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ABSTRACT

Network Intrusion Detection Systems (NIDS) are essential for securing networks by identifying and
mitigating unauthorized activities indicative of cyberattacks. As cyber threats grow increasingly
sophisticated, NIDS must evolve to detect both emerging threats and deviations from normal behavior. This
study explores the application of machine learning (ML) methods to improve the NIDS accuracy through
analyzing intricate structures in deep-featured network traffic records. Leveraging the 1999 KDD CUP
intrusion dataset as a benchmark, this research evaluates and optimizes several ML algorithms, including
Support Vector Machines (SVM), Naive Bayes variants (MNB, BNB), Random Forest (RF), k-Nearest
Neighbors (k-NN), Decision Trees (DT), AdaBoost, XGBoost, Logistic Regression (LR), Ridge Classifier,
Passive-Aggressive (PA) Classifier, Rocchio Classifier, Artificial Neural Networks (ANN), and Perceptron
(PPN). Initial evaluations without hyper-parameter optimization demonstrated suboptimal performance,
highlighting the importance of tuning to enhance classification accuracy. After hyper-parameter
optimization using grid and random search techniques, the SVM classifier achieved 99.12% accuracy with
a 0.0091 False Alarm Rate (FAR), outperforming its default configuration (98.08% accuracy, 0.0123 FAR)
and all other classifiers. This result confirms that SVM accomplishes the highest accuracy among the
evaluated classifiers. We validated the effectiveness of all classifiers using a tenfold cross-validation
approach, incorporating Recursive Feature Elimination (RFE) for feature selection to enhance the
classifiers accuracy and efficiency. Our outcomes indicate that ML classifiers are both adaptable and
reliable, contributing to enhanced accuracy in systems for detecting network intrusions.
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1. INTRODUCTION

The rapid growth of digital technology has improved efficiency and connectivity but also
intensified sophisticated cyber threats such as ransomware, phishing, and DoS attacks. With over
90% of critical operations relying on online platforms, ensuring the confidentiality, integrity, and
availability of digital assets is vital. To address these challenges, researchers are developing
advanced Network Intrusion Detection Systems (NIDS) using machine and deep learning for
real-time anomaly detection and proactive defense. The integration of Artificial Intelligence (Al),
especially Machine Learning (ML), has greatly enhanced Network Intrusion Detection Systems
(NIDS). These systems analyze network traffic to distinguish normal and malicious activities,
detecting zero-day attacks that evade traditional defenses. According to NIST, intrusion detection
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ensures data confidentiality, integrity, and availability through continuous monitoring and
anomaly detection [1]. Unlike signature-based systems, anomaly-based NIDS effectively identify
previously unseen attacks by learning normal traffic behavior.

Recent advances in machine learning (ML) and deep learning (DL) have enhanced IDS
performance through adaptive, data-driven detection with fewer false positives [2] [3].
Techniques like SVM, RF, DT, KNN, XGBoost, AdaBoost, and BPN are widely used, while
CNNs and RNNs capture complex traffic patterns [4]. Hyperparameter tuning and feature
engineering optimize accuracy and scalability [5] [6]. Using the KDD Cup 1999 dataset, this
study evaluates multiple classifiers based on accuracy, precision, recall, F1-score, false alarm
rate, and detection rate to strengthen IDS robustness.
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Fig.1. A snapshot of systems for detecting network intrusions

Fig. 1 illustrates the system layout of a system for detecting network intrusions, engineered to
observe and assess network traffic, identifying potential intrusions or suspicious activities. The
system connects to the internet through a firewall that filters traffic according to established
security rules. NIDS sensors are positioned at both external and internal points to examine
network packets. Traffic is routed through a switch that connects various workstations within the
network. When anomalies or suspicious behavior are detected, the NIDS sends alerts to
monitoring servers, which evaluate the threat's severity and manage response actions. This
centralized setup enables continuous surveillance, strengthening the network’s defense against
cyber-attacks by allowing real-time threat detection and proactive response.

This research highlights the following major contributions:

e The initial investigation establishes baseline performance metrics for machine learning
classifiers applied to systems for detecting network intrusions using the 1999 KDD Cup
intrusion detection dataset without hyper-parameter tuning. A diverse range of ML
algorithms was systematically assessed through tenfold cross-validation without applying
any feature selection techniques. This analysis provides critical perspectives on their
performance, highlighting capabilities and restrictions and emphasizing the need for
further optimization to improve accuracy and lower false alarm rates. The findings serve as
a valuable benchmark for guiding future advancements in network security solutions.

e The second investigation applies sophisticated hyper-parameter optimization strategies like
grid search and random search to boost the performance of ML classifiers. Subsequently,
all classifiers were evaluated through tenfold cross-validation with RFE, improving
accuracy, efficiency, and emphasizing essential features. The results clearly show that
systematic tuning of hyper-parameter configurations leads to significant improvements,
enhancing detection accuracy while minimizing the rate of incorrect positive detections.
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This investigation emphasizes the importance of hyper-parameter optimization in
improving the durability and trustworthiness of systems for detecting network intrusions,
contributing to facilitating the progress of more effective and efficient classifiers for
practical deployment in network security applications.

Section 2 presents a comprehensive investigation into recent advancements in systems for
detecting network intrusions, emphasizing a critical analysis of methodologies, emerging trends,
prevailing challenges, and a systematic comparative evaluation of relevant research studies.
Section 3 outlines an enhanced framework for detecting network intrusions utilizing the 1999
KDD intrusion detection dataset. It provides a detailed depiction of a machine learning-based
NIDS architecture, emphasizing its procedural framework components and optimization
strategies. Section 4 presents an ML-driven design for detecting network intrusions, emphasizing
the impact of prominent ML classifiers in improving detection efficiency and ensuring
comprehensive performance evaluation. Section 6 clarifies the experimental setup and
performance evaluation executed utilizing the 1999 KDD Cup intrusion dataset. It includes an
analysis of confusion matrices, hyper-parameter tuning, and a comparative analysis of results
before and after optimization, emphasizing the influence of hyper-parameter optimization on
accuracy and false positive rates. Section 7 wraps up by outlining the significant outcomes of the
study and proposing future avenues of research to advance next-generation NIDS.

2. RELATED WORK

A study [7] employed an XGBoost-based feature selection approach, identifying 17 and 22
optimal features for the NSL-KDD and UNSW-NB15 datasets, respectively. The XGBoost-
LSTM hybrid achieved 99.49% validation accuracy and 88.13% test accuracy on NSL-KDD,
while XGBoost-Simple-RNN attained 87.07% on UNSW-NB15. Another study [8] introduced
HCRNNIDS, a hybrid CRNN integrated with logistic regression, decision trees, and XGBoost,
achieving 97.75% accuracy on CSE-CIC-DS2018 and outperforming several traditional and deep
learning IDS models. In [9], a hybrid anomaly detection model integrating a classical
autoencoder (CAE) with a deep neural network (DNN) was applied to the UNSW-NB15 dataset.
The CAE enhanced DNN performance through sparse feature extraction, achieving 91.29%
accuracy and outperforming baseline models. Similarly, [10] proposed a deep learning-based
IDPS using an MLP trained on KDD CUP 1999, optimized with Adam, achieving 91.4%
accuracy compared to DT (74%) and SVM (83%) classifiers.

In [11], a hybrid IoT intrusion detection model combined random forest-based feature selection
with neural classifiers (B-ANN and DR-NN), achieving 98% accuracy on KDD CUP 1999 and
demonstrating strong adaptability across intelligent networks. Similarly, [12] evaluated NB, DT,
KNN, RF, SVM, MLP, and LSTM on NSL-KDD, reporting accuracies of 89.6% (with scaling),
89.2% (without), 96.89% (MLP), and 97.77% (LSTM), confirming LSTM’s superiority in
modeling temporal dependencies. The study in [13] highlighted CNNs as highly effective for loT
intrusion detection, demonstrating deep learning’s advantage over traditional methods. In [14],
DNN and LSTM models on NSL-KDD showed that a three-layer LSTM with 32 neurons per
layer achieved 98.3% accuracy, outperforming enlarged DNNs and conventional models.
Reference [15] applied a deep autoencoder for five-class IDS on NSL-KDD, achieving 99%
training and 91.28% testing accuracy. In [16], an LSTM-based IDS on CIDDS reached 0.85
accuracy, surpassing SVM, MLP, and Naive Bayes.

A CNN-IDS in [17] applied dimensionality reduction on KDD 1999 data, converting traffic into
image-like representations to reduce complexity. Results demonstrated higher accuracy and lower
FAR compared with conventional methods. The study in [18] proposed a deep belief network
(DBN) framework optimized with PSO, clustering, and genetic operators, reducing detection
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time by 24.69% and improving five-class accuracy by 1.3-14.8%. An improved LeNet-5 CNN in
[19] integrated normalization and one-hot encoding, achieving over 99% training and evaluation
accuracy with FAR below 0.1%, emphasizing reliability and precision. DL-IDS in [20] combined
CNN and LSTM for feature extraction, with category weight optimization to handle class
imbalance. On CICIDS2017, multi-class accuracy reached 98.67%, with over 99.5% for certain
attack classes, showing its effectiveness for diverse intrusion patterns. In [21], a DBN-ELM
hybrid applied feature extraction and classification on NSL-KDD, using majority voting to refine
predictions, achieving 97.82% accuracy and a 1.81% false alarm rate, outperforming individual
DBN or ELM models. The deep multilayer framework in [22], incorporating feedback,
autoencoding, preprocessing, database management, and classification, attained 96.70% accuracy
on NSL-KDD, highlighting the advantage of integrated architectures. In [23], a stacked
nonsymmetric deep autoencoder (NDAE) enhanced unsupervised feature extraction on KDD
1999 and NSL-KDD, significantly improving detection performance over traditional NIDS.
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3. AN OPTIMAL APPROACH TO SYSTEMS FOR DETECTING NETWORK
INTRUSION APPLYING THE 1999 KDD Cupr DATASET
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Fig. 2 ML Based NIDS architecture

Fig. 2 depicts the optimal workflow for NIDS using the 1999 KDD Cup intrusion dataset, which
involves several well-defined steps to support accurate and timely detection and classification of
cyber intrusions targeting network infrastructure:

> Dataset Utilization: The 1999 KDD Cup intrusion dataset serves as the foundational input
applicable to the NIDS architecture. It is broadly adopted for detecting malicious intrusions in
networks, offering a diverse range of assigning network traffic data to normal activity or
specific cyberattack classifications.

» Data Pre-Processing: The raw data undergoes pre-processing to enhance its quality. This step
includes handling missing values, eliminating redundant logs, and applying normalization or
scaling to features. Pre-processing verifies that the dataset remains accurate and prepared for
evaluation.

» Feature Selection: Before model training, Recursive Feature Elimination (RFE) was utilized
to optimize the feature space, ensuring that only the most relevant attributes were used in
classification. By iteratively eliminating less significant features, RFE streamlines the dataset,
which leads to faster processing times and improved model accuracy. This targeted approach
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allows classifiers to focus on essential indicators of network intrusions, thereby strengthening
their detection capabilities.

» Data Splitting: The dataset is divided into separate segments for training and evaluating the
classifier. The training set is used to build and fine-tune the ML classifiers, while the testing
set assesses how well the trained model performs and generalizes to unseen data.

» Classifier Training with ML Algorithms: Multiple ML algorithms are trained on the dataset
to uncover patterns and correlations in the network traffic. This allows the models to
accurately classify traffic as either normal or belonging to specific types of attacks.

» Hyper-parameter Optimization: Optimization of hyper-parameters is implemented to fine-
tune the classifier’s accomplishment. This process includes fine-tuning parameters like the
learning rate, the size of estimators in ensemble methods, or the depth of decision trees to
achieve the best possible results.

» Trained Classifier: Using the optimal hyper-parameters, the classifier is modeled using the
training data inputs. This yields a classifier capable of accurately forecasting the category of
novel, unobserved occurrences based on learned patterns.

» Multi-Class Prediction: The trained classifier generates predictions for each instance,
assigning them to one of the following categories:

0: Normal Activity

1: Denial-of-Service (DoS) Attack

2: Probing/Scanning Attempt

3: Remote-to-Local (R2L) Intrusion

4: User-to-Root (U2R) Privilege Escalation

» Decision Block (Normal or Attack): A decision block is implemented to verify whether the
prediction corresponds to the "Normal" class (prediction = 0). If the prediction equals 0, the
instance is classified as normal. Otherwise, if the prediction matches any attack class, the
instance is categorized as an attack

» Attack Classification: For instances categorized as attacks, the system further classifies
them into specific attack types such as DoS, probe, R2L, or U2R. This fine-grained
classification enables precise identification and differentiation of attack types within the
broader category of malicious activities.

4. NETWORK INTRUSION DETECTION SYSTEMS WITH ML CLASSIFIERS

4.1. Classifiers and Techniques in Machine Learning

Machine learning enhances NIDS by enabling autonomous intrusion detection through data-
driven pattern recognition [24], [25]. Supervised learning offers high accuracy using labeled data
[26], while unsupervised learning detects anomalies without labels but with lower accuracy [27].
Both approaches improve NIDS performance, strengthen security, and reduce false positives
[28].

4.2. Classification Approach Using Support Vector Machines

SVMs are widely used in NIDS for their high accuracy in detecting and classifying network
anomalies. They classify data by finding a maximum-margin separator between normal and
malicious traffic, relying on support vectors for efficiency even with limited training data. For
non-linear patterns, kernel methods map inputs to higher-dimensional spaces, enabling complex
decision boundaries [29]. This approach minimizes classification errors and false positives,
making SVMs robust and versatile for both linear and non-linear intrusion detection scenarios.
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4.3. Probabilistic Learning Classifier Using Naive Bayes

The Naive Bayes classifier, based on Bayes’ theorem, predicts class probabilities by assuming
conditional independence among features. Variants such as Multinomial Naive Bayes (MNB)
handle count data, while Bernoulli Naive Bayes (BNB) processes binary features. In NIDS, it is
valued for simplicity, scalability, and computational efficiency, enabling effective analysis of
high-dimensional network data. Despite the strong independence assumption, Naive Bayes
reliably differentiates normal from malicious connections, providing a lightweight intrusion
detection solution [30].

P(T|S)+p(5)

PEIN = B(T)

()
Where:

T: Observed features or data.

S: Target class or category.

P(S|T): Probability of class S given data T.
P(S): Prior probability of class S.

P(T|S): Probability of data T given class S.
P(T): Overall probability of data T.

4.4. Classification Technique Using a Decision Tree

Decision trees (DTs) are a popular supervised learning method for classification and regression,
structured as hierarchical trees with internal nodes for feature-based decisions, branches for
outcomes, and leaves for predictions. In NIDS, DTs effectively detect normal and malicious
traffic using features such as connection duration, protocol, and service type. Their
interpretability and feature-driven decision process allow efficient handling of complex datasets,
providing accurate and real-time intrusion detection with computational efficiency in large-scale
networks [31].

4.5. K-Nearest Neighbor based Classification Technique

K-Nearest Neighbors (KNN) is a non-parametric, distance-based, instance-based learning method
widely used in NIDS for its simplicity and effectiveness. It classifies a data point based on the
majority label among its K nearest neighbors, using metrics such as Euclidean distance. By
comparing network connections with labeled training instances, KNN identifies normal and
malicious patterns. Although computationally intensive for large datasets, techniques like
dimensionality reduction and approximate neighbor search enhance its scalability and efficiency
[32].

4.6. Classification Approach Using Logistic Regression

Logistic Regression (LR) is a supervised algorithm used in intrusion detection to classify network
traffic as normal or malicious. It applies the logistic function to generate outputs between 0 and 1,
estimating the probability of each class and making predictions based on a threshold. LR is
efficient, interpretable, and computationally lightweight, providing probabilistic predictions.
However, its simplicity may limit performance on complex, high-dimensional data, where more
advanced models often perform better [33].
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In logistic regression, a linear model is derived from the provided attributes and processed
through a sigmoid curve, resulting in a probabilistic output. The sigmoid function is
mathematically expressed as:

F(x) =1/ 1+e-x 2

In this equation, F(x) yields a probability between 0 and 1, with "e" standing for the natural
exponential base, and "x" acting as the function’s input.

4.7. Classifier Using Linear Discriminant Analysis Technique

Linear Discriminant Analysis (LDA) is a supervised method used in intrusion detection to
classify network traffic and reduce feature dimensionality. It maximizes differences between
classes while minimizing within-class variance, identifying linear combinations of features that
enhance separability. LDA effectively classifies traffic into normal or specific attack types,
supports multi-class detection, and improves computational efficiency by preserving class
separability in lower-dimensional space [34].

4.8. Optimized Extreme Gradient Boosting (XGBOOST) Classifier

XGBoost is a scalable gradient boosting algorithm widely used in network-level intrusion
detection for its efficiency with large and complex datasets. It combines multiple weak learners,
typically decision trees, to iteratively improve predictive performance by correcting previous
errors. This approach effectively handles high-dimensional and imbalanced data, enabling
accurate detection of diverse and novel intrusion types, making XGBoost a robust solution for
precise NIDS implementation [35].

4.9. AdaBoost Classifier

AdaBoost is a boosting algorithm commonly used in network intrusion detection for its ability to
improve accuracy by combining weak learners into a strong classifier. It assigns higher weights
to misclassified instances, ensuring subsequent models focus on difficult or ambiguous patterns.
This adaptive approach reduces false positives and effectively handles high-dimensional,
imbalanced network data, enhancing detection of normal and malicious activities, including
emerging or unknown threats

4.10. Random Forest Classifier

Random Forest (RF) is an ensemble learning method widely used in network-layer intrusion
detection for its accuracy and robustness against overfitting. It constructs multiple decision trees
on varied data subsets and aggregates their predictions, capturing complex, non-linear patterns in
high-dimensional NIDS datasets. RF effectively detects both known and zero-day threats, handles
imbalanced data, and ranks critical features to enhance accuracy while reducing computational
demands [36].

4.11. Artificial Neural Network (ANN)

Acrtificial Neural Networks (ANNSs) are widely used in network intrusion detection for their
ability to model complex, non-linear data. They comprise an input layer for network features,
hidden layers for feature extraction, and an output layer for classification. Neurons are
interconnected with weighted links, and activation functions such as ReLU, Sigmoid, Tanh, and
Softmax process inputs. Methods like Perceptron, SGD, and backpropagation optimize the
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network by minimizing errors. Deep ANN architectures improve detection accuracy, enhance
system performance, and reduce false alarms [37].

4.12. Ridge Classifier

The Ridge classifier assumes that data points of each class lie within a linear subspace, enabling
continuous analysis for classification [38]. In NIDS, it addresses multicollinearity among network
features through L2 regularization, stabilizing predictions and reducing variance. By controlling
model complexity, Ridge regression minimizes overfitting and ensures accurate, reliable
detection of network anomalies, making it suitable for high-dimensional intrusion detection tasks.

4.13. Passive Aggressive (PA) Classifier

Passive-Aggressive (PA) classifiers are scalable online learning algorithms that update models
incrementally as new data arrives, unlike traditional batch methods. In NIDS, they adapt to
evolving network conditions by processing streaming data efficiently. Using a regularization
parameter (C) instead of a learning rate, PA classifiers penalize misclassifications to balance
accuracy and model simplicity. This enables real-time anomaly detection with low computational
overhead, making them well-suited for high-traffic networks [39].

4.14. Rocchio (RC) Classifier

The Rocchio algorithm, originating from relevance feedback in information retrieval, is applied
in NIDS for classification. During training, it computes a centroid for each class as a prototype.
In testing, class labels are assigned based on the Euclidean distance between incoming data points
and centroids. This proximity-based method efficiently detects anomalies, distinguishing normal
traffic from potential intrusions while helping minimize false positives.

5. RESULTS AND DISCUSSION

5.1. Experimental Setup

Machine learning computations were performed using Python's Scikit-learn library. Experiments
were conducted on Google Colaboratory, a cloud-based platform equipped with a Tesla K20
GPU (2,496 CUDA cores, 16 GB RAM, and 500 GB storage), as well as locally on a Windows
11 system powered by an Intel Core i5-1240P processor (4.40 GHz, 12th generation), identified
as DESKTOP-UFN62J4. This dual setup facilitated a comprehensive evaluation of machine
learning classifiers in both cloud and local computing environments.

5.2. Dataset Description

NIDS monitor network activity to identify abnormal patterns indicative of security threats while
allowing normal traffic. Machine learning classifiers, trained on datasets containing both normal
and attack patterns, improve detection by recognizing diverse network behaviors. In this study,
the 1999 KDD Cup dataset was used, with 70% of data for training and 30% for testing to
preserve class distribution. A 10-fold cross-validation was also applied to rigorously evaluate
model accuracy, generalization, and robustness against overfitting.
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5.3. The 1999 KDD CUP Intrusion Dataset

The 1999 KDD Cup intrusion dataset is a widely used benchmark for evaluating network
intrusion detection mechanisms. Developed for the KDD 1999 data mining challenge, it contains
simulated network traffic with both normal and malicious connections. The dataset includes
approximately 4.9 million records, each described by 41 features capturing key aspects of
network behavior, such as connection duration, protocol type, and error rate, making it a
foundational resource for anomaly detection and machine learning in cybersecurity. The 1999
KDD Cup dataset categorizes malicious activity into four types: Denial of Service (DoS),
Remote-to-Local (R2L), User-to-Root (U2R), and Probe attacks. Normal network traffic is also
included to provide a baseline for training and evaluation. The dataset is typically split into
training and testing subsets, with cross-validation used to assess detection performance. Despite
criticisms such as data redundancy, it remains a widely accepted benchmark for developing and
evaluating NIDS.

(i) Denial-of-Service (DoS) Assaults: These types of exploits focus on disrupting network
infrastructure or system operations by inundating them with excessive traffic or requests, such as
ina SYN Flood attack.

(if) Remote-to-Local (R2L) Intrusion: These occur when a malicious agent gains access to a
local computer remotely without valid credentials, often through techniques like password
cracking.

(iii) Probing/Scanning Attempt: These involve reconnaissance activities aimed at collecting
information about a network’s structure and identifying vulnerabilities, such as through port
scanning.

(iv) User-to-Root (U2R) Privilege Escalation: In these breach attempts, an intruder attempts to
elevate privileges from a regular user account to administrator (root) access, often using methods
like buffer overflow exploits.

[ 1 traindata = pd.read_csv( kddtrain.csv', header=None
testdata = pd.read_csv( kddtest.csv’', header=None

traindata.head(8
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Fig 3. Feature and Label Structure of the 1999 KDD Cup intrusion detection dataset

Fig. 3 illustrates the process of loading and displaying the 1999 KDD Cup dataset using Python’s
pandas library. The CSV files, kddtrain.csv and kddtest.csv, are imported into DataFrames
traindata and testdata, with header=None indicating no header row. The command traindata. head
(8) displays the first eight rows, showing 42 columns indexed from 0 to 41. Each row represents a
network connection, and each column corresponds to attributes such as protocol type, connection
duration, and status.
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The 1999 KDD Cup dataset is widely used for detecting malicious network activity and includes
four types of features: basic, content, traffic, and class labels, as summarized in Table 2. Basic
features describe connection properties, such as duration, protocol type (TCP, UDP, ICMP),
service (HTTP, FTP), flags, and data transfer metrics (src_bytes, dst_bytes). Content features
capture connection-level activities, including failed logins, user login status, and system-level
actions like root_shell or su_attempted. Traffic features aggregate session details, such as number
of shells, accessed files, and login types (host_login, guest_login). Class labels distinguish
normal traffic from attacks, including DoS, R2L, U2R, and Probe. These features are critical for
training machine learning classifiers for effective intrusion detection.

Table 2. Highlights the frequency distribution of cases among multiple attack classes in the 1999 KDD
Cup intrusion dataset

Sets Traffic Categories | Authentic Logs Unique Data Points
Intrusions 3,925,650 262,178
Training Set Benign Traffic 972,781 812,814
Overall Count 4,898,431 10,74,992
) Intrusions 2,46,150 29,378
Tess“tng Benign Traffic 60,591 47,911
¢ Total 306,741 77,289

5.4. Performance Evaluation Metrics of NIDS

Evaluating network monitoring and intrusion detection systems is crucial for enhancing threat
detection, refining algorithms, reducing false positives, and ensuring operational reliability.
Performance is measured using metrics such as Accuracy (Acc), Precision (Prec), Recall (Rec),
F1-score, False Alarm Rate (FAR), and Detection Rate (DR). Table 3 summarizes four key
outcomes: true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN),
which form the basis for performance assessment. A confusion matrix organizes these outcomes,
allowing computation of the key metrics and providing a structured framework for evaluating
machine learning classifiers in intrusion detection.

True Positive (TP): An intrusion attempt is correctly recognized by the system as malicious,
confirming successful threat detection.

False Positive (FP): Benign traffic is incorrectly flagged as a threat, triggering an unnecessary
alert.

True Negative (TN): Safe network activity is accurately classified as non-malicious, resulting in
no false warning.

False Negative (FN): A harmful activity passes through undetected and is wrongly classified as
legitimate, signifying a lapse in the detection mechanism.

Table 3. Calculating NIDS Performance Metrics

Actual \ Predicted Attack (Positive) Normal (Negative)
Attack (Positive) True Positive (TP) False Negative (FN)
Normal (Negative) False Positive (FP) True Negative (TN)
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Accuracy: Accuracy measures the proportion of correctly classified normal and attack instances,
offering an overall evaluation of NIDS performance across all predictions. Mathematically:

NIDS _ TP+TN
TP+FF+TN+FN

3)

Accuracy
Precision: Precision indicates NIDS reliability in detecting attacks. It reflects how accurately
alerts are raised, with higher precision values representing fewer false alarms:
NIDS _ _TP (4)

Precision = TPFP

Recall: Recall measures how effectively NIDS detects actual attacks. It reflects the system’s
ability to capture malicious activities without missing threats, ensuring comprehensive detection
coverage:

NIDS _ _TF
Recall"'™ = —— 5)

F1 Score: F1-score balances precision and recall through their harmonic mean. It is especially
useful for NIDS evaluation on imbalanced datasets, ensuring neither metric dominates
performance assessment.

NIDS _ 2irecall«precision)
F1 Score ~  recall+precision (6)

False Alarm Rate: False Alarm Rate in NIDS measures the frequency of normal traffic
misclassified as attacks. Lower values indicate higher reliability and reduced unnecessary
security alerts.

FARNDS = £ (7)

FF TN

5.5. Confusion Matrices for ML Classifiers on the 1999 KDD Cup Intrusion Dataset
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5.6. Hyper-Parameter Tuning
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In the experimental setup shown in Table 4, hyper-parameter optimization is employed to improve
NIDS detection accuracy by fine-tuning key parameters. Techniques such as Grid Search and
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Random Search systematically explore parameter combinations to identify optimal settings. Cross-
validation assesses classifier generalization across datasets, mitigating overfitting and enhancing
reliability in detecting malicious activities. This tuning ensures effective real-world performance,
balancing accurate detection with minimal false alarms.

Table 4. Setup of Hyper-parameters for Different Classification Techniques

Classifiers

Parameters

KNN

K=10 (Best value)
K=
(1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15)

Metric= “minkowski”

weights= “distance”

algorithm= “auto”

DT

Splitting= “Gini”
(Best value)
Splitting= “Entropy”
Splitting= “Gini”
Splitting= “Entropy”
Splitting= “Gini”

splitter= “best”

splitter= “best”
splitter= “random”

splitter= “best”
splitter= “random”

min_samples_split=2
min_samples_split=5
min_samples_split=4
min_samples_split=10
min_samples_split=8

random state=3
random state=42
random state=7
random state=0
random state=12

MNB

alpha=0.01 (Best
value)
alpha=0.1
alpha=0.5
alpha=1.0
alpha=0.001

fit_prior=True
fit_prior=True
fit_prior=True
fit_prior=True
fit_prior=True

class_prior=None
class_prior=None
class_prior=None
class_prior=None
class_prior=None

force_alpha=True
force_alpha=True
force_alpha=True
force_alpha=True
force_alpha=True

BNB

alpha=0.01 (Best
value)
alpha=0.05
alpha=0.001
alpha=0.1
alpha=0.5

binarize= “1.0”
binarize= “1.0”
binarize= “1.0”
binarize= “1.0”
binarize= “1.0”

fit_prior=True
fit_prior=True
fit_prior=True
fit_prior=True
fit_prior=True

class_prior= None
class_prior= None
class_prior= None
class_prior= None
class_prior= None

RF

n_estimators= “200
(Best value)
n_estimators= “100
n_estimators= “150
n_estimators= “300
n_estimators= “250

Splitting= “gini”
Splitting= “entropy”
Splitting= “gini”
Splitting= “gini”
Splitting= “entropy”

min_samples_split=2
min_samples_split=2
min_samples_split=3
min_samples_split=4
min_samples_split=2

bl

max_features= “None’
max_features= “sqrt”
max_features= “auto”
max_features= “None’
max_features= “sqrt”

bl

SVM

C= 1.0 (Best value)
C=05
C=15

C=038

Penality factor= “12”
Penality factor= “11”
Penality factor= “12”

Penality factor= “11”

tolerance(tol)="1e-4"
tolerance(tol)="1e-3"
tolerance(tol)="1e-4"

tolerance(tol)="1e-3"

Loss= “square_hinge”

Kernel= “rbf”
Loss= “square_hinge”
Kernel= “rbf”

Loss= “hinge”
Kernel= “linear”
Loss= “square_hinge”
Kernel= “sigmoid”

PPN

max_iter= “150”
(Best value)

max_iter= “100”

max_iter= “200”

1)

Penalty= “elasticnet’
Penalty= “12”

Penalty= “elasticnet”

tolerance(tol)="1e-3"
tolerance(tol)="1e-4"

tolerance(tol)="1e-3"

n_iter no_change=

n_iter no_change=

cc20”

cclo”

n_iter no_change= “15”

LR

max_iter= “150”
(Best value)

max_iter= “200”

solver= “saga”
solver= “saga”

penalty= “12”
penalty= “11”

class_weight=
“balanced”
class weight= “none”
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class_weight=
max_iter=“150” solver= “saga” penalty= “12” “balanced”
max_iter=“180" | solver= “newton-cg” penalty= “12” class_weight=
“balanced”
“ZTDT)?’S Ell;:i:?;?le) learning_rate= “0.05” max_depth= “4” random_state= “2”
XGBOOST . w1 learning rate= “0.2” max_depth= “4”
n_estimators= “150 . ey 199 g e
. _ wy1npes| learning rate= “0.1 max_depth=“4 random_state= “2
n_estimators="100 learning_rate= “0.01” max_depth= “5”
n_estimators= “200” 8- ) —aep
algorithm=
n_estimators= “SAMME.R” . _ oy & —
150" (Best value) | algorithm= “SAMME> | \carning_rate="0.05" max_depth="2"
. w1 S learning_rate= “0.1 max_depth=“1
n_estimators= “100 algorithm= . — ) e _
AdaBoost . e w v learning_rate= “0.05 max_depth= ‘2
n_estimators= “200 SAMME.R . ey -
- e i »| learning rate= “0.2 max_depth= 3
n_estimators= “120”| algorithm= “SAMME . " » e
- oo o learning_rate= “0.075 max_depth= ‘2
n_estimators= “250 algorithm=
“SAMME.R”
= ¢ )
allElBu;st V‘;ﬂ?e(;l max_iter=“150” loss= “hinge” penalty="11"
SGD T . max iter= “100” loss= “log” penalty="12"
alpha="0.0003 max_iter= “200” loss= “hinge” enalty="I1"
alpha=“0.001” — g penalty=
SOIVerT/afﬁg) (Best max_iter=“300” tolerance(tol)="1e-4" alpha= “0.015”
Ridge solver="lsar" max_iter= “150” tolerance(tol)="1e-4" alpha= “0.005"
n q" max_iter= “200” tolerance(tol)="1e-3" alpha= “0.001”
solver="sag -
metric=
“manhattan” (Best|shrink threshold= “0.4” alpha= “0.01”
RC value) shrink_threshold= “0.6” alpha= “0.005”
metric= “euclidean”
: — 99
ma()é_; .::l\./al ui()m n_iter no_change= “30" loss= “hinge” tol=0.01
S wnens [n_iter no change= “40] loss= “squared hinge” tol=0.005
PA max_iter= “250 - == _ wnpd P —
—.  _ «ien» [n_iter no _change=“20 loss= “hinge tol=0.001
max_iter= “150
hidden_layer_sizes= Activation learning_rate_init=
max iter= “250 “100” function= “relu” “0.01”
— hidden_layer_sizes= Activation learning_rate_init=
(Best VaIUE) 113 t2) : T3 E2) 113 E2)
S 50 function= “relu 0.02
BPN max_iter=“150 . o Lo . .
~  wanny | hidden_layer sizes= Activation learning_rate_init=
max_iter= “300 w1 s 1 “ »
max_iter= “200" 100 function= “tanh 0.005
- hidden_layer_sizes= Activation learning_rate_init=
“100” function= “relu” “0.001”

5.7. Results Before Hyper-Parameter Optimization

This section presents evaluation results of various machine learning methods for intrusion detection
using the 1999 KDD Cup dataset, implemented with Scikit-learn. A ten-fold cross-validation was
employed, dividing the dataset into ten equal parts, with nine folds for training and one for testing in
each iteration. Performance metrics were averaged across folds to assess consistency. All classifiers
were first evaluated using Scikit-learn’s default hyper-parameters to establish baseline performance
prior to hyper-parameter tuning.
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Table 5. Performance comparisons of ML classifiers on the 1999 KDD Cup intrusion dataset for Network
IDS before Hyper-Parameter Optimization

Classificatio
n Accuracy Precision Recall F1-Score FAR Detection Rate
Algorithms
KN | 0972420055 0.9806%0.03L) ¢ 754400851 | 0.0741:0.0499| 0.0173 | 0.9724:0.0551
pr | 097130055 0.900960.30L) .9713:0,0856 | 0.9731+00502| 0.0175 | 0.9713:0.0556
MNg | O9929:0386] O93990287)  9320+03868 | 0.9298+00389| 0.0383 | 0.932020.3868
BNg | O-O4130055) 090027 0.9473:0,0555 | 0.9487+0.0497| 0.0338 | 0.9473:0.0555
RE | O9TI40059) 09810050 .971420.0500 | 0.97330.0531| 0.0188 | 0.971420.0590
svm | 0980810006 O9B150005]  9808+0.0061 | 0.9808+00059| 0.0123 | 0.980820.0061
ppn | O910L0130] 0953940093 9101401303 | 09157+01186| 0.0492 | 0.920120.1303
LR | O-90070059) 097770028 ¢ 9667:0,0505 | 0.9689+0.0534| 0.0247 | 0.9667:0.0595
XGBoost | O-9404+0082) 0-964620.032)  946440,0827 | 09496500736 00267 | 0.9464:0.0827
AdaBoost | OH9L0.059) 09556040.028] 9431400508 | 0.9449:0.0530 00271 | 0.9431+0.0598
sGp | 904001251 0.9457X0.0%8) 9046401255 | 0.9097:0.1136 0.0424 | 0.9046+0.1255
Ridge | O949570099) 09562200241  9495:0,0305 | 0.9499:0.0350| 0.0330 | 0.9495:00395
R | 0%407X0.038) 0.954950.025)  94g740.0388 | 0.948820.0350 00357 | 0.9487+0.0388
pa | 034430005 095700027} ,9443:0,0850 | 0.946240.0532| 0.0373 | 0.9443:0.0650
gpN | 097040593 0981000297 6 9704200504 | 0.9725400534| 0.0167 | 0.970420.054

The average values and standard deviations of the classification outcomes are shown in

Table 5

Table 5 summarizes the detection performance of various ML classifiers on the 1999 KDD Cup
dataset using default parameters, considering accuracy and false alarm rate (FAR). SVM
achieved the highest accuracy of 98.08% with the lowest FAR of 0.0123, demonstrating superior
intrusion detection. KNN, RF, BPN, and DT also performed well, with accuracies above 97% and
low FARs, while SGD had the lowest accuracy (90.46%) and higher FAR (0.0424). MNB
recorded 93.29% accuracy with FAR 0.0383, and XGBoost, AdaBoost, and Ridge ranged
between 94-95% accuracy. Fig. 19 illustrates these results, highlighting SVM’s superior
performance and SGD’s relative ineffectiveness in its default configuration.
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Fig. 19: Performance Comparisons of ML Classification Algorithms before hyper-parameter optimization
in NIDS

5.8. Results After Hyper-Parameter Optimization

This section evaluates the performance of multiple ML classifiers on the 1999 KDD Cup
intrusion dataset, a widely used benchmark in NIDS research. Classifiers were implemented
using Scikit-learn and assessed via ten-fold cross-validation, splitting the dataset into ten folds
with nine for training and one for testing per iteration to reduce variance and overfitting. To
optimize the feature space and improve classifier efficiency, Recursive Feature Elimination
(RFE) was applied to retain the most significant features while discarding less impactful ones.
Combining RFE with cross-validation provides insights into classifier generalization and real-
world applicability.

The key hyper-parameters for each classifier, including learning rate, maximum tree depth, and
regularization factors, were initially set to Scikit-learn’s default values. Parameters such as alpha
for Ridge and C for SVM controlled model complexity and mitigated overfitting. For tree-based
models like Random Forest and XGBoost, n_estimators and max_depth was adjusted to balance
performance and overfitting. Hyper-parameters were further fine-tuned empirically to optimize
generalization and enhance detection of multiple attack types in the 1999 KDD Cup dataset. Ten-
fold cross-validation provides a reliable and unbiased evaluation of classifiers such as SVM,
XGBoost, AdaBoost, RF, BNB, MNB, LR, KNN, DT, and BPN. This method enables
assessment of key performance metrics, including Accuracy, Precision, Recall, F1-score, FAR,
and DR, offering a comprehensive view of each classifier’s effectiveness. Comparing these
metrics helps identify the most suitable ML approaches for detecting and classifying network
intrusions.

Table 6. Performance comparisons of ML classifiers on the 1999 KDD Cup intrusion dataset for Network
IDS with Hyper Parameter Optimization

€ sl Accuracy Precision Recall F1-Score FAR | Detection Rate
Algorithms
KNN (K=10)
(Best Value)
0.9829+0.0649| 0-9899+0.0409 | 0.9829+0.0649 | 0.9847+0.0596| 0.0148 | 0.9829+0.0649
DT
(Best Value) 0.9812;0.058 0.9904+0.3088 | 0.9812+0.0589 | 0.9821*0.0556| () n10s | (19812400589
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MNB | 0.9568+0.086] 0.963620.2980 | 0.956820.0869 | 0.9537+0.0491
(Best Value) 9 0.0345 | 0.9568+0.0869
NG 0.9612£0.068| 0.9732£0.0372 | 0.961220.0682 | 0.962620.0572
2 0.0301 | 0.9612+0.0682
(Best Value)
oF 0.9827+0.062| 0.9899+0.0498 0.9827+0.0627 | 0.9849+0.5890
7 0.0169 | 0.98270.0627
(Best Value)
v 0.9912+0.009| 0.9919+0.0088 | 0.991220.0097 | 0.9912%0.0095
7 0.0091 | 0.9912+0.0097
(Best Value)
PN 0.9563%0.0573 | 0.9477%0.0402 | 0.9533%0.1254
0.9477+0.0410 0.0467 | 0.94770.0402
(Best Value)
LR 0.9769+0.069| 0.9849+0.0398 | 0.976920.0695 | 0.9789+0.0634
(Best Value) 5 0.0220 | 0.97690.0695
(gei'f/o;fe) 0.9787+0.047| 0.9850+0.0308 | 0.9787+0.0476 | 0.98110.0420
6 0.0237 | 0.97870.0476
0.9776:0.059 0.977620.0594 | 0.089720.0534
AdaBoost 4 0.9879+0.0292 00241 | 0.9776+0.0594
(Best Value)
SGD 0.9488+0.049| 0-99650.0368 | () 9458, 0498 | 0.9511+0.1386
(Best Value) 8 0.0396 | 0.9488+0.0498
Ridge | 0.9618+0.050
Beat value) : 0.9680:0.0346 | 09618200508 | 0.9625:0.0389| o oo | 0 0616400508
(Bes’? \(/:alue) 0.9561%0.046| ) 9696400206 | 0.9561+0.0462 | 0.9562+0.0410
2 -96260. -95610. 95620, 0.0330 | 0.9561+0.0462
PA 0.95330.069
(Best value) : 0.9616:0.0375 | 09533200699 | 0.9554£0.0632 o oo | 0 omase0.060s
BPN 0.9821+0.093
Bestvalue) A 0.9915:00392 | 09821300038 | 0.9830:0.0638| oo\ | 0 ogo140.0038

The average values and standard deviations of the classification outcomes are shown in Table 6

Table 6 highlights SVM as the top-performing classifier, achieving 99.12% Accuracy, 99.19%
Precision, 99.12% Recall, 99.12% F1-score, and the lowest FAR of 0.0091. KNN and BPN
closely followed with accuracies of 98.29% and 98.21% and low FARs of 0.0148 and 0.0152. DT
and RF showed similar reliability, with accuracies of 98.12% and 98.27% and FARs of 0.0162
and 0.0169. Ensemble methods, XGBoost (97.87%) and AdaBoost (97.76%), delivered strong
performance, though below SVM. Lightweight classifiers, BNB (96.12%) and MNB (95.68%),
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were suitable for resource-limited scenarios but had higher FARs (0.0301 and 0.0345). Logistic
Regression achieved 97.69% accuracy with FAR 0.0220. PA, SGD, and Perceptron
underperformed, with detection rates below 95.50%, limiting their suitability for critical intrusion

detection tasks. Figs. 20-34 present line graphs illustrating classifier performance after hyper-
parameter tuning across various metrics.
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Fig 20. Hyper-Parameter Tuning Fig 21. Performance of DT Fig 22. Performance of MNB
for KNN
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Fig 26 Performance of PPN Fig 27. Performance of LR Fig 28. Performance of XGBoost

Fig 29. Performance of AdaBoost Fig 30. Performance of PA Fig 31. Performance of Ridge
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Fig 35. Heat map representation of prediction accuracy for different machine learning algorithms in NIDS

Fig. 35 presents a heatmap comparing 15 ML classifiers across Accuracy, Precision, Recall, F1-
score, FAR, and Detection Rate. The color gradient highlights detection performance and false
alarm control, helping identify the most effective classifier for network intrusion detection.

5.9. Analysis of ROC Curves for Machine Learning Classifiers on the 1999 KDD
Cup Intrusion Data

True Posive Rate (TPR)

False Fositive Rate (FFR)

Fig 36. Performance Evaluation Using ROC Curves: ML Classifiers on the 1999 KDD Cup Intrusion
Dataset

Fig. 36 shows ROC analysis on the KDD Cup 1999 dataset, where SVM, BPN, and RF achieved
the highest AUC (~0.98). KNN, DT, and BNB followed (0.89-0.94), while XGBoost and
AdaBoost performed moderately (0.86-0.88). All models surpassed the random baseline,
confirming effective intrusion detection.
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Performance Comparison of ML Classifiers for NIDS after Hyper-parameter optimization
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Fig 37. Performance Comparisons of ML Classification Algorithms with hyper-parameter
optimization in NIDS

Fig. 37 presents a bar chart comparing classifiers across Accuracy, Precision, Recall, F1-score,
and FAR. SVM achieves the highest performance, with 99.12% accuracy, strong Precision,
Recall, and F1-score, and a minimal FAR, highlighting its effectiveness in detecting network
intrusions on the 1999 KDD Cup dataset. KNN, RF, BPN, DT, and LR also show strong results,
while ensemble methods like XGBoost and AdaBoost perform well but do not surpass SVM.
Linear models such as Ridge and SGD exhibit moderate performance, reflecting challenges in
handling dataset complexity. These results underscore SVM’s superiority for NIDS and provide
guidance for selecting and tuning classifiers for robust intrusion detection.

6. CONCLUSION AND FUTURE SCOPE

Detecting network intrusions is critical for maintaining cybersecurity, and machine learning (ML)
has proven effective in identifying malicious activities within network traffic. Supervised ML
algorithms enable systems to distinguish legitimate from suspicious behavior, enhancing
protection against evolving threats. Using the 1999 KDD Cup intrusion dataset, this study applied
hyper-parameter tuning to optimize classifiers. SVM, KNN, RF, and XGBoost achieved high
accuracy and reliable detection rates, while Perceptron (PPN) and Stochastic Gradient Descent
(SGD) performed less effectively. Classifiers such as Naive Bayes, Ridge, and Passive
Aggressive showed moderate performance, highlighting variability in algorithm effectiveness for
NIDS. As cyber threats evolve, future research will focus on advanced techniques capable of
handling large-scale, dynamic datasets. Unsupervised methods, including K-means, OC-SVM,
Isolation Forest, DBSCAN, and Autoencoders, are essential for detecting novel attacks, such as
zero-day threats, without labeled data. Hybrid approaches combining multiple learning paradigms
can improve adaptability and detection accuracy. Moreover, integrating Explainable Al (XAI)
will enhance transparency and interpretability, fostering trust in real-world deployment. These
advancements promise more adaptive, scalable, and robust intrusion detection systems capable of
mitigating increasingly sophisticated cyber threats.
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