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ABSTRACT

Honeypots remain critical tools for cyber deception, adversarial observation, and proactive threat
intelligence. However, despite decades of development, the field still lacks a standardized and empirically
validated framework for assessing deception effectiveness. Existing studies rely heavily on raw connection
counts or ad hoc indicators, limiting reproducibility, comparability, and operational relevance. This paper
presents a telemetry-driven methodology for evaluating honeypot realism and deception effectiveness
across measurable behavioral dimensions. Using both a baseline cloud honeynet and an Enhanced
Realism-Driven Honeynet (ERDH) modeled on a healthcare research environment, it's empirically
demonstrated that domain-consistent realism significantly increases attacker dwell time, interaction depth,
behavioral diversity, and malware family richness.
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1. INTRODUCTION

Modern organizations increasingly deploy cyber deception mechanisms to observe adversarial
behavior, detect emerging threats, and delay or mislead attackers [1][2]. Technologies such as
honeypots, honeytokens, and decoy services are widely used across cloud, enterprise, and critical
infrastructure environments to lure adversaries into controlled settings. Despite their widespread
adoption, however, defenders still lack reliable and empirical means to determine whether these
systems genuinely deceive human attackers or merely attract automated scanning activity.
Without rigorous evaluation, organizations risk investing in deceptive infrastructures that
consume resources while producing limited intelligence or failing to sustain meaningful
adversarial engagement.

Over the years, a broad spectrum of honeypots has been developed, ranging from low-interaction
emulations to fully instrumented high-interaction hosts. While this diversity reflects significant
engineering progress, it has not been matched by comparable advances in evaluation
methodology. The field continues to lack a standardized framework for assessing deception
effectiveness and realism across deployments, limiting both scientific comparison and
operational decision-making.

1.1. Problem Statement

Existing honeypot evaluations predominantly rely on coarse indicators such as connection counts,
IP totals, or malware samples collected. Although straightforward to measure, these metrics
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provide little insight into the quality of attacker engagement. They fail to capture attacker intent,
depth of interaction, fingerprinting resistance, or deception persistence, factors that are essential
to determining whether a honeypot is effectively deceiving adversaries rather than passively
absorbing automated probes. As prior studies have noted, this absence of structured, reproducible
metrics has long hindered meaningful comparison across deception systems and limits the
operational justification for deploying them [3].

1.2. Proposed Solution

This work introduces a telemetry-based evaluation methodology that derives reproducible metrics
of deception directly from honeypot telemetry. By grounding evaluation in observable attacker
behavior, the proposed approach enables systematic comparison of realism and deception
effectiveness across deployments.

The need for such metrics is further underscored by existing security standards. NIST SP 800-
160 Vol. 2 [4] recognizes deception as a key technique for achieving cyber resilience and
highlights adversarial engagement as a desirable property, while NIST SP 800-53 Rev. 5[5]
introduces deception-related controls. However, neither standard specifies concrete, measurable
criteria for assessing quality of deception in practice. Although the importance of deception is
widely acknowledged by the community, the absence of operational metrics continues to hinder
its systematic evaluation and adoption.

To address these gaps, this study proposes and validates a telemetry-driven methodology for
quantifying deception effectiveness through real-world honeynet deployments. The results
demonstrate that increased realism, manifested through richer filesystem artifacts, plausible
background activity, and domain-consistent context, produces measurable improvements in
attacker dwell time, interaction depth, behavioral diversity, fingerprinting resistance, and
deception persistence. These improvements aim to provide the foundation for practical,
reproducible metrics that can be incorporated into future standards.

To evaluate the proposed methodology, two generations of honeynets: a baseline deployment and
an Enhanced Realism-Driven Honeynet (ERDH), were deployed in parallel and instrumented to
collect detailed telemetry. Across all measured dimensions, the ERDH consistently outperformed
the baseline, yielding longer sessions, more diverse command sequences, and a richer set of
malware families. To the best of my knowledge, this work is among the first controlled parallel-
deployment studies to empirically demonstrate a causal relationship between realism and
deception effectiveness.

The contributions of this work are fourfold:

1. Empirical telemetry-based evidence that realism materially increases honeypot
engagement, including dwell time, interaction depth, and malware diversity.

2. A reproducible methodology for deriving operational deception metrics from honeypot
telemetry, including precise definitions and computation procedures.

3. A domain-specific ERDH blueprint and dataset, demonstrating that healthcare-themed
realism elicits more diverse attacker behavior than generic deployments.

4. A mapping between telemetry-derived metrics and NIST resilience objectives,
enabling practitioners to evaluate the quality of deception within established security
frameworks.
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Together, these contributions move the field beyond prior calls for standardized metrics by
providing concrete, operational measurements and reproducible evidence of their utility.

The remainder of this work is structured as follows: Section 2 reviews foundational concepts and
related work on honeypots and anti-honeypot techniques; Section 3 outlines the methodology and
deployment procedures; Section 4 presents results and analysis; Section 5 concludes; and Section
6 provides a roadmap for future research and standardization efforts.

2. BACKGROUND AND RELATED WORK

The battle between honeypot designers and attackers has evolved into a fast-moving arms race,
one where the pace of innovation increasingly favors the offensive side. Studies show that
attackers are adapting approximately 2.3times faster than current honeypot defenses can respond
[6]. While deception systems continue to improve realism and complexity, adversaries now
routinely employ automation, machine learning, and layered evasion strategies that outpace
traditional detection countermeasures.

Early systems like Honeyd [7] were effective in attracting unsophisticated threats, but today’s
adversaries can achieve a detection precision of over 94% against static or poorly randomized
honeypots using ML classifiers trained in traffic and API behavior [8]. This growing asymmetry
highlights three core tensions shaping the current deception landscape as follows:

Stealth vs. Resource Cost

High-interaction honeypots significantly improve stealth-reducing detection by as much as 40%,
but this comes at a price. They require up to 3times more computing power, memory, and
maintenance overhead compared to low-interaction or static decoys [9]. In large-scale or cloud-
based deployments, this cost becomes a limiting factor.

Adaptation Speed Mismatch

Defenders have started adopting Al-driven dynamic deception systems, such as HoneyGAN [10]
and ADAPT [11], in an effort to respond faster to attacker adaptation. However, offensive
models continue to evolve more rapidly, often leveraging online learning and reinforcement
mechanisms that allow them to bypass deception systems faster than defenders can retrain or
redeploy them [6]. This widening adaptation-speed mismatch makes it difficult for defenders to
maintain long-term stealth.

Cloud, Edge, and 10T Vulnerabilities

Cloud-native and loT honeypots introduce additional weaknesses. As Surnin et al. [12]
demonstrate, these environments often lack the microservice noise, process variability, and
telemetry complexity present in real deployments. Such behavioral gaps contribute to detection
rates up to 43% higher than those of traditional server-based honeypots, revealing critical blind
spots as infrastructures continue shifting toward distributed and containerized architectures.

2.1. Taxonomy of Evaluation Metrics

Evaluating honeypot effectiveness requires metrics that go beyond simple event counts and
engage with the deeper behavioral and operational qualities of deception. Traditional metrics
often focus on stealth such as detection rate, fingerprinting resistance, and engagement duration,
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while performance metrics assess resource overhead, latency, or deployment scalability. More
advanced analyses incorporate behavioral entropy, service fidelity, or simulated user activity to
quantify believability.

Despite the breadth of available metrics, the field still lacks standardized benchmarks or shared
definitions. As a result, comparing systems across studies remains difficult, and claims of realism
or effectiveness often rely on incompatible methodologies. The taxonomy in Table 1 consolidates
representative metrics identified across the literature, illustrating both the diversity of evaluation
approaches and the absence of unified standards.

Table 1. Taxonomy of Evaluation Metrics.

Category Metric Description Representative
References
Stealth & Detection Rate Percentage of honeypots correctly [7,8, 13, 14]
Detectability identified by attackers (lower is better).
Fingerprinting Ability to avoid being detected via [7,8,15]
Resistance behavioral or protocol-based
fingerprinting tools.
False Positives / | Incorrect classification of systems as [8, 11, 14]
Negatives honeypots or real hosts.
Engagement How long attackers interact with the [11, 16]
Time honeypot before suspecting deception.
Behavioral Variability in responses; higher entropy [14,17, 18]
Entropy suggests less predictability and better
stealth.
Realism & OS/Service Accuracy in mimicking real [7, 10, 19]
Believability Fidelity operating systems and services.
User Interaction | Ability to mimic human-like activity [17, 18, 19]
Simulation (e.g., file access, typing delays, network
chatter).
Session Depth Complexity and length of attacker [16, 18]
sessions, indicating realism.
Performance & Resource CPU, memory, and storage cost of [6, 9, 20]
Efficiency Overhead running the honeypot.
Network Bandwidth or latency added by [19, 20]
Overhead honeypot communication.
Scalability Ability to deploy and manage [6, 10, 12]
honeypots across large or
distributed environments.
Response Time How fast the honeypot replies to requests | [11, 14]
(important for avoiding timing-based
detection).
Intelligence Threat Coverage | Variety and novelty of threats [16, 18, 20]
Quality captured by the honeypot.
Data Quality Signal-to-noise ratio in logged data - [14, 16]
whether logs contain useful attacker
behavior or noise.

2.2. Deployment Studies and Behavioral Insights

Operational honeypot deployments have provided valuable insight into attacker behavior, but few
have rigorously evaluated deception quality. Early multi-regional studies such as HoneyLab [21]
captured large volumes of attacks but focused primarily on encounter counts rather than
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engagement depth or persistence. Research on 10T botnets, including Mirai [22], offers detailed
analysis of malware propagation yet does not examine how realism influences adversarial
behavior once inside a honeypot.

More recent work has begun moving toward a richer behavioral evaluation. HoneyFactory [23]
introduced a container-based architecture with a formal “deception stage” model, enabling
structured analysis of attacker progression. Other scalable honeynet platforms [24] highlight the
importance and difficulty of faithfully emulating realistic services at cloud scale. Meanwhile,
high-interaction honeypots deployed in operational networks have proven effective for capturing
deeper behavioral traces, though evaluations against adaptive adversaries remain limited.

Taken together, these works reveal an important gap: while the community recognizes the need
for standardized, behavioral, and realism-aware metrics, existing studies rarely provide empirical
evidence linking realism to measurable deception outcomes. This gap motivates the telemetry-
focused methodology and experimental design presented in the next section.

3. METHODOLOGY

The research followed an iterative, telemetry-driven methodology designed to (1) establish a
baseline model of adversarial activity against unmodified honeypots, (2) evaluate the effect of
realistic domain modeling on attacker behavior, and (3) compare these behaviors under
controlled, parallel deployment conditions in public cloud environments. The methodology
consists of three pillars: instrumentation, experimental design, and metric operationalization.

3.1. Instrumentation and Data Collection

All honeynet nodes were instrumented using a centralized ELK stack (Elasticsearch, Logstash,
Kibana)[25]. This enabled a unified collection of fine-grained telemetry across deployments,
including timestamps, connection metadata, full command transcripts, malware payloads, session
termination patterns, and auxiliary system events. Standardizing the telemetry pipeline ensured
that all deployments: baseline, enhanced, and parallel, were evaluated using identical data
sources and feature extraction procedures.

Figure 1 presents the telemetry-driven evaluation workflow used in this study, illustrating the
progression from honeynet deployment through telemetry collection, session extraction, metric
computation, and comparative analysis. All telemetry analyzed in this study was collected by the
author from original honeynet deployments conducted in public cloud environments; no external
datasets were used.

J’“ﬁ h‘

Honeypot A ; Metric Comparative
Deployment _Collection L Computation Analysis
(Baseline / ERDH) SR

Figure 1. Telemetry-Driven Honeypot Evaluation Workflow [26]
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3.2. Experimental Design
The experiments followed a two-phase design:

1. Baseline phase: A default T-Pot [27] deployment with minimal system content was
exposed to the Internet for several weeks to characterize typical attack behavior targeting
generic cloud-hosted services.

2. Enhanced phase: An Enhanced Realism-Driven Honeynet (ERDH) was constructed by
augmenting selected honeypots with domain-consistent healthcare artifacts, simulated
user activity, and realistic system state. This permitted the evaluation of the extent to
which increased realism influences attacker engagement.

To isolate realism as the variable of interest, a controlled parallel experiment was conducted in
which a baseline T-Pot deployment and an ERDH deployment were launched simultaneously in
the same region of Google Cloud Platform, with identical configurations, and synchronized
observation periods. The architecture of this deployment is presented in Figure 2.

GCP Single-Region Deployment

Honeynet VPC

iﬁ} Baseline VM

Research VPC

- OF Telemetry Storage

::} Cloud Logging
10
& Monitoring

Figure 2. Parallel Deployment Architecture

3.3. Metric Operationalization

Telemetry was converted into quantitative deception metrics to evaluate attacker engagement and
behavioral richness:
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Dwell time: Duration from session initiation to disengagement.

Interaction depth: Count of distinct attacker actions per session.

Behavioral diversity: Entropy over command categories, TTPs, and malware families.
Fingerprinting resistance: Quantifies the extent to which a honeypot avoids being
inferred as deceptive by attackers. It is calculated by applying a heuristic detection
function, as defined in Pseudo-code 1, to individual attacker sessions based on observed
probing behavior and engagement dynamics. The heuristic distinguishes between
detection-induced disengagement, where interaction terminates shortly after probing, and
non-deceptive engagement, in which attackers remain active but exhibit only generic
behavior. Fingerprinting resistance is then computed as an aggregate deployment-level
metric over all sessions, as formalized in Pseudo-code 2.

Pseudo-code 1: DETECTFINGERPRINTING(s, 7): Heuristic Fingerprinting Detection

Input: Session telemetry s, dwell threshold ¢
Output: D(s) € {0,1}
1 detected «— 0; // Assume undetected
2 if S.dwell_time < 7 then
3 | detected < 1;// Early disengagement
4 else if S.behavior transitions from Active to Inactive then
5 L detected <« 1;// Disengagement after probing
6 else if S.behavior remains Active and interaction is generic then
7 L detected «— 1;// Non-deceptive engagement

s return D(s)

Pseudo-code 2: Computation of Fingerprinting Resistance

Input: Set of sessions S = {sy,..., s5}, dwell threshold r
Qutput: Fingerprinting Resistance score FR
1 detected _count «— 0
2 foreachs; € S do
3 L detected_count « detected_count + DETECTFINGERPRINTING(S;, T)

FR —1-— detected_count

a
|51

5 return FR

Deception persistence: Measures the ability of a honeypot to sustain attacker engagement
beyond initial probing. It is defined as the fraction of sessions in which attacker behavior
escalates to higher-impact actions, as determined by the function in Pseudo-code 3 and
aggregated across all sessions, as formalized in Pseudo-code 4.

Pseudo-code 3: DETECTESCALATION(s): Session-Level Deception Escalation

Input: Session telemetry s

Output: E(s) € {0,1}
1 E(s) « 0;// Assume no escalation
2 if Privilege escalation, lateral movement, or payload deployment observed then
3 | E(s) «1;// Escalation inferred

4 return E(s)
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Pseudo-code 4: Computation of Deception Persistence

Input: Set of sessions § = {sy,..., sn}
Output: Deception Persistence score DP
1 escalated count «— 0
2 foreachs; € S do
3 L escalated_count « escalated_count + DETECTESCALATION(s;)
4 DP «— escalated _count

[S]
5 return DP

These metrics enable systematic comparison across deployments and provide a foundation for
telemetry-based honeypot evaluation.

3.4. Mapping Telemetry Metrics to NIST Resilience Objectives

NIST SP 800-160 Vol. 2 [4] defines four cyber-resiliency objectives: anticipate, withstand,
recover, and adapt. The telemetry-derived metrics proposed in this work map naturally onto these
objectives. Dwell time and interaction depth provide indicators of an adversary’s ability to
progress through an attack path, supporting withstand. Behavioral diversity and deception
persistence inform anticipate by characterizing the breadth of techniques adversaries may
employ. Fingerprinting resistance contributes to adapting by quantifying how well a honeynet
avoids detection and forces adversaries to adjust their strategies. Finally, improved telemetry
derived from realistic honeynets supports recovery by enabling faster incident reconstruction and
threat understanding. This alignment situates metrics of deception within an established cyber-
resilience framework.

4. RESULTS AND ANALYSIS

The following subsections present empirical findings from each stage of the study, demonstrating
how environmental realism and controlled deployment conditions affect attacker engagement,
behavior, and malware diversity.

4.1. Local Manual Testing: Identifying Honeypot Cues

Initial testing in a local VMware Fusion environment revealed multiple inconsistencies in default
honeypot configurations, such as unsupported commands (e.g. shutdown now), incomplete
filesystem structures, non-persistent system state, and missing background activity. These cues
are subtle to defenders but highly salient to adversaries and automated scanners. This qualitative
analysis informed the specific realism enhancements later introduced in the ERDH and
highlighted the shortcomings of low-interaction honeypots as deception tools.

4.2. Checkpot-Guided Hardening and Fingerprinting Resistance

Automated evaluation using Checkpot [28] confirmed that baseline honeypots exhibited
numerous detectable fingerprints. Iterative hardening such as normalizing banners and enriching
the filesystem significantly reduced detection confidence until Checkpot classified the system as
a non-honeypot host. This served as a measurable indicator of fingerprinting resistance and
provided a validated stealth baseline before deploying realistic enhancements.

4.3. Baseline T-Pot Deployment in Oracle Cloud

The three-week baseline cloud deployment was deployed using Oracle Cloud [29], attracted over
150,000 attacks, dominated by automated SSH brute-force activity and lightweight HTTP
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probing. Mean dwell time remained under five seconds, and most sessions involved only one or
two commands, indicating rapid disengagement. Malware diversity remained limited, with
approximately twenty distinct samples, nearly all associated with low-effort coin-mining
campaigns. These results demonstrate that default honeypots collect primarily broad, shallow,
and low-value telemetry.

4.4, T-Pot with IP Rotation: Visibility Effects and Reputation Churn

A replicated baseline deployment with periodic IP rotation experienced substantially higher
attack volume. This effect reflects the sensitivity of automated threats to IP reputation: rotating
IPs circumvents prior black-listing and reintroduces the host into global scanning cycles as a
"new" target. While useful for increasing dataset size, this result also shows that raw attack
counts are poor indicators of deception effectiveness and must be contextualized within attacker
visibility and scanning ecosystem behavior.

4.5. Parallel Deployments in Google Cloud: Isolating the Effect of Realism

The most controlled phase of the study consisted of launching a baseline T-Pot instance and an
ERDH instance simultaneously in the same Google Cloud region [30]. With identical network
conditions, hardware profiles, and observation windows, this setup isolated realism as the only
meaningful independent variable. Within the first 24 hours, the ERDH attracted approximately
50% more attacks, as shown in Figure 3, and exhibited markedly richer behavioral
characteristics. Average dwell time increased from seconds to minutes; interactions frequently
exceeded five commands, and malware diversity expanded by nearly 50%. These differences
cannot be attributed to cloud region, IP aging, time-of-day exposure, or provider reputation.
Instead, the results provide strong causal evidence that environmental realism directly enhances
adversarial engagement and the quality of collected telemetry.

@ e|astic Q Find apps, content, and more.

elastic

@& Honeypo Cowrie PIGLETEY
t Attacks

60k 35k 25k

Figure 3. Attacks Comparison: default deployment (top) vs ERDH (bottom)
4.6. Analytical Overhead and Motivation for Al-Driven Telemetry Processing

Across all deployments, the volume of logs and the complexity of correlating attacker actions
across sessions posed significant analytical challenges. Manual reconstruction of attacker
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workflows required integrating authentication logs, terminal transcripts, malware samples, and
network traces, an effort that does not scale with deployment size. This motivates the integration
of agent-based Al systems to automatically classify TTPs, cluster sessions, track behavioral
evolution, and compute deception metrics at scale, enabling future honeynet research to move
beyond manual, labor-intensive workflows.

4.7. Resource Cost vs. Stealth Trade-off

While the ERDH incurred higher computational, as shown in Figure 4, and storage overhead due
to richer artifacts and extended session logging, the resulting gains in stealth and engagement
demonstrate a favorable trade-off for environments prioritizing intelligence quality over minimal
resource usage.

Figure 4. CPU Utilization Comparison: default deployment (ambere-default) vs ERDH (ambere-health)

5. CONCLUSION

This work introduces a telemetry-driven methodology for evaluating honeypot realism and
deception effectiveness. Through baseline, enhanced, and controlled parallel cloud deployments,
it's shown that domain-consistent realism significantly increases attacker dwell time, interaction
depth, behavioral richness, and malware diversity. While default honeypots attract high scan
volumes, the results demonstrate that realistic, context-aware environments generate far more
meaningful insights into adversarial behavior.

By operationalizing reproducible metrics: dwell time, interaction depth, behavioral diversity,
fingerprinting resistance, and deception persistence, provides measurable indicators that move
beyond simple connection counts. Mapping these metrics to NIST cyber-resilience objectives
further grounds deception evaluation within established security frameworks and enables
defenders to assess honeypot effectiveness through the lenses of anticipate, withstand, recover,
and adapt.

Taken together, these findings aim to: establish a foundation for standardized, telemetry-based
honeypot evaluation; support community adoption and reproducibility through the release of the
enhanced honeynet configurations, realistic artifacts, and supporting automation scripts as
contributions to The Honeynet Project; and encourage researchers and practitioners to build on
this methodology and drive progress toward consistent, resilience-aligned evaluation of cyber
deception systems.
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6. ROADMAP OF FUTURE WORK

Future work will extend this research along several dimensions:

Large-scale ERDH deployments: Expanding experiments to longer-duration, multi-region,
and multi-cloud environments, while exploring sector-specific realism models (e.g., finance,
education) informed by threat prevalence in the Verizon's Data Breach Investigations Report
[31].

Benchmark dataset release: Publishing sanitized telemetry, annotated sessions, feature
extraction scripts, and analysis pipelines to support reproducible comparison and community-
driven validation of deception metrics.

Metric refinement and composite scoring:Developing normalization procedures,
calibration studies, and multi-metric composite indices that capture honeypot performance
across realism, engagement, and evasion dimensions. This includes extending beyond
honeypot telemetry to incorporate environmental context.

Adaptive deception and autonomous control loops: Integrating agent-based Al systems
capable of dynamically modifying system fingerprints, content, and responses based on real-
time adversarial behavior, enabling continuous measurement of adaptive resilience.
Standards and community engagement: Mapping proposed metrics to NIST SP 800-160
and related resilience frameworks, and collaborating with academia, industry, and open-
source communities to formalize benchmark practices for honeypot evaluation.

Agentic Al for autonomous telemetry analysis: Implementing multi-agent LLM
frameworks to automate cross-log correlation, malware triage, attacker clustering, and TTP
extraction. By embedding reasoning-driven Al agents directly into the telemetry pipeline,
honeynets can evolve toward self-analyzing systems, reducing human workload while
providing richer and more timely insights into adversarial behavior. This capability is
essential for operating large-scale, high realism honeynets and supports the eventual
development of adaptive deception control loops.

These efforts collectively support the long-term agenda of advancing honeypot research toward
rigor, reproducibility, and cross-domain standardization.
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