifier is modeled using the

training data inputs. This yields a classifier capable of accurately forecasting the category of

novel, unobserved occurrences based on learned patterns.
 Multi-Class Prediction: The trained classifier generates predictions for each instance,

assigning them to one of the following categories:

0: Normal Activity

1: Denial-of-Service (DoS) Attack

2: Probing/Scanning Attempt
3: Remote-to-Local (R2L) Intrusion

4: User-to-Root (U2R) Privilege Escalation

 Decision Block (Normal or Attack): A decision block is implemented to verify whether the
prediction corresponds to the "Normal" class (prediction = 0). If the prediction equals 0, the

instance is classified as normal. Otherwise, if the prediction matches any attack class, the

instance is categorized as an attack
 Attack Classification: For instances categorized as attacks, the system further classifies

them into specific attack types such as DoS, probe, R2L, or U2R. This fine-grained

classification enables precise identification and differentiation of attack types within the

broader category of malicious activities.

4. NETWORK INTRUSION DETECTION SYSTEMS WITH ML CLASSIFIERS

4.1. Classifiers and Techniques in Machine Learning

Machine learning enhances NIDS by enabling autonomous intrusion detection through data-

driven pattern recognition [24], [25]. Supervised learning offers high accuracy using labeled data

[26], while unsupervised learning detects anomalies without labels but with lower accuracy [27].
Both approaches improve NIDS performance, strengthen security, and reduce false positives

[28].

4.2. Classification Approach Using Support Vector Machines

SVMs are widely used in NIDS for their high accuracy in detecting and classifying network
anomalies. They classify data by finding a maximum-margin separator between normal and

malicious traffic, relying on support vectors for efficiency even with limited training data. For

non-linear patterns, kernel methods map inputs to higher-dimensional spaces, enabling complex
decision boundaries [29]. This approach minimizes classification errors and false positives,

making SVMs robust and versatile for both linear and non-linear intrusion detection scenarios.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

9

4.3. Probabilistic Learning Classifier Using Naïve Bayes

The Naive Bayes classifier, based on Bayes’ theorem, predicts class probabilities by assuming

conditional independence among features. Variants such as Multinomial Naive Bayes (MNB)
handle count data, while Bernoulli Naive Bayes (BNB) processes binary features. In NIDS, it is

valued for simplicity, scalability, and computational efficiency, enabling effective analysis of

high-dimensional network data. Despite the strong independence assumption, Naive Bayes
reliably differentiates normal from malicious connections, providing a lightweight intrusion

detection solution [30].

P (S|T) = (1)

Where:

 T: Observed features or data.

 S: Target class or category.
 P(S|T): Probability of class S given data T.

 P(S): Prior probability of class S.

 P(T|S): Probability of data T given class S.

 P(T): Overall probability of data T.

4.4. Classification Technique Using a Decision Tree

Decision trees (DTs) are a popular supervised learning method for classification and regression,

structured as hierarchical trees with internal nodes for feature-based decisions, branches for

outcomes, and leaves for predictions. In NIDS, DTs effectively detect normal and malicious
traffic using features such as connection duration, protocol, and service type. Their

interpretability and feature-driven decision process allow efficient handling of complex datasets,

providing accurate and real-time intrusion detection with computational efficiency in large-scale
networks [31].

4.5. K-Nearest Neighbor based Classification Technique

K-Nearest Neighbors (KNN) is a non-parametric, distance-based, instance-based learning method

widely used in NIDS for its simplicity and effectiveness. It classifies a data point based on the
majority label among its K nearest neighbors, using metrics such as Euclidean distance. By

comparing network connections with labeled training instances, KNN identifies normal and

malicious patterns. Although computationally intensive for large datasets, techniques like

dimensionality reduction and approximate neighbor search enhance its scalability and efficiency
[32].

4.6. Classification Approach Using Logistic Regression

Logistic Regression (LR) is a supervised algorithm used in intrusion detection to classify network

traffic as normal or malicious. It applies the logistic function to generate outputs between 0 and 1,
estimating the probability of each class and making predictions based on a threshold. LR is

efficient, interpretable, and computationally lightweight, providing probabilistic predictions.

However, its simplicity may limit performance on complex, high-dimensional data, where more
advanced models often perform better [33].

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

10

In logistic regression, a linear model is derived from the provided attributes and processed
through a sigmoid curve, resulting in a probabilistic output. The sigmoid function is

mathematically expressed as:

 F(x) = 1 / 1+e-x (2)

In this equation, F(x) yields a probability between 0 and 1, with "e" standing for the natural

exponential base, and "x" acting as the function’s input.

4.7. Classifier Using Linear Discriminant Analysis Technique

Linear Discriminant Analysis (LDA) is a supervised method used in intrusion detection to

classify network traffic and reduce feature dimensionality. It maximizes differences between

classes while minimizing within-class variance, identifying linear combinations of features that
enhance separability. LDA effectively classifies traffic into normal or specific attack types,

supports multi-class detection, and improves computational efficiency by preserving class

separability in lower-dimensional space [34].

4.8. Optimized Extreme Gradient Boosting (XGBOOST) Classifier

XGBoost is a scalable gradient boosting algorithm widely used in network-level intrusion

detection for its efficiency with large and complex datasets. It combines multiple weak learners,

typically decision trees, to iteratively improve predictive performance by correcting previous
errors. This approach effectively handles high-dimensional and imbalanced data, enabling

accurate detection of diverse and novel intrusion types, making XGBoost a robust solution for

precise NIDS implementation [35].

4.9. AdaBoost Classifier

AdaBoost is a boosting algorithm commonly used in network intrusion detection for its ability to
improve accuracy by combining weak learners into a strong classifier. It assigns higher weights

to misclassified instances, ensuring subsequent models focus on difficult or ambiguous patterns.

This adaptive approach reduces false positives and effectively handles high-dimensional,

imbalanced network data, enhancing detection of normal and malicious activities, including
emerging or unknown threats

4.10. Random Forest Classifier

Random Forest (RF) is an ensemble learning method widely used in network-layer intrusion

detection for its accuracy and robustness against overfitting. It constructs multiple decision trees
on varied data subsets and aggregates their predictions, capturing complex, non-linear patterns in

high-dimensional NIDS datasets. RF effectively detects both known and zero-day threats, handles

imbalanced data, and ranks critical features to enhance accuracy while reducing computational
demands [36].

4.11. Artificial Neural Network (ANN)

Artificial Neural Networks (ANNs) are widely used in network intrusion detection for their

ability to model complex, non-linear data. They comprise an input layer for network features,
hidden layers for feature extraction, and an output layer for classification. Neurons are

interconnected with weighted links, and activation functions such as ReLU, Sigmoid, Tanh, and

Softmax process inputs. Methods like Perceptron, SGD, and backpropagation optimize the

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

11

network by minimizing errors. Deep ANN architectures improve detection accuracy, enhance
system performance, and reduce false alarms [37].

4.12. Ridge Classifier

The Ridge classifier assumes that data points of each class lie within a linear subspace, enabling

continuous analysis for classification [38]. In NIDS, it addresses multicollinearity among network
features through L2 regularization, stabilizing predictions and reducing variance. By controlling

model complexity, Ridge regression minimizes overfitting and ensures accurate, reliable

detection of network anomalies, making it suitable for high-dimensional intrusion detection tasks.

4.13. Passive Aggressive (PA) Classifier

Passive-Aggressive (PA) classifiers are scalable online learning algorithms that update models

incrementally as new data arrives, unlike traditional batch methods. In NIDS, they adapt to

evolving network conditions by processing streaming data efficiently. Using a regularization

parameter (C) instead of a learning rate, PA classifiers penalize misclassifications to balance
accuracy and model simplicity. This enables real-time anomaly detection with low computational

overhead, making them well-suited for high-traffic networks [39].

4.14. Rocchio (RC) Classifier

The Rocchio algorithm, originating from relevance feedback in information retrieval, is applied
in NIDS for classification. During training, it computes a centroid for each class as a prototype.

In testing, class labels are assigned based on the Euclidean distance between incoming data points

and centroids. This proximity-based method efficiently detects anomalies, distinguishing normal
traffic from potential intrusions while helping minimize false positives.

5. RESULTS AND DISCUSSION

5.1. Experimental Setup

Machine learning computations were performed using Python's Scikit-learn library. Experiments
were conducted on Google Colaboratory, a cloud-based platform equipped with a Tesla K20

GPU (2,496 CUDA cores, 16 GB RAM, and 500 GB storage), as well as locally on a Windows

11 system powered by an Intel Core i5-1240P processor (4.40 GHz, 12th generation), identified

as DESKTOP-UFN62J4. This dual setup facilitated a comprehensive evaluation of machine
learning classifiers in both cloud and local computing environments.

5.2. Dataset Description

NIDS monitor network activity to identify abnormal patterns indicative of security threats while

allowing normal traffic. Machine learning classifiers, trained on datasets containing both normal
and attack patterns, improve detection by recognizing diverse network behaviors. In this study,

the 1999 KDD Cup dataset was used, with 70% of data for training and 30% for testing to

preserve class distribution. A 10-fold cross-validation was also applied to rigorously evaluate
model accuracy, generalization, and robustness against overfitting.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

12

5.3. The 1999 KDD CUP Intrusion Dataset

The 1999 KDD Cup intrusion dataset is a widely used benchmark for evaluating network

intrusion detection mechanisms. Developed for the KDD 1999 data mining challenge, it contains
simulated network traffic with both normal and malicious connections. The dataset includes

approximately 4.9 million records, each described by 41 features capturing key aspects of

network behavior, such as connection duration, protocol type, and error rate, making it a
foundational resource for anomaly detection and machine learning in cybersecurity. The 1999

KDD Cup dataset categorizes malicious activity into four types: Denial of Service (DoS),

Remote-to-Local (R2L), User-to-Root (U2R), and Probe attacks. Normal network traffic is also

included to provide a baseline for training and evaluation. The dataset is typically split into
training and testing subsets, with cross-validation used to assess detection performance. Despite

criticisms such as data redundancy, it remains a widely accepted benchmark for developing and

evaluating NIDS.

(i) Denial-of-Service (DoS) Assaults: These types of exploits focus on disrupting network

infrastructure or system operations by inundating them with excessive traffic or requests, such as
in a SYN Flood attack.

(ii) Remote-to-Local (R2L) Intrusion: These occur when a malicious agent gains access to a

local computer remotely without valid credentials, often through techniques like password
cracking.

(iii) Probing/Scanning Attempt: These involve reconnaissance activities aimed at collecting
information about a network’s structure and identifying vulnerabilities, such as through port

scanning.

(iv) User-to-Root (U2R) Privilege Escalation: In these breach attempts, an intruder attempts to

elevate privileges from a regular user account to administrator (root) access, often using methods

like buffer overflow exploits.

Fig 3. Feature and Label Structure of the 1999 KDD Cup intrusion detection dataset

Fig. 3 illustrates the process of loading and displaying the 1999 KDD Cup dataset using Python’s
pandas library. The CSV files, kddtrain.csv and kddtest.csv, are imported into DataFrames

traindata and testdata, with header=None indicating no header row. The command traindata. head

(8) displays the first eight rows, showing 42 columns indexed from 0 to 41. Each row represents a
network connection, and each column corresponds to attributes such as protocol type, connection

duration, and status.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

13

The 1999 KDD Cup dataset is widely used for detecting malicious network activity and includes
four types of features: basic, content, traffic, and class labels, as summarized in Table 2. Basic

features describe connection properties, such as duration, protocol type (TCP, UDP, ICMP),

service (HTTP, FTP), flags, and data transfer metrics (src_bytes, dst_bytes). Content features

capture connection-level activities, including failed logins, user login status, and system-level
actions like root_shell or su_attempted. Traffic features aggregate session details, such as number

of shells, accessed files, and login types (host_login, guest_login). Class labels distinguish

normal traffic from attacks, including DoS, R2L, U2R, and Probe. These features are critical for
training machine learning classifiers for effective intrusion detection.

Table 2. Highlights the frequency distribution of cases among multiple attack classes in the 1999 KDD

Cup intrusion dataset

Sets Traffic Categories Authentic Logs Unique Data Points

Training Set

Intrusions 3,925,650 262,178

Benign Traffic 972,781 812,814

Overall Count 4,898,431 10,74,992

Testing
Set

Intrusions 2,46,150 29,378

Benign Traffic 60,591 47,911

Total 306,741 77,289

5.4. Performance Evaluation Metrics of NIDS

Evaluating network monitoring and intrusion detection systems is crucial for enhancing threat

detection, refining algorithms, reducing false positives, and ensuring operational reliability.
Performance is measured using metrics such as Accuracy (Acc), Precision (Prec), Recall (Rec),

F1-score, False Alarm Rate (FAR), and Detection Rate (DR). Table 3 summarizes four key

outcomes: true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN),

which form the basis for performance assessment. A confusion matrix organizes these outcomes,
allowing computation of the key metrics and providing a structured framework for evaluating

machine learning classifiers in intrusion detection.

True Positive (TP): An intrusion attempt is correctly recognized by the system as malicious,

confirming successful threat detection.

False Positive (FP): Benign traffic is incorrectly flagged as a threat, triggering an unnecessary
alert.

True Negative (TN): Safe network activity is accurately classified as non-malicious, resulting in
no false warning.

False Negative (FN): A harmful activity passes through undetected and is wrongly classified as
legitimate, signifying a lapse in the detection mechanism.

Table 3. Calculating NIDS Performance Metrics

Actual \ Predicted Attack (Positive) Normal (Negative)

Attack (Positive) True Positive (TP) False Negative (FN)

Normal (Negative) False Positive (FP) True Negative (TN)

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

14

Accuracy: Accuracy measures the proportion of correctly classified normal and attack instances,
offering an overall evaluation of NIDS performance across all predictions. Mathematically:

Accuracy
NIDS

 = (3)

Precision: Precision indicates NIDS reliability in detecting attacks. It reflects how accurately

alerts are raised, with higher precision values representing fewer false alarms:

 Precision
NIDS

 = (4)

Recall: Recall measures how effectively NIDS detects actual attacks. It reflects the system’s
ability to capture malicious activities without missing threats, ensuring comprehensive detection

coverage:

 Recall
NIDS

 =

 (5)

F1 Score: F1-score balances precision and recall through their harmonic mean. It is especially

useful for NIDS evaluation on imbalanced datasets, ensuring neither metric dominates
performance assessment.

 F1 Score
NIDS

 = (6)

False Alarm Rate: False Alarm Rate in NIDS measures the frequency of normal traffic

misclassified as attacks. Lower values indicate higher reliability and reduced unnecessary

security alerts.

 FAR
NIDS

 = (7)

5.5. Confusion Matrices for ML Classifiers on the 1999 KDD Cup Intrusion Dataset

Fig 4. Confusion Matrix

representing SVM
Fig 5. Confusion Matrix

representing RF
RFFig 6. Confusion Matrix

representing DT

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

15

Fig 7. Confusion Matrix

representing KNN

Fig 8. Confusion Matrix

representing XGBOOST

Fig 9. Confusion Matrix

representing BPN

Fig 10. Confusion Matrix

representing SGD

Fig 11. Confusion Matrix

representing PPN

Fig 12. Confusion Matrix

representing PA

Fig 13. Confusion Matrix

representing ADABOOST

Fig 14. Confusion Matrix

representing LR

Fig 15. Confusion Matrix

representing BNB

Fig 16. Confusion Matrix

representing MNB

Fig 17. Confusion Matrix

representing Ridge

Fig 18. Confusion Matrix

representing RC

5.6. Hyper-Parameter Tuning

In the experimental setup shown in Table 4, hyper-parameter optimization is employed to improve

NIDS detection accuracy by fine-tuning key parameters. Techniques such as Grid Search and

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

16

Random Search systematically explore parameter combinations to identify optimal settings. Cross-
validation assesses classifier generalization across datasets, mitigating overfitting and enhancing

reliability in detecting malicious activities. This tuning ensures effective real-world performance,

balancing accurate detection with minimal false alarms.

Table 4. Setup of Hyper-parameters for Different Classification Techniques

Classifiers Parameters

KNN

K=10 (Best value)
K=

(1,2,3,4,5,6,7,8,9,10,

11,12,13,14,15)

Metric= “minkowski”

weights= “distance”

algorithm= “auto”

DT

Splitting= “Gini”

(Best value)

Splitting= “Entropy”

Splitting= “Gini”

Splitting= “Entropy”

Splitting= “Gini”

splitter= “best”

splitter= “best”

splitter= “random”

splitter= “best”

splitter= “random”

min_samples_split=2

min_samples_split=5

min_samples_split=4

min_samples_split=10

min_samples_split=8

random state=3

random state=42

random state=7

random state=0

random state=12

MNB

alpha=0.01 (Best

value)

alpha=0.1

alpha=0.5
alpha=1.0

alpha=0.001

fit_prior=True

fit_prior=True

fit_prior=True
fit_prior=True

fit_prior=True

class_prior=None

class_prior=None

class_prior=None
class_prior=None

class_prior=None

force_alpha=True

force_alpha=True

force_alpha=True
force_alpha=True

force_alpha=True

BNB

alpha=0.01 (Best

value)

alpha=0.05

alpha=0.001

alpha=0.1

alpha=0.5

binarize= “1.0”

binarize= “1.0”

binarize= “1.0”

binarize= “1.0”

binarize= “1.0”

fit_prior=True

fit_prior=True

fit_prior=True

fit_prior=True

fit_prior=True

class_prior= None

class_prior= None

class_prior= None

class_prior= None

class_prior= None

RF

n_estimators= “200”

(Best value)

n_estimators= “100”

n_estimators= “150”

n_estimators= “300”
n_estimators= “250”

Splitting= “gini”

Splitting= “entropy”

Splitting= “gini”

Splitting= “gini”

Splitting= “entropy”

min_samples_split=2

min_samples_split=2

min_samples_split=3

min_samples_split=4

min_samples_split=2

max_features= “None”

max_features= “sqrt”

max_features= “auto”

max_features= “None”

max_features= “sqrt”

SVM

C= 1.0 (Best value)

C= 0.5

C= 1.5

C= 0.8

Penality factor= “l2”

Penality factor= “l1”

Penality factor= “l2”

Penality factor= “l1”

tolerance(tol)="1e-4"

tolerance(tol)="1e-3"

tolerance(tol)="1e-4"

tolerance(tol)="1e-3"

Loss= “square_hinge”

Kernel= “rbf”

Loss= “square_hinge”

Kernel= “rbf”

Loss= “hinge”

Kernel= “linear”

Loss= “square_hinge”

Kernel= “sigmoid”

PPN

max_iter= “150”

(Best value)

max_iter= “100”

max_iter= “200”

Penalty= “elasticnet”

Penalty= “l2”

Penalty= “elasticnet”

tolerance(tol)= "1e-3"

tolerance(tol)= "1e-4"

tolerance(tol)= "1e-3"

n_iter_no_change= “20”

n_iter_no_change= “10”

n_iter_no_change= “15”

LR

max_iter= “150”

(Best value)

max_iter= “200”

solver= “saga”

solver= “saga”

penalty= “l2”

penalty= “l1”

class_weight=

“balanced”

class_weight= “none”

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

17

max_iter= “150”

max_iter= “180”

solver= “saga”

solver= “newton-cg”

penalty= “l2”

penalty= “l2”

class_weight=

“balanced”

class_weight=

“balanced”

XGBOOST

n_estimators=

“200” (Best value)

n_estimators= “150”
n_estimators= “100”

n_estimators= “200”

learning_rate= “0.05”

learning_rate= “0.2”

learning_rate= “0.1”
learning_rate= “0.01”

max_depth= “4”

max_depth= “4”

max_depth= “4”
max_depth= “5”

random_state= “2”

random_state= “2”

AdaBoost

n_estimators=

“150” (Best value)

n_estimators= “100”

n_estimators= “200”

n_estimators= “120”

n_estimators= “250”

algorithm=

“SAMME.R”

algorithm= “SAMME”

algorithm=

“SAMME.R”

algorithm= “SAMME”

algorithm=

“SAMME.R”

learning_rate= “0.05”

learning_rate= “0.1”

learning_rate= “0.05”

learning_rate= “0.2”

learning_rate= “0.075”

max_depth= “2”

max_depth= “1”

max_depth= “2”

max_depth= “3”

max_depth= “2”

SGD

alpha= “0.0001”

(Best value)

alpha= “0.0005”
alpha= “0.001”

max_iter= “150”

max_iter= “100”

max_iter= “200”

loss= “hinge”

loss= “log”

loss= “hinge”

penalty= "l1"

penalty= "l2"

penalty= "l1"

Ridge

solver="sag" (Best

value)

solver="lsqr"

solver="sag"

max_iter= “300”

max_iter= “150”

max_iter= “200”

tolerance(tol)="1e-4"

tolerance(tol)="1e-4"

tolerance(tol)="1e-3"

alpha= “0.015”

alpha= “0.005”

alpha= “0.001”

RC

metric=

“manhattan” (Best

value)

metric= “euclidean”'

shrink_threshold= “0.4”

shrink_threshold= “0.6”

alpha= “0.01”

alpha= “0.005”

PA

max_iter= “200”

(Best value)

max_iter= “250”

max_iter= “150”

n_iter_no_change= “30”

n_iter_no_change= “40”

n_iter_no_change= “20”

loss= “hinge”

loss= “squared_hinge”

loss= “hinge”

tol=0.01

tol=0.005

tol=0.001

BPN

max_iter= “250

(Best value)

max_iter= “150

max_iter= “300”

max_iter= “200”

hidden_layer_sizes=

“100”

hidden_layer_sizes=
“50”

hidden_layer_sizes=

“100”

hidden_layer_sizes=

“100”

 Activation

function= “relu”

 Activation
function= “relu”

 Activation

function= “tanh”

 Activation

function= “relu”

learning_rate_init=

“0.01”

learning_rate_init=
“0.02”

learning_rate_init=

“0.005”

learning_rate_init=

“0.001”

5.7. Results Before Hyper-Parameter Optimization

This section presents evaluation results of various machine learning methods for intrusion detection
using the 1999 KDD Cup dataset, implemented with Scikit-learn. A ten-fold cross-validation was

employed, dividing the dataset into ten equal parts, with nine folds for training and one for testing in

each iteration. Performance metrics were averaged across folds to assess consistency. All classifiers
were first evaluated using Scikit-learn’s default hyper-parameters to establish baseline performance

prior to hyper-parameter tuning.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

18

Table 5. Performance comparisons of ML classifiers on the 1999 KDD Cup intrusion dataset for Network

IDS before Hyper-Parameter Optimization

Classificatio

n

Algorithms

Accuracy Precision Recall F1-Score FAR Detection Rate

KNN
0.9724±0.055

1
0.9806±0.031

1
0.9724±0.0551 0.9741±0.0499 0.0173 0.9724±0.0551

DT
0.9713±0.055

6

0.9809±0.301

1
0.9713±0.0556 0.9731±0.0502 0.0175 0.9713±0.0556

MNB
0.9329±0.386

9

0.9399±0.287

0
0.9329±0.3868 0.9298±0.0389 0.0383 0.9329±0.3868

BNB
0.9473±0.055

5

0.9594±0.027

2
0.9473±0.0555 0.9487±0.0497 0.0338 0.9473±0.0555

RF
0.9714±0.059

0

0.9811±0.030

9
0.9714±0.0590 0.9733±0.0531 0.0188 0.9714±0.0590

SVM
0.9808±0.006

1

0.9815±0.005

3
0.9808±0.0061 0.9808±0.0059 0.0123 0.9808±0.0061

PPN
0.9101±0.130

3

0.9539±0.043

0
0.9101±0.1303 0.9157±0.1186 0.0492 0.9101±0.1303

LR
0.9667±0.059

5

0.9777±0.028

9
0.9667±0.0595 0.9689±0.0534 0.0247 0.9667±0.0595

XGBoost
0.9464±0.082

7

0.9646±0.032

5
0.9464±0.0827 0.9496±0.0736 0.0267 0.9464±0.0827

AdaBoost
0.9431±0.059

8

0.9556±0.028

8
0.9431±0.0598 0.9449±0.0530 0.0271 0.9431±0.0598

SGD
0.9046±0.125

5

0.9457±0.038

9
0.9046±0.1255 0.9097±0.1136 0.0424 0.9046±0.1255

Ridge
0.9495±0.039

5
0.9562±0.024

1
0.9495±0.0395 0.9499±0.0359 0.0339 0.9495±0.0395

RC
0.9487±0.038

8

0.9549±0.025

1
0.9487±0.0388 0.9488±0.0350 0.0357 0.9487±0.0388

PA
0.9443±0.065

0

0.9576±0.027

8
0.9443±0.0650 0.9462±0.0532 0.0373 0.9443±0.0650

BPN
0.9704±0.593

4

0.9810±0.029

0
0.9704±0.0594 0.9725±0.0534 0.0167 0.9704±0.0594

The average values and standard deviations of the classification outcomes are shown in

Table 5

Table 5 summarizes the detection performance of various ML classifiers on the 1999 KDD Cup

dataset using default parameters, considering accuracy and false alarm rate (FAR). SVM

achieved the highest accuracy of 98.08% with the lowest FAR of 0.0123, demonstrating superior
intrusion detection. KNN, RF, BPN, and DT also performed well, with accuracies above 97% and

low FARs, while SGD had the lowest accuracy (90.46%) and higher FAR (0.0424). MNB

recorded 93.29% accuracy with FAR 0.0383, and XGBoost, AdaBoost, and Ridge ranged
between 94–95% accuracy. Fig. 19 illustrates these results, highlighting SVM’s superior

performance and SGD’s relative ineffectiveness in its default configuration.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

19

Fig. 19: Performance Comparisons of ML Classification Algorithms before hyper-parameter optimization

in NIDS

5.8. Results After Hyper-Parameter Optimization

This section evaluates the performance of multiple ML classifiers on the 1999 KDD Cup

intrusion dataset, a widely used benchmark in NIDS research. Classifiers were implemented

using Scikit-learn and assessed via ten-fold cross-validation, splitting the dataset into ten folds

with nine for training and one for testing per iteration to reduce variance and overfitting. To
optimize the feature space and improve classifier efficiency, Recursive Feature Elimination

(RFE) was applied to retain the most significant features while discarding less impactful ones.

Combining RFE with cross-validation provides insights into classifier generalization and real-
world applicability.

The key hyper-parameters for each classifier, including learning rate, maximum tree depth, and
regularization factors, were initially set to Scikit-learn’s default values. Parameters such as alpha

for Ridge and C for SVM controlled model complexity and mitigated overfitting. For tree-based

models like Random Forest and XGBoost, n_estimators and max_depth was adjusted to balance

performance and overfitting. Hyper-parameters were further fine-tuned empirically to optimize
generalization and enhance detection of multiple attack types in the 1999 KDD Cup dataset. Ten-

fold cross-validation provides a reliable and unbiased evaluation of classifiers such as SVM,

XGBoost, AdaBoost, RF, BNB, MNB, LR, KNN, DT, and BPN. This method enables
assessment of key performance metrics, including Accuracy, Precision, Recall, F1-score, FAR,

and DR, offering a comprehensive view of each classifier’s effectiveness. Comparing these

metrics helps identify the most suitable ML approaches for detecting and classifying network

intrusions.

Table 6. Performance comparisons of ML classifiers on the 1999 KDD Cup intrusion dataset for Network

IDS with Hyper Parameter Optimization

Classification

Algorithms
Accuracy Precision Recall F1-Score FAR Detection Rate

KNN (K=10)

(Best Value)

0.9829±0.0649

0.9899±0.0409

0.9829±0.0649

0.9847±0.0596

 0.0148 0.9829±0.0649

DT

(Best Value)

0.9812±0.058

9

0.9904±0.3088

0.9812±0.0589

0.9821±0.0556

0.0162 0.9812±0.0589

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

20

MNB

(Best Value)

0.9568±0.086

9

0.9638±0.2980

0.9568±0.0869

0.9537±0.0491

0.0345 0.9568±0.0869

BNB

(Best Value)

0.9612±0.068

2

0.9732±0.0372

0.9612±0.0682

0.9626±0.0572

0.0301 0.9612±0.0682

RF

(Best Value)

0.9827±0.062
7

0.9899±0.0498

0.9827±0.0627

0.9849±0.5890

0.0169 0.9827±0.0627

SVM

(Best Value)

0.9912±0.009

7

0.9919±0.0088

0.9912±0.0097

0.9912±0.0095

0.0091 0.9912±0.0097

PPN

(Best Value)

0.9477±0.0410

0.9563±0.0573

0.9477±0.0402

0.9533±0.1254

0.0467 0.9477±0.0402

LR

(Best Value)

0.9769±0.069

5

0.9849±0.0398

0.9769±0.0695

0.9789±0.0634

0.0220 0.9769±0.0695

XGBoost

(Best Value)

0.9787±0.047

6

 0.9850±0.0308

0.9787±0.0476

0.9811±0.0420

0.0237 0.9787±0.0476

AdaBoost

(Best Value)

0.9776±0.059

4

0.9879±0.0292

0.9776±0.0594

0.9897±0.0534

0.0241 0.9776±0.0594

SGD

(Best Value)

0.9488±0.049

8

0.9565±0.0368

0.9488±0.0498

0.9511±0.1386

0.0396 0.9488±0.0498

Ridge

(Best Value)

0.9618±0.050

8

0.9689±0.0346

0.9618±0.0508

0.9625±0.0389

0.0310 0.9618±0.0508

RC

(Best Value)

0.9561±0.046

2

0.9626±0.0296

0.9561±0.0462

0.9562±0.0410

0.0330 0.9561±0.0462

PA

(Best Value)

0.9533±0.069

9

0.9616±0.0375

0.9533±0.0699

0.9554±0.0632

0.0352 0.9533±0.0699

BPN

(Best Value)

0.9821±0.093

8

0.9915±0.0392

0.9821±0.0938

0.9830±0.0638

0.0152 0.9821±0.0938

The average values and standard deviations of the classification outcomes are shown in Table 6

Table 6 highlights SVM as the top-performing classifier, achieving 99.12% Accuracy, 99.19%

Precision, 99.12% Recall, 99.12% F1-score, and the lowest FAR of 0.0091. KNN and BPN
closely followed with accuracies of 98.29% and 98.21% and low FARs of 0.0148 and 0.0152. DT

and RF showed similar reliability, with accuracies of 98.12% and 98.27% and FARs of 0.0162

and 0.0169. Ensemble methods, XGBoost (97.87%) and AdaBoost (97.76%), delivered strong
performance, though below SVM. Lightweight classifiers, BNB (96.12%) and MNB (95.68%),

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

21

were suitable for resource-limited scenarios but had higher FARs (0.0301 and 0.0345). Logistic
Regression achieved 97.69% accuracy with FAR 0.0220. PA, SGD, and Perceptron

underperformed, with detection rates below 95.50%, limiting their suitability for critical intrusion

detection tasks. Figs. 20–34 present line graphs illustrating classifier performance after hyper-

parameter tuning across various metrics.

Fig 20. Hyper-Parameter Tuning

for KNN
Fig 21. Performance of DT

Fig 22. Performance of MNB

Fig 23. Performance of BNB Fig 24. Performance of RF Fig 25. Performance of SVM

Fig 26 Performance of PPN Fig 27. Performance of LR Fig 28. Performance of XGBoost

Fig 29. Performance of AdaBoost Fig 30. Performance of PA Fig 31. Performance of Ridge

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

22

Fig 32. Performance of SGD Fig 33. Performance of RC Fig 34. Performance of BPN

Fig 35. Heat map representation of prediction accuracy for different machine learning algorithms in NIDS

Fig. 35 presents a heatmap comparing 15 ML classifiers across Accuracy, Precision, Recall, F1-
score, FAR, and Detection Rate. The color gradient highlights detection performance and false

alarm control, helping identify the most effective classifier for network intrusion detection.

5.9. Analysis of ROC Curves for Machine Learning Classifiers on the 1999 KDD

Cup Intrusion Data

Fig 36. Performance Evaluation Using ROC Curves: ML Classifiers on the 1999 KDD Cup Intrusion

Dataset

Fig. 36 shows ROC analysis on the KDD Cup 1999 dataset, where SVM, BPN, and RF achieved

the highest AUC (~0.98). KNN, DT, and BNB followed (0.89–0.94), while XGBoost and

AdaBoost performed moderately (0.86–0.88). All models surpassed the random baseline,
confirming effective intrusion detection.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

23

Fig 37. Performance Comparisons of ML Classification Algorithms with hyper-parameter

optimization in NIDS

Fig. 37 presents a bar chart comparing classifiers across Accuracy, Precision, Recall, F1-score,
and FAR. SVM achieves the highest performance, with 99.12% accuracy, strong Precision,

Recall, and F1-score, and a minimal FAR, highlighting its effectiveness in detecting network

intrusions on the 1999 KDD Cup dataset. KNN, RF, BPN, DT, and LR also show strong results,
while ensemble methods like XGBoost and AdaBoost perform well but do not surpass SVM.

Linear models such as Ridge and SGD exhibit moderate performance, reflecting challenges in

handling dataset complexity. These results underscore SVM’s superiority for NIDS and provide

guidance for selecting and tuning classifiers for robust intrusion detection.

6. CONCLUSION AND FUTURE SCOPE

Detecting network intrusions is critical for maintaining cybersecurity, and machine learning (ML)

has proven effective in identifying malicious activities within network traffic. Supervised ML
algorithms enable systems to distinguish legitimate from suspicious behavior, enhancing

protection against evolving threats. Using the 1999 KDD Cup intrusion dataset, this study applied

hyper-parameter tuning to optimize classifiers. SVM, KNN, RF, and XGBoost achieved high
accuracy and reliable detection rates, while Perceptron (PPN) and Stochastic Gradient Descent

(SGD) performed less effectively. Classifiers such as Naïve Bayes, Ridge, and Passive

Aggressive showed moderate performance, highlighting variability in algorithm effectiveness for
NIDS. As cyber threats evolve, future research will focus on advanced techniques capable of

handling large-scale, dynamic datasets. Unsupervised methods, including K-means, OC-SVM,

Isolation Forest, DBSCAN, and Autoencoders, are essential for detecting novel attacks, such as

zero-day threats, without labeled data. Hybrid approaches combining multiple learning paradigms
can improve adaptability and detection accuracy. Moreover, integrating Explainable AI (XAI)

will enhance transparency and interpretability, fostering trust in real-world deployment. These

advancements promise more adaptive, scalable, and robust intrusion detection systems capable of
mitigating increasingly sophisticated cyber threats.

REFERENCES

[1] Mambwe Sydney, Kasongo. (2023). A deep learning technique for intrusion detection system using

a Recurrent Neural Networks based framework. Computer Communications. 199.

10.1016/j.comcom.2022.12.010.

[2] Khan, M.A. HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-Based Network

Intrusion Detection System. Processes 2021, 9, 834. https://doi.org/10.3390/pr9050834.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

24

[3] Vibekananda Dutta, Michal Chora ́s, Rafal Kozik, and Marek Pawlicki, "Hybrid Model for

Improving the Classification Effectiveness of Network," Springer, p. 10, 2021.

[4] Yu, D., & Deng, L. (2011). Deep Learning and Its Applications to Signal and Information

Processing Exploratory DSP]. IEEE Signal Processing Magazine, 28(1), 145-161.

https://doi.org/10.1109/MSP.2010.939038.
[5] Saidane, Samia & Telch, Francesco & Shahin, Kussai & Granelli, Fabrizio. (2024). Optimizing

Intrusion Detection System Performance Through Synergistic Hyper-Parameter Tuning and

Advanced Data Processing. 10.2139/ssrn.4914947.

[6] Ilemobayo, Justus & Durodola, Olamide & Alade, Oreoluwa & Awotunde, Opeyemi & Adewumi,

Temitope & Falana, Olumide & Ogungbire, Adedolapo & Osinuga, Abraham & Ogunbiyi, Dabira

& Odezuligbo, E & Edu, Oluwagbotemi & Ifeanyi, Ark. (2024). Hyper-Parameter Tuning in

Machine Learning: A Comprehensive Review. Journal of Engineering Research and Reports. 26.

388-395. 10.9734/jerr/2024/v26i61188.

[7] Mambwe Sydney, Kasongo. (2023). A deep learning technique for intrusion detection system using

a Recurrent Neural Networks based framework. Computer Communications. 199.

10.1016/j.comcom.2022.12.010.

[8] Khan, M.A. HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-Based Network
Intrusion Detection System. Processes 2021, 9, 834. https://doi.org/10.3390/pr9050834.

[9] Vibekananda Dutta, Michal Chora ́s, Rafal Kozik, and Marek Pawlicki, "Hybrid Model for

Improving the Classification Effectiveness of Network," Springer, p. 10, 2021.

[10] Akhil Krishna, Ashik Lal M.A., Athul Joe Mathewkutty, Dhanya Sarah Jacob, Hari M, "Intrusion

Detection and Prevention System Using Deep Learning," IEEE Xplore, p. 6, 2020.

[11] Mangayarkarasi Ramaiah, Vanmathi Chandrasekaran, Vinayakumar Ravi, Neeraj Kumar, "An

intrusion detection system using optimized deep neural network architecture," Transactions on

Emerging Telecommunications Technologies, p. 9, 2020.

[12] Hossain, Md & Ghose, Dipayan & Partho, All & Ahmed, Minhaz & Chowdhury, Md Tanvir &

Hasan, Mahamudul & Ali, Md & Jabid, Taskeed & Islam, Maheen. (2023). Performance Evaluation

of Intrusion Detection System Using Machine Learning and Deep Learning Algorithms. 1-6.
10.1109/IBDAP58581.2023.10271964.

[13] Jose, Jinsi & Jose, Deepa. (2021). Performance Analysis of Deep Learning Algorithms for Intrusion

Detection in IoT. 1-6. 10.1109/ICCISc52257.2021.9484979.

[14] Zarai, R., Kachout, M., Hazber, M. and Mahdi, M. (2020) Recurrent Neural Networks & Deep

Neural Networks Based on Intrusion Detection System. Open Access Library Journal, 7, 1-11.

doi:10.4236/oalib.1106151.

[15] B. Alsughayyir, A. M. Qamar and R. Khan, "Developing a Network Attack Detection System Using

Deep Learning," 2019 International Conference on Computer and Information Sciences (ICCIS),

Sakaka, Saudi Arabia, 2019, pp. 1-5, doi: 10.1109/ICCISci.2019.8716389.

[16] S. A. Althubiti, E. M. Jones and K. Roy, "LSTM for Anomaly-Based Network Intrusion Detection,"

2018 28th International Telecommunication Networks and Applications Conference (ITNAC),

Sydney, NSW, Australia, 2018, pp. 1-3, doi: 10.1109/ATNAC.2018.8615300.
[17] Y. Xiao, C. Xing, T. Zhang and Z. Zhao, "An Intrusion Detection Model Based on Feature

Reduction and Convolutional Neural Networks," in IEEE Access, vol. 7, pp. 42210-42219, 2019,

doi:10.1109/ACCESS.2019.2904620.

[18] P. Wei, Y. Li, Z. Zhang, T. Hu, Z. Li and D. Liu, "An Optimization Method for Intrusion Detection

Classification Model Based on Deep Belief Network," in IEEE Access, vol. 7, pp. 87593-87605,

2019, doi: 10.1109/ACCESS.2019.2925828.

[19] Liu, Pengju. (2019). An Intrusion Detection System Based on Convolutional Neural Network.

ICCAE 2019: Proceedings of the 2019 11th International Conference on Computer and Automation

Engineering. 62-67. 10.1145/3313991.3314009.

[20] Sun, Pengfei & Liu, Pengju & Li, Qi & Liu, Chenxi & Lu, Xiangling & Hao, Ruochen & Chen,

Jinpeng. (2020). DL-IDS: Extracting features using CNN-LSTM hybrid network for intrusion
detection system. Security and Communication Networks. 2020. 1-11. 10.1155/2020/8890306.

[21] D. Liang and P. Pan, "Research on Intrusion Detection Based on Improved DBN-ELM," 2019

International Conference on Communications, Information System and Computer Engineering

(CISCE), Haikou, China, 2019, pp. 495-499, doi: 10.1109/CISCE.2019.00115.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

25

[22] Ugendhar, A. & Illuri, Babu & Vulapula, Sridhar Reddy & Radha, Marepalli & K, Sukanya &

Alenezi, Fayadh & Althubiti, Sara & Polat, Kemal. (2022). A Novel Intelligent-Based Intrusion

Detection System Approach Using Deep Multilayer Classification. Mathematical Problems in

Engineering. 2022. 1-10. 10.1155/2022/8030510.

[23] N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, "A Deep Learning Approach to Network Intrusion
Detection," in IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 1,

pp. 41-50, Feb. 2018, doi: 10.1109/TETCI.2017.2772792.

[24] Jordan, Michael & Mitchell, T.M. (2015). Machine Learning: Trends, Perspectives, and Prospects

Science (New York, N.Y.). 349. 255-60. 10.1126/science.aaa8415.

[25] Mahesh, B. (2020) Machine Learning Algorithms—A Review. International Journal of Science and

Research, 9, 381-386.

[26] Qifang Bi, Katherine E Goodman, Joshua Kaminsky, Justin Lessler, what is Machine Learning? A

Primer for the Epidemiologist, AMERICAN JOURNAL OF EPIDEMIOLOGY, Volume 188, Issue

12, December 2019, Pages 2222–2239, https://doi.org/10.1093/aje/kwz189.

[27] Jordan, Michael I., and Tom M. Mitchell. "Machine learning: Trends, perspectives, prospects."

Science 349.6245 (2015): 255-260. And prospects." Science 349.6245 (2015): 255-260.

[28] A Machine Learning Approach to Network Intrusion Detection System Using K Nearest Neighbor
and Random Forest https://yourpastquestions.com/product/a-machine learning-approach-to-

network-intrusion detection system.

[29] Salo, F., Nassif, A. B., & Essex, A. (2019). "Dimensionality reduction with IG-PCA and ensemble

classifier for network intrusion detection." Computer Networks, 148, 164-175.

[30] Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. (Discusses

probabilistic models, including Naive Bayes, with a detailed look at conditional independence and

Bayesian methods).

[31] Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., & Lin, W.-Y. (2009). "Intrusion detection by machine learning:

A review." Expert Systems with Applications, 36(10), 11994-12000.

[32] Ahmadi, A., & Khosravi, A. (2019). "A review on KNN classification algorithm." International

Journal of Computer Science and Network Security, 19(5), 33-42.
[33] Chandola, V., Banerjee, A., & Kumar, V. (2009). "Anomaly detection: A survey." ACM Computing

Surveys (CSUR), 41(3), 1-58.

[34] Zhao, S., Zhang, B., Yang, J. et al. Linear discriminant analysis. Nat Rev Methods Primers 4, 70

(2024). https://doi.org/10.1038/s43586-024-00346.

[35] Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp.

785–794).

[36] Zhao, Y., & Liu, Y. (2023). CopulaGAN boosted Random Forest based Network Intrusion

Detection System for hospital network infrastructure. Proceedings of the IEEE International

Conference on Communications (ICC), 1-6.

[37] Wang, Y., Liu, Z., Zheng, W., Wang, J., Shi, H., & Gu, M. (2023). A Combined Multi-

Classification Network Intrusion Detection System Based on Feature Selection and Neural
Network Improvement. Applied Sciences, 13(14), 8307.

[38] J. He, L. Ding, L. Jiang, and L. Ma, “Kernel ridge regression classification”, Proceedings of the

international Joint Conference on Neural Networks.2014, 2263-2267.

[39] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz and Y. Singer, “Online passive-aggressive

algorithms”, Journal of Machine Learning Research. 2006, 7,551–585.

[40] Hindy, H., Atkinson, R., Tachtatzis, C., Colin, J. N., Bayne, E., & Bellekens, X. (2020). Utilizing

deep learning techniques for effective zero-day attack detection. Electronics, 9(10), 1684.

International Journal of Network Security & Its Applications (IJNSA) Vol.17, No.5/6, November 2025

26

AUTHORS

SUDHANSHU SEKHAR TRIPATHY (Member, IEEE) received his Master of

Computer Applications (MCA) degree in 2017 from Gandhi Institute for

Technology (GIFT), affiliated with Biju Patnaik University of Technology (BPUT),

Odisha, India. He is currently pursuing a Ph.D. in Computer Science and

Engineering at C.V. Raman Global University, Bhubaneswar, Odisha. He has three

years of industry experience and five years of academic teaching experience. His

research work has been published in two Scopus-indexed and one Web of Science-

indexed journal and two UGC CARE Group 1 journals, focusing on cybersecurity
with an emphasis on Network Intrusion Detection Systems. His research interests include machine

learning, deep learning, network security, zero-day attack detection, and intrusion detection systems.

BICHITRANANDA BEHERA (Member, IEEE) received his Ph.D. in 2022 from

Pondicherry University, Puducherry, India. He is currently working as an assistant

professor at C.V. Raman Global University, Bhubaneswar, Odisha, India. He has

published numerous research articles in reputed journals and international

conferences. His current research interests include machine learning, data mining,

natural language processing (NLP), cybersecurity, and soft computing. He is

actively engaged in the academic community and serves as a reviewer for various

reputable journals and publications.

	Abstract
	Keywords
	Machine learning classification systems, Network intrusion detection mechanism, KDD CUP 1999 data repository, Hyper-parameter tuning, Performance evaluation, Classification accuracy

