
International Journal of Network Security & Its Applications (IJNSA) Vol.18, No.1, January 2026 

DOI: 10.5121/ijnsa.2026.18101                                                                                                                       1 

 
EMPIRICAL TELEMETRY-BASED METRICS FOR 

EVALUATING HONEYPOT REALISM AND 

DECEPTION EFFECTIVENESS 
 

Teresita Noelia Nunez Migliorisi 

 

Electrical and Computer Engineering, University of Delaware, Delaware, USA 
 

ABSTRACT 
 
Honeypots remain critical tools for cyber deception, adversarial observation, and proactive threat 

intelligence. However, despite decades of development, the field still lacks a standardized and empirically 

validated framework for assessing deception effectiveness. Existing studies rely heavily on raw connection 

counts or ad hoc indicators, limiting reproducibility, comparability, and operational relevance. This paper 

presents a telemetry-driven methodology for evaluating honeypot realism and deception effectiveness 

across measurable behavioral dimensions. Using both a baseline cloud honeynet and an Enhanced 

Realism-Driven Honeynet (ERDH) modeled on a healthcare research environment, it's empirically 

demonstrated that domain-consistent realism significantly increases attacker dwell time, interaction depth, 
behavioral diversity, and malware family richness. 
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1. INTRODUCTION 
 
Modern organizations increasingly deploy cyber deception mechanisms to observe adversarial 

behavior, detect emerging threats, and delay or mislead attackers [1][2]. Technologies such as 

honeypots, honeytokens, and decoy services are widely used across cloud, enterprise, and critical 
infrastructure environments to lure adversaries into controlled settings. Despite their widespread 

adoption, however, defenders still lack reliable and empirical means to determine whether these 

systems genuinely deceive human attackers or merely attract automated scanning activity. 
Without rigorous evaluation, organizations risk investing in deceptive infrastructures that 

consume resources while producing limited intelligence or failing to sustain meaningful 

adversarial engagement. 

 
Over the years, a broad spectrum of honeypots has been developed, ranging from low-interaction 

emulations to fully instrumented high-interaction hosts. While this diversity reflects significant 

engineering progress, it has not been matched by comparable advances in evaluation 
methodology. The field continues to lack a standardized framework for assessing deception 

effectiveness and realism across deployments, limiting both scientific comparison and 

operational decision-making. 

 

1.1. Problem Statement  
 
Existing honeypot evaluations predominantly rely on coarse indicators such as connection counts, 

IP totals, or malware samples collected. Although straightforward to measure, these metrics 
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provide little insight into the quality of attacker engagement. They fail to capture attacker intent, 
depth of interaction, fingerprinting resistance, or deception persistence, factors that are essential 

to determining whether a honeypot is effectively deceiving adversaries rather than passively 

absorbing automated probes. As prior studies have noted, this absence of structured, reproducible 

metrics has long hindered meaningful comparison across deception systems and limits the 
operational justification for deploying them [3]. 

 

1.2. Proposed Solution 
 

This work introduces a telemetry-based evaluation methodology that derives reproducible metrics 

of deception directly from honeypot telemetry. By grounding evaluation in observable attacker 
behavior, the proposed approach enables systematic comparison of realism and deception 

effectiveness across deployments. 

 
The need for such metrics is further underscored by existing security standards. NIST SP 800-

160 Vol. 2 [4] recognizes deception as a key technique for achieving cyber resilience and 

highlights adversarial engagement as a desirable property, while NIST SP 800-53 Rev. 5[5] 
introduces deception-related controls. However, neither standard specifies concrete, measurable 

criteria for assessing quality of deception in practice. Although the importance of deception is 

widely acknowledged by the community, the absence of operational metrics continues to hinder 

its systematic evaluation and adoption. 
 

To address these gaps, this study proposes and validates a telemetry-driven methodology for 

quantifying deception effectiveness through real-world honeynet deployments. The results 
demonstrate that increased realism, manifested through richer filesystem artifacts, plausible 

background activity, and domain-consistent context, produces measurable improvements in 

attacker dwell time, interaction depth, behavioral diversity, fingerprinting resistance, and 
deception persistence. These improvements aim to provide the foundation for practical, 

reproducible metrics that can be incorporated into future standards. 

 

To evaluate the proposed methodology, two generations of honeynets: a baseline deployment and 
an Enhanced Realism-Driven Honeynet (ERDH), were deployed in parallel and instrumented to 

collect detailed telemetry. Across all measured dimensions, the ERDH consistently outperformed 

the baseline, yielding longer sessions, more diverse command sequences, and a richer set of 
malware families. To the best of my knowledge, this work is among the first controlled parallel-

deployment studies to empirically demonstrate a causal relationship between realism and 

deception effectiveness. 

 
The contributions of this work are fourfold: 

 

1. Empirical telemetry-based evidence that realism materially increases honeypot 

engagement, including dwell time, interaction depth, and malware diversity. 

2. A reproducible methodology for deriving operational deception metrics from honeypot 
telemetry, including precise definitions and computation procedures. 

3. A domain-specific ERDH blueprint and dataset, demonstrating that healthcare-themed 

realism elicits more diverse attacker behavior than generic deployments. 

4. A mapping between telemetry-derived metrics and NIST resilience objectives, 
enabling practitioners to evaluate the quality of deception within established security 

frameworks. 
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Together, these contributions move the field beyond prior calls for standardized metrics by 
providing concrete, operational measurements and reproducible evidence of their utility. 

 
The remainder of this work is structured as follows: Section 2 reviews foundational concepts and 
related work on honeypots and anti-honeypot techniques; Section 3 outlines the methodology and 

deployment procedures; Section 4 presents results and analysis; Section 5 concludes; and Section 

6 provides a roadmap for future research and standardization efforts. 

 

2. BACKGROUND AND RELATED WORK 
 

The battle between honeypot designers and attackers has evolved into a fast-moving arms race, 
one where the pace of innovation increasingly favors the offensive side. Studies show that 

attackers are adapting approximately 2.3times faster than current honeypot defenses can respond 

[6]. While deception systems continue to improve realism and complexity, adversaries now 

routinely employ automation, machine learning, and layered evasion strategies that outpace 
traditional detection countermeasures. 

 

Early systems like Honeyd [7] were effective in attracting unsophisticated threats, but today’s 
adversaries can achieve a detection precision of over 94% against static or poorly randomized 

honeypots using ML classifiers trained in traffic and API behavior [8]. This growing asymmetry 

highlights three core tensions shaping the current deception landscape as follows: 

 
Stealth vs. Resource Cost 

 
High-interaction honeypots significantly improve stealth-reducing detection by as much as 40%, 

but this comes at a price. They require up to 3times more computing power, memory, and 

maintenance overhead compared to low-interaction or static decoys [9]. In large-scale or cloud-
based deployments, this cost becomes a limiting factor. 
 

Adaptation Speed Mismatch 

 
Defenders have started adopting AI-driven dynamic deception systems, such as HoneyGAN [10] 

and ADAPT [11], in an effort to respond faster to attacker adaptation. However, offensive 

models continue to evolve more rapidly, often leveraging online learning and reinforcement 
mechanisms that allow them to bypass deception systems faster than defenders can retrain or 

redeploy them [6]. This widening adaptation-speed mismatch makes it difficult for defenders to 

maintain long-term stealth. 
 

Cloud, Edge, and IoT Vulnerabilities 

 

Cloud-native and IoT honeypots introduce additional weaknesses. As Surnin et al. [12] 
demonstrate, these environments often lack the microservice noise, process variability, and 

telemetry complexity present in real deployments. Such behavioral gaps contribute to detection 

rates up to 43% higher than those of traditional server-based honeypots, revealing critical blind 
spots as infrastructures continue shifting toward distributed and containerized architectures. 

 

2.1. Taxonomy of Evaluation Metrics 
 

Evaluating honeypot effectiveness requires metrics that go beyond simple event counts and 

engage with the deeper behavioral and operational qualities of deception. Traditional metrics 
often focus on stealth such as detection rate, fingerprinting resistance, and engagement duration, 
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while performance metrics assess resource overhead, latency, or deployment scalability. More 
advanced analyses incorporate behavioral entropy, service fidelity, or simulated user activity to 

quantify believability. 

 

Despite the breadth of available metrics, the field still lacks standardized benchmarks or shared 
definitions. As a result, comparing systems across studies remains difficult, and claims of realism 

or effectiveness often rely on incompatible methodologies. The taxonomy in Table 1 consolidates 

representative metrics identified across the literature, illustrating both the diversity of evaluation 
approaches and the absence of unified standards. 

 
Table 1.  Taxonomy of Evaluation Metrics. 

 
Category Metric Description Representative 

References 

Stealth & 
Detectability 

Detection Rate Percentage of honeypots correctly 
identified by attackers (lower is better). 

[7, 8, 13, 14] 
 

Fingerprinting 

Resistance 

Ability to avoid being detected via 

behavioral or protocol-based 

fingerprinting tools. 

[7, 8, 15] 

 

False Positives / 

Negatives 

Incorrect classification of systems as 

honeypots or real hosts.  

[8, 11, 14] 

Engagement 

Time 

How long attackers interact with the 

honeypot before suspecting deception.  

[11, 16] 

Behavioral 

Entropy 

Variability in responses; higher entropy 

suggests less predictability and better 

stealth. 

[14, 17, 18] 

 

Realism & 

Believability 

OS/Service 

Fidelity 

Accuracy in mimicking real 

operating systems and services. 

[7, 10, 19] 

User Interaction 

Simulation 

Ability to mimic human-like activity 

(e.g., file access, typing delays, network 

chatter). 

[17, 18, 19] 

 

Session Depth Complexity and length of attacker 

sessions, indicating realism.  

[16, 18] 

Performance & 
Efficiency 

Resource 
Overhead 

CPU, memory, and storage cost of 
running the honeypot.  

[6, 9, 20] 

Network 

Overhead 

Bandwidth or latency added by 

honeypot communication.  

[19, 20] 

Scalability Ability to deploy and manage 

honeypots across large or 

distributed environments. 

[6, 10, 12] 

 

Response Time How fast the honeypot replies to requests 

(important for avoiding timing-based 

detection). 

[11, 14] 

 

Intelligence 

Quality 

Threat Coverage Variety and novelty of threats 

captured by the honeypot.  

[16, 18, 20] 

Data Quality Signal-to-noise ratio in logged data -

whether logs contain useful attacker 

behavior or noise. 

[14, 16] 

 

2.2. Deployment Studies and Behavioral Insights 
 
Operational honeypot deployments have provided valuable insight into attacker behavior, but few 

have rigorously evaluated deception quality. Early multi-regional studies such as HoneyLab [21] 

captured large volumes of attacks but focused primarily on encounter counts rather than 
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engagement depth or persistence. Research on IoT botnets, including Mirai [22], offers detailed 
analysis of malware propagation yet does not examine how realism influences adversarial 

behavior once inside a honeypot. 

 

More recent work has begun moving toward a richer behavioral evaluation. HoneyFactory [23] 
introduced a container-based architecture with a formal “deception stage” model, enabling 

structured analysis of attacker progression. Other scalable honeynet platforms [24] highlight the 

importance and difficulty of faithfully emulating realistic services at cloud scale. Meanwhile, 
high-interaction honeypots deployed in operational networks have proven effective for capturing 

deeper behavioral traces, though evaluations against adaptive adversaries remain limited. 

 
Taken together, these works reveal an important gap: while the community recognizes the need 

for standardized, behavioral, and realism-aware metrics, existing studies rarely provide empirical 

evidence linking realism to measurable deception outcomes. This gap motivates the telemetry-

focused methodology and experimental design presented in the next section. 
 

3. METHODOLOGY 
 

The research followed an iterative, telemetry-driven methodology designed to (1) establish a 
baseline model of adversarial activity against unmodified honeypots, (2) evaluate the effect of 

realistic domain modeling on attacker behavior, and (3) compare these behaviors under 

controlled, parallel deployment conditions in public cloud environments. The methodology 

consists of three pillars: instrumentation, experimental design, and metric operationalization. 
 

3.1. Instrumentation and Data Collection 
 

All honeynet nodes were instrumented using a centralized ELK stack (Elasticsearch, Logstash, 

Kibana)[25]. This enabled a unified collection of fine-grained telemetry across deployments, 

including timestamps, connection metadata, full command transcripts, malware payloads, session 
termination patterns, and auxiliary system events. Standardizing the telemetry pipeline ensured 

that all deployments: baseline, enhanced, and parallel, were evaluated using identical data 

sources and feature extraction procedures. 
 

Figure 1 presents the telemetry-driven evaluation workflow used in this study, illustrating the 

progression from honeynet deployment through telemetry collection, session extraction, metric 

computation, and comparative analysis. All telemetry analyzed in this study was collected by the 
author from original honeynet deployments conducted in public cloud environments; no external 

datasets were used. 

 

 
 

Figure 1. Telemetry-Driven Honeypot Evaluation Workflow [26] 
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3.2. Experimental Design 
 

The experiments followed a two-phase design: 
 

1. Baseline phase: A default T-Pot [27] deployment with minimal system content was 

exposed to the Internet for several weeks to characterize typical attack behavior targeting 
generic cloud-hosted services. 

2. Enhanced phase: An Enhanced Realism-Driven Honeynet (ERDH) was constructed by 

augmenting selected honeypots with domain-consistent healthcare artifacts, simulated 
user activity, and realistic system state. This permitted the evaluation of the extent to 

which increased realism influences attacker engagement. 
 
To isolate realism as the variable of interest, a controlled parallel experiment was conducted in 

which a baseline T-Pot deployment and an ERDH deployment were launched simultaneously in 

the same region of Google Cloud Platform, with identical configurations, and synchronized 

observation periods. The architecture of this deployment is presented in Figure 2. 
 

 
 

Figure 2. Parallel Deployment Architecture 

 

3.3. Metric Operationalization 
 

Telemetry was converted into quantitative deception metrics to evaluate attacker engagement and 

behavioral richness: 
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 Dwell time: Duration from session initiation to disengagement. 

 Interaction depth: Count of distinct attacker actions per session. 
 Behavioral diversity: Entropy over command categories, TTPs, and malware families. 

 Fingerprinting resistance: Quantifies the extent to which a honeypot avoids being 

inferred as deceptive by attackers. It is calculated by applying a heuristic detection 
function, as defined in Pseudo-code 1, to individual attacker sessions based on observed 

probing behavior and engagement dynamics. The heuristic distinguishes between 

detection-induced disengagement, where interaction terminates shortly after probing, and 

non-deceptive engagement, in which attackers remain active but exhibit only generic 
behavior. Fingerprinting resistance is then computed as an aggregate deployment-level 

metric over all sessions, as formalized in Pseudo-code 2. 

 

 

 
 

 Deception persistence: Measures the ability of a honeypot to sustain attacker engagement 

beyond initial probing. It is defined as the fraction of sessions in which attacker behavior 

escalates to higher-impact actions, as determined by the function in Pseudo-code 3 and 
aggregated across all sessions, as formalized in Pseudo-code 4. 
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These metrics enable systematic comparison across deployments and provide a foundation for 

telemetry-based honeypot evaluation. 
 

3.4. Mapping Telemetry Metrics to NIST Resilience Objectives 
 
NIST SP 800–160 Vol. 2 [4] defines four cyber-resiliency objectives: anticipate, withstand, 

recover, and adapt. The telemetry-derived metrics proposed in this work map naturally onto these 

objectives. Dwell time and interaction depth provide indicators of an adversary’s ability to 
progress through an attack path, supporting withstand. Behavioral diversity and deception 

persistence inform anticipate by characterizing the breadth of techniques adversaries may 

employ. Fingerprinting resistance contributes to adapting by quantifying how well a honeynet 
avoids detection and forces adversaries to adjust their strategies. Finally, improved telemetry 

derived from realistic honeynets supports recovery by enabling faster incident reconstruction and 

threat understanding. This alignment situates metrics of deception within an established cyber-

resilience framework. 
 

4. RESULTS AND ANALYSIS 
 

The following subsections present empirical findings from each stage of the study, demonstrating 
how environmental realism and controlled deployment conditions affect attacker engagement, 

behavior, and malware diversity. 

 

4.1. Local Manual Testing: Identifying Honeypot Cues 
 

Initial testing in a local VMware Fusion environment revealed multiple inconsistencies in default 
honeypot configurations, such as unsupported commands (e.g. shutdown now), incomplete 

filesystem structures, non-persistent system state, and missing background activity. These cues 

are subtle to defenders but highly salient to adversaries and automated scanners. This qualitative 

analysis informed the specific realism enhancements later introduced in the ERDH and 
highlighted the shortcomings of low-interaction honeypots as deception tools. 

 

4.2. Checkpot-Guided Hardening and Fingerprinting Resistance 
 

Automated evaluation using Checkpot [28] confirmed that baseline honeypots exhibited 

numerous detectable fingerprints. Iterative hardening such as normalizing banners and enriching 
the filesystem significantly reduced detection confidence until Checkpot classified the system as 

a non-honeypot host. This served as a measurable indicator of fingerprinting resistance and 

provided a validated stealth baseline before deploying realistic enhancements. 
 

4.3. Baseline T-Pot Deployment in Oracle Cloud 
 
The three-week baseline cloud deployment was deployed using Oracle Cloud [29], attracted over 

150,000 attacks, dominated by automated SSH brute-force activity and lightweight HTTP 
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probing. Mean dwell time remained under five seconds, and most sessions involved only one or 
two commands, indicating rapid disengagement. Malware diversity remained limited, with 

approximately twenty distinct samples, nearly all associated with low-effort coin-mining 

campaigns. These results demonstrate that default honeypots collect primarily broad, shallow, 

and low-value telemetry. 
 

4.4. T-Pot with IP Rotation: Visibility Effects and Reputation Churn 
 

A replicated baseline deployment with periodic IP rotation experienced substantially higher 

attack volume. This effect reflects the sensitivity of automated threats to IP reputation: rotating 

IPs circumvents prior black-listing and reintroduces the host into global scanning cycles as a 
"new" target. While useful for increasing dataset size, this result also shows that raw attack 

counts are poor indicators of deception effectiveness and must be contextualized within attacker 

visibility and scanning ecosystem behavior. 
 

4.5. Parallel Deployments in Google Cloud: Isolating the Effect of Realism 
 
The most controlled phase of the study consisted of launching a baseline T-Pot instance and an 

ERDH instance simultaneously in the same Google Cloud region [30]. With identical network 

conditions, hardware profiles, and observation windows, this setup isolated realism as the only 
meaningful independent variable. Within the first 24 hours, the ERDH attracted approximately 

50% more attacks, as shown in Figure 3, and exhibited markedly richer behavioral 

characteristics. Average dwell time increased from seconds to minutes; interactions frequently 
exceeded five commands, and malware diversity expanded by nearly 50%. These differences 

cannot be attributed to cloud region, IP aging, time-of-day exposure, or provider reputation. 

Instead, the results provide strong causal evidence that environmental realism directly enhances 

adversarial engagement and the quality of collected telemetry. 
 

 
 

Figure 3. Attacks Comparison: default deployment (top) vs ERDH (bottom) 

 

4.6. Analytical Overhead and Motivation for AI-Driven Telemetry Processing 
 

Across all deployments, the volume of logs and the complexity of correlating attacker actions 

across sessions posed significant analytical challenges. Manual reconstruction of attacker 
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workflows required integrating authentication logs, terminal transcripts, malware samples, and 
network traces, an effort that does not scale with deployment size. This motivates the integration 

of agent-based AI systems to automatically classify TTPs, cluster sessions, track behavioral 

evolution, and compute deception metrics at scale, enabling future honeynet research to move 

beyond manual, labor-intensive workflows. 
 

4.7. Resource Cost vs. Stealth Trade-off 
 

While the ERDH incurred higher computational, as shown in Figure 4, and storage overhead due 

to richer artifacts and extended session logging, the resulting gains in stealth and engagement 

demonstrate a favorable trade-off for environments prioritizing intelligence quality over minimal 
resource usage. 

 

 
 

Figure 4. CPU Utilization Comparison: default deployment (ambere-default) vs ERDH (ambere-health) 

 

5. CONCLUSION 
 

This work introduces a telemetry-driven methodology for evaluating honeypot realism and 

deception effectiveness. Through baseline, enhanced, and controlled parallel cloud deployments, 
it's shown that domain-consistent realism significantly increases attacker dwell time, interaction 

depth, behavioral richness, and malware diversity. While default honeypots attract high scan 

volumes, the results demonstrate that realistic, context-aware environments generate far more 

meaningful insights into adversarial behavior. 
 

By operationalizing reproducible metrics: dwell time, interaction depth, behavioral diversity, 

fingerprinting resistance, and deception persistence, provides measurable indicators that move 
beyond simple connection counts. Mapping these metrics to NIST cyber-resilience objectives 

further grounds deception evaluation within established security frameworks and enables 

defenders to assess honeypot effectiveness through the lenses of anticipate, withstand, recover, 
and adapt. 

 
Taken together, these findings aim to: establish a foundation for standardized, telemetry-based 
honeypot evaluation; support community adoption and reproducibility through the release of the 

enhanced honeynet configurations, realistic artifacts, and supporting automation scripts as 

contributions to The Honeynet Project; and encourage researchers and practitioners to build on 
this methodology and drive progress toward consistent, resilience-aligned evaluation of cyber 

deception systems. 
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6. ROADMAP OF FUTURE WORK 
 
Future work will extend this research along several dimensions: 

 

 Large-scale ERDH deployments: Expanding experiments to longer-duration, multi-region, 

and multi-cloud environments, while exploring sector-specific realism models (e.g., finance, 

education) informed by threat prevalence in the Verizon's Data Breach Investigations Report 
[31]. 

 Benchmark dataset release: Publishing sanitized telemetry, annotated sessions, feature 

extraction scripts, and analysis pipelines to support reproducible comparison and community-

driven validation of deception metrics. 

 Metric refinement and composite scoring:Developing normalization procedures, 
calibration studies, and multi-metric composite indices that capture honeypot performance 

across realism, engagement, and evasion dimensions. This includes extending beyond 

honeypot telemetry to incorporate environmental context. 

 Adaptive deception and autonomous control loops: Integrating agent-based AI systems 
capable of dynamically modifying system fingerprints, content, and responses based on real-

time adversarial behavior, enabling continuous measurement of adaptive resilience. 

 Standards and community engagement: Mapping proposed metrics to NIST SP 800–160 

and related resilience frameworks, and collaborating with academia, industry, and open-

source communities to formalize benchmark practices for honeypot evaluation. 

 Agentic AI for autonomous telemetry analysis: Implementing multi-agent LLM 
frameworks to automate cross-log correlation, malware triage, attacker clustering, and TTP 

extraction. By embedding reasoning-driven AI agents directly into the telemetry pipeline, 

honeynets can evolve toward self-analyzing systems, reducing human workload while 
providing richer and more timely insights into adversarial behavior. This capability is 

essential for operating large-scale, high realism honeynets and supports the eventual 

development of adaptive deception control loops. 

 
These efforts collectively support the long-term agenda of advancing honeypot research toward 

rigor, reproducibility, and cross-domain standardization. 
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