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ABSTRACT 
 

The rapid growth of phishing websites poses significant challenges to users and online systems, 

particularly as many existing detection approaches rely on webpage content analysis or computationally 

expensive deep learning models. This paper proposes a lightweight phishing URL detection method that 

integrates token-level Term Frequency–Inverse Document Frequency (TF–IDF) and character-level n-

grams within a Multinomial Naive Bayes classifier. The proposed approach is evaluated on three public 

datasets, including the UCI Phishing Website dataset, PhishTank, and URLNet. Experimental results show 

that the model achieves F1-scores ranging from 0.904 to 0.940 when trained and tested on individual 

datasets, indicating robust detection performance. When the three datasets are merged for training, the 
model attains an F1-score of 0.931, with Recall improving by 2.0 percent compared to the average single-

dataset results, reflecting enhanced generalization across diverse data sources. The lightweight nature of 

the proposed method enables fast URL classification and practical deployment under hardware 

constraints. 
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1. INTRODUCTION 
 

The rapid growth of e-commerce, online banking, and digital services has significantly increased 

the prevalence of phishing attacks through fraudulent websites, creating an urgent need for 

effective and practical detection solutions [1]. Attackers often create websites whose domain 
names, interfaces, and structural layouts closely resemble legitimate services, deceiving users 

into providing sensitive information such as login credentials, passwords, or financial data. These 

attacks not only cause significant losses for users but also damage the reputation and operational 
stability of legitimate service providers. 

 

To address this threat, various phishing detection methods have been explored, ranging from 

blacklist and whitelist approaches to machine learning [2] and deep learning models [3]. Despite 
extensive research efforts, there remains limited work on lightweight and well-optimized models 

for static URL analysis that can effectively integrate both token-level and character-level 

information. Meanwhile, content-based approaches require downloading HTML code or server-
side resources, which increases computational cost, introduces latency, and poses security risks 

when accessing suspicious websites. In contrast, static URL-based approaches are safer and more 

cost-effective; however, many studies rely only on simple lexical features or treat Naive Bayes 
[4] merely as a baseline, without fully exploiting the potential of combining TF-IDF 
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representations [5] with character-level features [6]. Therefore, the key problem addressed in this 
study is how to design an effective yet lightweight phishing URL detection method that captures 

both semantic and structural patterns while remaining suitable for real-world deployment. To 

address this problem, we propose a static URL-based detection approach using an optimized 

Naive Bayes classifier combined with token-level TF–IDF and character-level features. 
 

Lightweight and well-optimized static URL analysis models that integrate both token-level and 

character-level information are still underexplored. Moreover, many studies evaluate their models 
using a single dataset, which limits their generalization ability in real-world deployments where 

phishing URLs originate from diverse sources. 

 
To overcome these limitations, this paper proposes a phishing detection method based on static 

URL analysis using an optimized Naive Bayes model enhanced with hybrid features that 

combine token-level TF–IDF representations with character-level patterns. The approach does 

not require downloading webpage content, ensuring safety, fast inference speed, and suitability 
for resource-constrained environments. The model is evaluated on three large and diverse public 

datasets UCI Phishing [7], PhishTank [8], and URLNet [9] and compared with widely used 

machine learning algorithms such as Support Vector Machine [10], Logistic Regression [11], and 
Random Forest [12]. Experimental results show that the proposed model achieves competitive 

performance, rapid inference, and strong potential for practical application. 

 
The remainder of this paper is organized as follows. Section 2 presents related approaches. 

Section 3 describes the proposed method. Section 4 introduces the datasets, experimental 

settings, and evaluation results. Section 5 provides discussion, comparisons with related studies, 

and recommendations. Finally, Section 6 concludes the paper. 
 

2. RELATED WORK 
 

Existing research on phishing website detection spans multiple directions, including content-
based analysis, network-level features, static URL characteristics, and learning-based models. 

Although these methods achieve promising results, they often suffer from limitations related to 

efficiency, deployability, or generalization. Each approach leverages a specific type of 

information and achieves certain levels of effectiveness, yet still faces limitations in terms of 
processing cost, deployability, or generalization capability. The representative research directions 

are summarized in the following subsections. 

 

2.1. Webpage Content Analysis (HTML/DOM) 
 

One of the most common approaches to phishing website detection is the direct analysis of 
webpage content, including HTML source code, DOM structure, and interface components. 

These methods exploit the rich semantic information contained in a webpage to distinguish 

legitimate websites from malicious ones. A representative method in this group is HTMLPhish, 
proposed by Opara et al. (2019) [13]. 

 

 Model idea: HTMLPhish treats HTML source code as a raw character sequence and uses 

character-level embeddings combined with a CNN [14] to automatically learn abnormal 

patterns in the HTML structure, instead of relying on handcrafted features such as 
iframes, form-action attributes, or script links. 

 Dataset: The authors use more than 10,000 webpages, including phishing sites from 

PhishTank and legitimate sites from Alexa, and split the data into training and test sets. 
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 Results: The model achieves an accuracy above 95 percent, outperforming traditional 

approaches based on handcrafted features. 

 Advantages: It directly leverages HTML content, learns deep semantic representations, 
and automatically discovers complex patterns in the code. 

 Limitations: It requires downloading the entire HTML page, which is risky and resource-

intensive; it is unsuitable for real-time environments or low-resource devices; the HTML 

data are large; and the method is vulnerable to obfuscation and frequent structural 

changes. 
 

2.2. Network and DNS-Based Feature Analysis (Network/DNS-Based) 
 

One approach to phishing website detection is the analysis of network characteristics and domain 

behavior, including DNS resolution history, frequency of IP changes, and certificate information. 

A representative method in this group is PhishReplicant, proposed by Koide et al. (2023) [15]. 
 

 Model idea: PhishReplicant uses linguistic features of domain names (such as brand 

similarity and character structure) combined with network data such as Passive DNS and 

Certificate Transparency logs to detect domain squatting and newly registered malicious 
domains at an early stage. 

 Dataset: The authors use millions of newly registered domains each day, combined with 

historical DNS data, CT logs, and phishing lists from PhishTank and OpenPhish. 

 Results: The model achieves high detection performance, particularly for phishing 

domains that appear very early, even before webpage content is created. 

 Advantages: No need to load HTML; safe; can proactively detect malicious domains 
immediately upon registration; suitable for network security systems. 

 Limitations: Dependence on DNS/CT log data; less effective for newly created domains 

without history; unable to detect phishing attacks that use legitimate URLs but host 

malicious webpage content. 

 

2.3. Static URL Analysis (Lexical/Character Features) 
 
One of the most effective and widely used approaches in phishing website detection is the direct 

analysis of URL strings without loading webpage content. This approach focuses on lexical 

features such as URL length, the number of special characters, domain structure, or unusual 

character patterns. A representative study for this group is Real-Time Phishing by Sruthi et al. 
(2023) [16]. 

 

 Model idea: The authors design a detection framework based on structural attributes 

derived directly from URL strings, such as domain hierarchy, path complexity, and 
symbol distribution. These features are used as inputs to lightweight classification 

models, including Logistic Regression, Random Forest, and Gradient Boosting, to 

separate phishing URLs from legitimate ones. 

 Dataset: The authors use more than 35,000 URLs collected from PhishTank, OpenPhish, 
and Alexa, including both phishing and legitimate URLs, ensuring diversity in the 

evaluation process. 

 Results: The proposed approach achieves accuracy exceeding 94 percent in real-time 

detection settings. Among the evaluated classifiers, Random Forest demonstrates the 

strongest performance when trained solely on static URL-based features. 

 Advantages: No need to load web content; fast processing speed; suitable for real-time 
environments; easy to deploy on low-resource devices. 
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 Limitations: Vulnerable to attackers who craft URLs that closely resemble legitimate 

ones; cannot detect redirection-based attacks; does not exploit deeper character-level or 
semantic information of webpage content. 

 

2.4. Machine Learning and Deep Learning 
 

Besides approaches based on HTML content, DNS behavior, and static URL analysis, many 

studies have applied machine learning and deep learning techniques to enhance phishing website 
detection. Two representative directions include traditional machine learning models and deep 

learning models based on character-level URL representations. 

 

Regarding traditional machine learning, a typical study in this category is presented by Rehman 
et al. (2025) [17]. 

 

 Model idea: The authors evaluate algorithms such as Random Forest, SVM, and Logistic 

Regression using the URL features available in the UCI dataset, targeting real-time 
phishing URL classification. 

 Dataset: The UCI Phishing Websites Dataset, consisting of more than 235,000 URLs and 

54 handcrafted features. 

 Results: Random Forest achieves an accuracy of about 97 percent, demonstrating strong 

potential for practical application. 

 Advantages: Lightweight model, fast inference speed, suitable for deployment on 
multiple platforms. 

 Limitations: Dependence on handcrafted features; reduced effectiveness when attackers 

modify URL structures or employ sophisticated obfuscation techniques. 

 

Regarding deep learning, a representative study in this category is the 1D-CNN model proposed 
by Haq et al. (2024) [18]. 

 

 Model idea: The model employs a 1D-CNN to process URLs as raw character sequences, 

enabling direct learning of complex patterns that are difficult to express through 
handcrafted methods. 

 Dataset: The dataset is compiled from PhishTank, UNB, and Alexa, including both 

legitimate and phishing URLs. 

 Results: The model achieves accuracy above 95 percent, outperforming many traditional 

machine learning algorithms. 

 Advantages: Automatic feature extraction; strong capability in detecting subtle character-
level patterns. 

 Limitations: High computational requirements; difficult to deploy in resource-

constrained environments; prone to overfitting when the dataset lacks sufficient diversity. 

 

2.5. General Observations and Research Gaps 
 

A comprehensive review of existing studies shows that each approach offers certain contributions 
but also exhibits clear limitations. HTML-based methods achieve high accuracy but involve high 

processing costs and pose security risks when webpage content must be loaded. DNS-based 

methods require specialized network data, which is not always readily available. Static URL 

analysis is lightweight and fast, yet most studies rely on simple lexical features that can be easily 
bypassed by sophisticated phishing patterns. Meanwhile, deep learning models offer strong 

performance but are difficult to deploy in resource-constrained environments. 
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Existing research has paid insufficient attention to combining TF–IDF and character-level 
features within lightweight models such as Naive Bayes, particularly in studies evaluated across 

multiple datasets. Motivated by this limitation, this paper presents a practical static URL-based 

phishing detection approach, described in Section 3. 

 

3. PROPOSED METHOD 
 

This study presents a static URL-based phishing detection approach that integrates token-level 

TF–IDF representations with character-level features. These two feature groups complement each 
other: TF-IDF captures meaningful tokens that may indicate phishing behavior, while character-

level features help identify subtle manipulation patterns such as typo-squatting, insertion of 

unusual characters, or variations resembling legitimate domain names. The combined features are 

fed into an optimized Multinomial Naive Bayes model, ensuring fast and effective classification, 
suitable for deployment in resource-constrained environments. The components of the proposed 

approach are described in the subsequent sections. 

 

3.1. Model Overview 
 

The proposed method employs static URL analysis to detect phishing websites without loading 
webpage content. The pipeline consists of five steps: (i) preprocessing URLs, (ii) extracting 

token-level TF–IDF features, (iii) extracting character-level n-gram features, (iv) combining the 

two feature groups into a unified vector, and (v) classifying using a Multinomial Naive Bayes 
model with an optimized decision threshold. 

 

The goal is to construct a lightweight, fast, and effective model suitable for deployment in 
resource-constrained environments. The proposed approach targets efficient deployment in 

resource-constrained settings, and its five-step workflow is summarized in Figure 1. 

 

 
 

Figure 1. Experimental workflow using static URL analysis to detect phishing websites 

 

3.2. URL Preprocessing and Normalization 
 
The input URL is normalized through a series of steps to reduce noise and ensure maximum 

consistency before feature extraction. First, the entire string is converted to lowercase to remove 

unnecessary distinctions between uppercase and lowercase characters. Unstable components such 

as session IDs, segments starting with “#”, or excessively long query strings that do not provide 
discriminative value are removed to avoid introducing additional noise into the modeling process. 
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Next, the URL is separated into logical components including protocol, domain, path, and query 
to support the tokenization process. These components are split using common characters found 

in URL structures such as “/”, “.”, “?”, “=”, and “–”, forming a token set that represents the 

structural elements of the URL. 

 
In parallel with tokenization, the model also generates character n-grams [19] with n = 2, 3, 4, 

allowing it to capture micro-patterns that frequently appear in phishing URLs, such as 

manipulated brand strings, inserted unusual characters, or abnormal repetitions. This 
preprocessing step helps convert the URL into a normalized form enriched with information and 

ready for the subsequent feature extraction stages. 

 

3.3. Proposed Method 
 

The method proposed in this paper focuses on detecting phishing websites based on static URL 
analysis to ensure fast processing speed and safety during deployment. Instead of loading HTML 

content or requiring complex data from the server side, the model uses only the input URL string 

and transforms it into a combined feature set consisting of token-level TF-IDF and character-
level n-grams. These two feature groups are concatenated to form an information-rich 

representation, which is then fed into an optimized Naive Bayes model to effectively capture the 

distributional characteristics of URL data. The overall procedure is designed to be simple, 

lightweight, and suitable for real-time environments as well as resource-constrained devices. 
 

3.3.1. Token-Level TF–IDF Features 

 
Following URL tokenization, tokens are represented as numerical vectors based on their term 

frequency and inverse document frequency values. In URL analysis, TF–IDF highlights 

frequently occurring tokens with discriminative power between phishing and legitimate URLs, 
while reducing the weight of common tokens. 

 

The TF–IDF value of a token t  in URL d  is defined as: 

 

  TF-IDF( , ) TF( , ) tt d t d IDF   (1) 
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 is the inverse document frequency of token over the dataset, where N  is 

the total number of URLs and dft  is the number of URLs containing token t  and also the term + 

1 is added to avoid division by zero. 

 
Combining TF and IDF allows the model to reduce the weight of common tokens (e.g., “http”, 

“www”, “index”) while increasing the importance of rare tokens that often indicate phishing 

intent. Therefore, token-level TF–IDF becomes an important feature group that helps the Naive 
Bayes model effectively distinguish legitimate URLs from phishing URLs. 

 
3.3.2. Character-Level Features (Character-level n-gram) 
 

In parallel with TF–IDF, the model generates character n-grams from the URL string. For a URL 
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u , the n-gram set is defined as: 

 ( ) { 1 | | 1}
1 1

g u u u u i u nn i i i n
     

  
∣  (2) 

where ( )g un denotes the set of all character n-grams extracted from the URL u , each substring 

1 1
u u ui i i n


  

has length n  and the constraint 1 | | 1i u n     ensures valid indexing within 

the URL string. 
 

Character n-grams enable the model to capture micro-patterns that token-level processing cannot 

detect, such as: insertion of unusual characters (“paypa1”, “officia1”); typo-squatting 
(“micros0ft”, “amaz0n-update”); or abnormal repetitions and structural distortions. 

 

By applying equation (2), character n-grams are vectorized using Count Vectorizer or TF, 

forming a feature space much more fine-grained than token-level representations. This 
combination allows the Naive Bayes model to better distinguish legitimate URLs from phishing 

URLs, especially in cases where attackers manipulate characters or mimic brand names. 

 

3.3.3. Feature Fusion (Hybrid Feature Fusion) 

 

After generating the two feature groups consisting of token-level TF–IDF and character-level n-

grams, the model proceeds to combine them using a concatenation strategy [20]. For each URL 

u , denote: 

 

 tfidf ( )uv : the TF–IDF vector obtained after tokenization and applying formula (1). 

 char ( )uv : the character feature vector generated from n-grams using formula (2). 

 

Then, the hybrid feature vector is defined as: 

 

 
tfidfhyb char( ) ( ) ( )u u uv v v‖  (3) 

 

where the symbol ‖ denotes the concatenation operation between the two feature vectors. By 

applying formula (3), the Naive Bayes model is able to exploit simultaneously: 
 

 The semantic information and structural patterns at the token level (brand names, 

suspicious keywords, etc.). 

 The micro-patterns at the character level that tokenization methods cannot capture 

(typosquatting, encoding, inserted or repeated characters, etc.). 
 

As a result, the fused vector becomes richer in information, enhancing the ability to distinguish 

legitimate URLs from phishing URLs particularly in cases where attackers manipulate characters 
or automatically generate deceptive URL variants to evade detection. 

 

3.4. Optimized Naive Bayes Model 
 

Given the hybrid feature representation hyb ( )uv  defined in Formula (3), an optimized Naive 

Bayes classifier performs Bayesian inference to determine the class label of a URL u . 

Specifically, the posterior probability for each class {phishing, legitimate}c  is derived using 

Bayes’ theorem:  
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where 
1 2( , , , )Kv v v v  denotes a feature vector composed of TF–IDF and character n-gram 

features, ( )P c  represents the prior probability associated with class c  and ( )P v ci ∣  corresponds 

to the likelihood of observing feature vi  given class c . 

 

Since ( )P v  is constant for all classes, the model only needs to compute the numerator of (4) 

during classification. For improved numerical stability during probability computation, formula 

(4) is evaluated in the logarithmic domain. 

 

 
1

log ( ) log ( ) log ( )
K

i

P c P c P v ci


  v∣ ∣  (5) 

 

This log-domain formulation improves numerical stability in practice and serves as the 

foundation for training the Multinomial Naive Bayes classifier used in this study.  
 

Algorithm: Detecting Phishing URLs Using the Optimized Naive Bayes Model  

 
This inference algorithm is designed to operate entirely on static URLs without loading HTML 

content or accessing webpage resources, ensuring safety and reducing processing time. The input 

URL is sequentially transformed through two feature extraction groups: token-level TF–IDF and 

character-level n-grams. These features capture both semantic-level patterns and subtle character-
level manipulations commonly found in phishing URLs. 

 

The two feature sets are combined into a single vector representation, which is subsequently 
provided to the Naive Bayes model to estimate class posterior probabilities or determine whether 

the phishing likelihood exceeds a predefined threshold. Thanks to the lightweight structure of the 

Multinomial Naive Bayes model, inference is fast, suitable for real-time environments, and can 
be deployed on edge devices with limited computational resources. 

 

Input:  

o The input URL u . 

o The trained parameter set { ( ), ( )}P c P t c  ∣  for {phish,legit}c . 

o Decision threshold  . 

Output:  

o Predicted label {phish,legit}predy  . 

o Confidence score phishs  the phishing class. 

Steps: 

1. Preprocess the input URL u  

2. Extract TF–IDF features and character-level n-gram features to obtain vectors 

tfidf ( )uv and char ( )uv  

3. Fuse the feature vectors as: hyb tfidf char( ) ( ) ( )x u u u v v v‖  

4. For each class {phish,legit}c  compute 
1

( ) log ( ) log ( )
K

i

S x P c P x cc k

   ∣ . 

5. Choose the class with the highest score:  
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6. If phishs   assign  phishpredy   otherwise assign legitpredy   

7. Return predy  and phishs  

 

where   allows adjusting the trade-off between the detection rate and the false-alarm rate 

depending on system requirements. 

 
Since the computation mainly consists of additions and logarithmic lookups, the inference cost is 

very low, making the method suitable for resource-constrained environments such as edge 

devices, network gateways, or browser extensions  

 

3.5. Training and Inference Procedure 
 
The proposed model operates in two stages, namely training and inference, where the 

preprocessing pipeline described in Section 3.1 is applied consistently to maintain consistency 

between the training and testing data. 

 

 (i) Preparing and preprocessing the training data: The URL dataset is cleaned and 
normalized following Section 3.2, then processed through the feature extraction pipeline 

from Section 3.1 up to step (iv). 

 (ii) Feature extraction and encoding: The two feature groups, token-level TF–IDF and 

character-level n-grams, are computed using formulas (1) and (2), then concatenated into 
a hybrid vector according to formula (3). 

 (iii) Training the Naive Bayes model: Model training within a Multinomial Naive Bayes 

framework estimates prior class probabilities and feature conditional likelihoods. The 

optimization process adopts the log-likelihood form given in formula (5). 

 (iv) Inference on new URLs: When a new URL arrives, the system applies the same five-
step pipeline described in Section 3.1: preprocessing, feature extraction, feature fusion, 

computation of the log-posterior scores using formula (5), and final comparison with the 

decision threshold. 

 (v) Threshold tuning and evaluation: The decision threshold is refined based on ROC or 

F1-score to balance the trade-off between detection rate and false-alarm rate. Finally, the 
model is evaluated using Accuracy, Precision, Recall, and F1-score on independent test 

datasets. 

 

4. DATASETS AND EXPERIMENTAL SETUP 
 

To comprehensively evaluate the effectiveness of the proposed model, the study employs three 

publicly available datasets widely used in the field of URL phishing detection. These datasets 

were selected to ensure diversity, generalization capability, and representation of various URL 
types found in real-world environments. 

 

By combining traditional sources, real-time streams, and large-scale datasets, the model is 
evaluated across diverse conditions, including: 

 

 URLs manually labeled as phishing along with descriptive metadata from traditional 

sources, 

 Phishing URLs continuously updated from online reporting systems, 

 Large-scale URL collections with high variability in lexical and character-level structure 

 
All collected URLs are first processed using the pipeline described in Section 3.2 and then 
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applied to model training and evaluation. This ensures consistency between the training and test 
sets and helps eliminate unnecessary noise. 

 

4.1. Datasets Used 
 

To evaluate the proposed model comprehensively, the study employs three widely used phishing 

URL datasets. These datasets represent three distinct scenarios: traditional benchmark data, real-
time phishing feeds, and large-scale heterogeneous URLs. All datasets are processed using a 

unified pipeline so that training and testing follow identical procedures. 

 

(i) UCI Phishing: The original UCI dataset provides 30 handcrafted webpage features but 
does not include raw URLs. Therefore, in several open repositories (Kaggle, GitHub), the 

community has reconstructed a corresponding set of URLs based on the available domain 

structure and meta-information. This study adopts that reconstructed version, consisting of 
11,055 URLs labeled as phishing or legitimate. Significance: This dataset serves as a 

baseline reference to illustrate differences in scale and label distribution when compared to 

the other sources. 
 

(ii) PhishTank: PhishTank is a community-driven platform that provides manually verified 

phishing URLs and updates continuously on a daily basis. Since the dataset is not fixed, 

this study collects samples during August 2025, resulting in a cleaned set of 20,000 URLs 
after removing duplicates and invalid entries. Significance: This dataset evaluates the 

model’s adaptability to continuously evolving phishing patterns, where attackers 

frequently modify URL structures to evade detection. 
 

(iii) URLNet: This is a large-scale dataset released as part of the URLNet project by Le and 

colleagues in 2019, containing approximately 30 thousand legitimate and phishing URLs 
with diverse string structures. Significance: This dataset is essential for evaluating the 

model’s generalization ability, robustness, and performance when handling complex 

phishing patterns. Table 1 reports the sample distribution and class ratios of the 

preprocessed datasets. 
 

Table 1. Descriptive statistics of the three datasets used in the experiments. 

 

Dataset 
Total 

samples 
Phishing Legitimate 

Phishing 

ratio 

URL length 

(mean ± SD) 

UCI Phishing  11.055 6.157 4.898 55.7% 61.2 ± 18.4 

PhishTank  20.000 12.000 8.000 60.0% 73.5 ± 22.1 

URLNet 30.000 15.000 15.000 50.0% 82.4 ± 26.7 

 
Looking at the table, we can observe that URLNet has the highest average URL length, reflecting 

the complexity of modern data; PhishTank has a high phishing ratio, making it suitable for 

evaluating sensitivity (Recall); and UCI exhibits lower noise levels, helping the model learn basic 
phishing patterns. 
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Figure 2. Visualization of the statistical characteristics of the three datasets 

 

To visualize the values in Table 1, Figure 2 presents a matrix that shows the differences between 

the main characteristics of each dataset. The figure clearly illustrates variations in data scale, the 
phishing ratio, and the average URL length through the shading level of each cell. Datasets with 

larger values, for example the total number of samples in URLNet or the number of phishing 

URLs in PhishTank, are shown with darker colors, allowing readers to quickly observe 
distribution trends. As a result, readers can readily identify factors that may impact the results 

observed in subsequent experiments. 

 

4.2. Strategy for Using the Datasets and Experimental Scenarios 
 

In this study, the datasets described in Section 4.1 are applied both individually and jointly to 
examine the model’s behavior across data originating from different sources. Based on this 

design, two experimental scenarios are constructed as follows. 

 

(i) Single dataset scenario: This setting considers independent training and evaluation on 
each dataset, namely UCI, PhishTank, and URLNet. An 80–20 data partition is applied to 

each dataset for training and testing, with class proportions kept unchanged. The entire 

pipeline of preprocessing, feature extraction using TF IDF and character n-gram features, 
feature fusion, and Naive Bayes training is applied identically across all datasets. This 

scenario allows the model to be assessed within the internal distribution of each dataset. 

 
(ii) Merged dataset scenario: In this scenario, the UCI, PhishTank, and URLNet datasets are 

merged into a single combined dataset. Duplicate, corrupted, or invalid records are 

removed to avoid bias. The merged dataset is then divided into training and test sets, which 

introduces an additional test partition without needing to adjust the sample size. While 
preprocessing and feature extraction remain unchanged from the first scenario, the model 

is trained on a more diverse distribution of data sources and URL types. This scenario 

enables the evaluation of the model’s generalization ability when processing mixed URL 
data originating from different sources. 

 

4.3. Experimental Environment and Configuration 
 

To ensure transparency throughout the evaluation process, this section presents the full 

experimental environment used during model training and inference. A clear description of the 
experimental context is necessary so that readers can understand the hardware, software 
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resources, and the structure of the processing pipeline applied in the study. The software 
environment is a key factor, as it governs the computation and integration of TF–IDF features, 

character n-grams, and the Naive Bayes classifier. The details are divided into the following 

components for clarity and reproducibility. 

 

4.3.1. Experimental Environment 

 

All experiments in this study were carried out on a standard computing environment to ensure 
reproducibility of results and to reflect practical deployment conditions of a lightweight model. 

The proposed workflow is developed in Python and relies on widely used machine learning 

libraries, including scikit learn, NumPy, Pandas, and Matplotlib, to support model training, data 
processing, and result visualization. 

 

Model training was performed on a standard workstation with an Intel Core i7 CPU and 16 GB of 

RAM. Due to the low computational complexity of the Naive Bayes classifier with TF–IDF and 
n-gram features, GPU acceleration was unnecessary, supporting deployment in resource 

constrained environments such as edge devices and browser extensions. 

 

4.3.2. Hyperparameter Settings and Feature Extraction Pipeline 

 

To ensure transparency and reproducibility, this section presents all hyperparameters used during 
the feature extraction pipeline and the Naive Bayes model, along with explanations for each 

design choice. 

 

(i) TF IDF at the token level: 

 

 The vocabulary size for TF IDF is limited to 20 000 tokens, which is a widely used 

threshold. This selection is based on the observation that the distribution of URL tokens 

typically follows a long tail pattern, where many rare tokens carry minimal meaningful 
information while significantly increasing the dimensionality of the feature matrix. 

Therefore, reducing the vocabulary size to 20000 helps minimize computational cost 

without negatively affecting effectiveness. 

 The minimum document frequency parameter is set to 2 to remove tokens that appear 

only once, as these tokens usually belong to random query strings and do not contribute 
stable patterns for learning. Tokens with high rarity often lead to poor generalization 

across phishing URLs. 

 Tokenization is performed on URLs using characters such as “/”, “.”, “?”, “=”, “ ”, and “ 

”, which represent common logical separators in domain and path structures. This 
approach ensures semantic consistency in URL structure, helping TF IDF recognize 

important tokens such as suspicious domains or abnormal path segments. 

 The entire URL is converted to lowercase because URLs are case insensitive; if left 

unchanged, TF IDF would treat “Login” and “login” as different tokens, reducing 
representation consistency. 

 Tokens outside the vocabulary are mapped to the symbol “UNK” to ensure that the 

model can still process unseen tokens during inference while preventing uncontrolled 

vocabulary growth. 

 

(ii) Character n-gram features: 

 

 Character level features are constructed based on n-grams with n = 2, 3, 4, which is a 

widely used choice in many studies on URL analysis and phishing detection. 
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 Bigrams with n = 2 help the model capture short character patterns such as “//”, “:”, “.” 

or other signals commonly found in malicious URLs. 

 Trigrams and four grams are used to detect deceptive brand patterns, for example “pay”, 
“app”, “ver”, or altered variants such as “mic”, “mlc”, “ama”, “arn” which frequently 

appear in spoofed domains (typosquatting). 

 The feature space is limited to approximately 30000 n-grams with the highest frequency. 

Experimental studies show that exceeding this threshold does not improve effectiveness 

while significantly increasing computational cost. The minimum document frequency 
parameter is set to 3 to remove rare n-grams that do not provide meaningful 

discriminatory value and would make the model less efficient. 

 Character n-gram encoding is performed using CountVectorizer rather than TF IDF 

because Multinomial Naive Bayes works best with frequency-based data, which is 
consistent with the Multinomial distribution assumption. 

 

(iii) Feature fusion: 

 

 The two feature groups are combined by concatenating their feature vectors, resulting in 

a final vector of approximately 50 000 to 60 000 dimensions. Dimensionality reduction is 

avoided because sparse yet discriminative URL features may lose subtle patterns, such as 

brand impersonation or irregular character sequences, that are vital for phishing 
detection. 

 

(iv) Multinomial Naive Bayes: 

 

 The Multinomial Naive Bayes [21] model uses the smoothing parameter alpha 

{0.5,1.0,1.5}  , which is selected based on validation results. A smaller alpha equals 

0.5 helps the model emphasize strong lexical signals in the feature space, while a larger 

alpha equals 1.5 stabilizes the model when facing many rare feature patterns coming 

from diverse URL distributions. 

 The classification threshold is fine tuned using ROC or F1 score based on the objective 
of the system. In phishing detection, the threshold is often shifted upward to increase 

Recall, since missing a phishing URL is usually more dangerous than a lower Precision. 

 The final decision is based on the log posterior probability, which avoids numerical 

underflow when computing the product of many small probabilities in the Multinomial 

model. 
 

4.4. Experimental Results on Individual Datasets (Single-dataset Scenario) 
 

The hybrid Naive Bayes model is evaluated independently on the UCI Phishing, PhishTank, and 

URLNet datasets under an 80–20 data split, with comparative results reported in Table 2. 

 
Table 2. Performance of the hybrid Naive Bayes model on individual datasets. 

 
Dataset Accuracy Precision Recall F1-score 

UCI Phishing 0.939 0.928 0.952 0.940 

PhishTank 0.918 0.901 0.937 0.918 

URLNet 0.904 0.887 0.922 0.904 

 

Table 2 summarizes the experimental results of the hybrid Naive Bayes model with TF IDF and 
character-level features on the UCI, PhishTank, and URLNet datasets using the Accuracy, 

Precision, Recall, and F1 score metrics. To visualize the differences among datasets, Figure 3 
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illustrates these four metrics in the form of bar charts, enabling quick observation of performance 
variations when the data source changes. 

 

 
 

Figure 3. Comparison of the hybrid Naive Bayes model performance across the three datasets 

 

From Table 2 and Figure 3, several detailed observations can be made as follows:  
 

 (i) The UCI dataset yields the best results: Because the URL structure in this dataset is 

relatively simple and contains many “classic” phishing samples, the model achieves 

Accuracy of 0.939, Recall of 0.952, and an F1 score of 0.940. This indicates that the 
model is able to effectively learn well known patterns frequently appearing in the training 

data. 

 (ii) PhishTank is more challenging, yet the model still maintains high Recall: Phishing 

URLs in the PhishTank dataset are continuously updated, and their structures change 

frequently, resulting in greater variability and complexity. Despite this, the model 
achieves Recall of 0.937 and F1 score of 0.918, highlighting the strong contribution of 

character level n-gram features in identifying brand impersonation and anomalous URL 

strings. 

 (iii) URLNet is the most complex dataset, although the model still performs stably: 
URLNet contains a diverse range of domains, structures, and encoded character 

sequences, making classification more difficult. Nevertheless, the model reaches 

Accuracy of 0.904 and F1 score of 0.904, which is a notably competitive performance for 
a lightweight model such as Naive Bayes. 

 (iv) Hybrid features consistently improve Recall across all datasets: In all three datasets, 

Recall remains above 0.92, demonstrating that the model is highly sensitive to phishing 

URL detection. This is extremely important in security systems, where missing a 

phishing website poses a higher risk than generating false alarms. The combination of TF 
IDF token level features and character n-gram features plays a crucial role in this 

improvement, helping the model achieve a strong balance between overall accuracy and 

the ability to detect phishing threats. 
 

4.5. Results on the Merged Dataset Scenario 
 
Table 3 presents the results of the model when trained and evaluated on the merged dataset 

consisting of UCI, PhishTank, and URLNet. This scenario closely reflects real world conditions, 
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where URLs originate from diverse sources with varying levels of heterogeneity. 
 

Table 3. Performance of the hybrid Naive Bayes model on the merged dataset. 

 
Metric Merged dataset Average of 3 datasets Improvement 

Accuracy 0.938 0.931 +0.7% 

Precision 0.915 0.907 +0.8% 

Recall 0.947 0.928 +2.0% 

F1-score 0.931 0.925 +0.6% 

 
The merged-dataset setting yields the largest gain in recall (+2.0 percent), reflecting improved 

sensitivity to diverse phishing patterns. This is particularly important in phishing detection, where 

false negatives are more costly than false positives. 

 
However, Accuracy and Precision slightly decrease compared with the model trained 

independently on each single dataset. The reason lies in the higher heterogeneity of the merged 

dataset, which reduces the model's ability to maintain the same level of “purity” as when learning 
from a clean, single source. A number of legitimate URLs with uncommon structures from 

URLNet and PhishTank may be misclassified as phishing, resulting in a lower Precision. 

 

 
 

Figure 4. Comparison on merged data and the average of the three datasets 

 

To visualize the results, Figure 4 compares the performance of the model under the two 
scenarios: training on each dataset individually and training on the merged dataset. Figure 4 

shows that although some measures slightly decrease, the merged-dataset setting yields improved 

overall performance, especially in recall, indicating better generalization across diverse data 
sources. This demonstrates that training across multiple data sources helps the model generalize 

better and operate more robustly when deployed in real world environments. 

 

Based on the findings from Tables 2 and 3, several key observations can be made: 
 

 The hybrid Naive Bayes model is truly effective for phishing detection based on static 

URL analysis. 

 Character level n-grams play a crucial role in identifying obfuscated domain names and 

suspicious lexical patterns. 

 TF IDF contributes significantly to capturing meaningful tokens (brand names, 
keywords, suspicious terms). 
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 The merged dataset scenario provides the highest overall performance and the best 

generalization. 

 The achieved performance is remarkably high for a lightweight model that does not 
require GPU resources or access to HTML content. 

 These findings also support the central argument of the study: when properly optimized 

with the right combination of token level and character level features, the Naive Bayes 

model can achieve competitive performance in URL phishing detection, making it highly 

suitable for practical deployment in resource constrained environments. 
 

5. DISCUSSION 
 

In this section, we provide a deeper analysis of the implications of the experimental results, 
compare the proposed model with several related studies, evaluate the contribution of each 

feature group, clarify the rationale behind dataset selection and model configuration, and 

highlight the current limitations as well as future research directions. 

 

5.1. Comparison with Existing Studies 
 
Table 4 compares the proposed approach with representative deep learning and traditional 

machine learning methods for URL phishing detection. When compared with recent studies 

presented in Table 4, it is evident that many approaches based on deep learning, such as those 

proposed by Ovi et al. (2024) and Yildirim et al. (2023), achieve high performance but incur 
substantial computational costs and rely heavily on GPU resources. This reliance poses 

significant challenges for real world deployment in realtime environments or on edge devices, 

especially when processing large volumes of continuously updated URLs. In contrast, traditional 
machine learning studies that rely on hand crafted features, such as those by Hadi et al. (2024) 

and Garnayak et al. (2023), offer lower computational cost but their performance is constrained 

by the inherent limitations of manually engineered features, which are difficult to scale and often 
fail to capture emerging attack variants. 

 

In this context, the Hybrid Naive Bayes model proposed in this study demonstrates an optimal 

balance between effectiveness and deployment cost. By integrating token level TF–IDF features 
with character level n-grams, the model is capable of capturing both semantic phishing cues and 

fine-grained brand spoofing patterns, which are highly prevalent in modern phishing attacks. 

Notably, the entire pipeline operates fully on CPU with low processing latency, while still 
achieving competitive performance compared with more complex deep learning models. This 

finding suggests that lexical feature-based approaches remain valuable when designed and 

optimized appropriately. 
 

From an application perspective, the proposed model exhibits superior deployability compared 

with most studies in the comparison table. Its independence from GPU resources, the absence of 

HTML content processing, and the non-reliance on hand crafted features make it easy to integrate 
into practical systems such as firewalls, browsers, network gateways, or IoT devices. These 

results reinforce the conclusion that a lightweight and properly optimized model can deliver 

reliable phishing URL detection performance and may even be more suitable than heavier models 
when deployed in resource constrained environments. 

 
Table 4. Comparison with related studies. 

 

Study Method 
Features 

Used 
Cost Deployability Remarks 

Ovi et al., Ensemble + URL + High Low Strong performance but 



International Journal of Network Security & Its Applications (IJNSA) Vol.18, No.1, January 2026 

29 

2024 [22] Deep Learning HTML complex models, 

difficult for realtime 

deployment 

Yildirim 

et al., 

2023 [23] 

Neural 

Networks 

(DNN) 

Character-

level URL 
High Medium 

Good generalization 

but requires GPU 

Hadi et 

al., 2024 
[24] 

RF, SVM, LR 

Lexical + 

statistical 
features 

Medium High 

Depends on hand-

crafted features, less 
scalable 

Garnayak 

et al., 

2024 [25] 

Traditional ML 
URL lexical 

features 
Medium High 

Suitable as a baseline 

but less accurate than 

deep learning 

approaches 

This 

study  

Hybrid Naive 

Bayes 

TF–IDF + 

character n-

gram 

Very low High 

Balances accuracy 

and deployment cost; 

efficient for low 

resource 

environments 

 

5.2. Rationale for Choosing the Two Feature Groups (Hybrid Features) 
 
Token-level and character-level features are jointly adopted due to their complementary roles in 

URL phishing detection. Token level TF–IDF vectors effectively capture semantic indicators, 

including brand names, unusual keywords, and behavior related terms such as “secure”, “update”, 
“session”, and “verify”. These cues frequently appear in traditional phishing URLs and carry 

high discriminative value. 

 

Meanwhile, character level n-gram features focus on the structural form of the URL string, 
enabling the model to detect brand impersonation variants (typosquatting) such as “paypa1”, 

“go0gle”, and other irregular character sequences that are difficult to analyze using token level 

features. N-grams of lengths two to four allow the model to learn both local structural patterns 
and repetitive micro patterns commonly used by attackers to bypass vocabulary-based systems. 

 

The integration of semantic and structural URL features results in a discriminative feature 
representation with low computational overhead. This explains why the hybrid model achieves 

consistently high Recall across all datasets and maintains stable performance, while also 

outperforming other approaches on the merged dataset. This hybrid strategy therefore provides a 

well-balanced tradeoff between generalization, sensitivity, and practical deployability. 
 

5.3. Error Analysis 
 

This subsection analyzes common misclassification cases to better understand the model’s 

behavior. Errors mainly include false positives on legitimate URLs and false negatives on 

phishing URLs. The results show that errors are concentrated in two groups: legitimate URLs 
mistakenly classified as phishing (FP) and phishing URLs that remain undetected (FN). 

 

False positives mainly occur on legitimate URLs that contain many suspicious tokens, such as 
“secure”, “payment”, “verify”, or URLs with long and complex path structures. For example: 

“https://secure-payment-update.example.co/login/verify-step” these legitimate URLs include 

features commonly appearing in phishing, which mislead the model. This explains why Precision 

decreases when training on the merged dataset, as the classifier becomes more sensitive to high-
risk patterns. 
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In contrast, false negatives often appear in phishing URLs that use subtle obfuscation or 
typosquatting techniques. For example: “http://paypa1-security-center.com/user/resolve” here, 

the use of “1” instead of “l” makes token-level TF–IDF less effective, and character n-grams may 

fail to capture this rare transformation. Some highly obfuscated URLs or encoded strings create 

additional difficulty, making the extracted features sparse and harder for the model to distinguish. 
Overall, these error patterns indicate that the model performs consistently well on common 

phishing samples but faces challenges with sophisticated variants and with legitimate URLs 

containing many security-related tokens. These observations serve as important insights for 
proposing improvements in subsequent steps. 

 

5.4. Insights and Recommendations 
 

The combined results and error analysis show that the hybrid Naive Bayes model achieves very 

high performance despite its low complexity. This confirms that simple methods, when properly 
optimized, can still deliver competitive effectiveness in phishing URL detection. The integration 

of token level TF–IDF and character level n-grams plays a crucial role in improving sensitivity, 

which is clearly reflected in the outstanding Recall obtained on the merged dataset. 
 

By combining high detection performance with low computational cost, the proposed model is 

well suited for real time security applications, including online banking, e wallet services, and 

browser based URL filtering, while avoiding the heavy resource requirements of GPU intensive 
neural models. 

However, the model still has some limitations, mainly reflected in FP and FN errors. The slight 

decrease in Precision in the merged scenario indicates the need for a post filtering mechanism to 
reduce false alarms. In addition, detecting sophisticated brand spoofing variants remains 

challenging. We recommend several extensions, such as enriching a library of brand variants, 

exploiting domain level features such as WHOIS information or domain age, or using a 
lightweight auxiliary model to check borderline cases. 

 

5.5. Limitations and Future Directions 
 

Despite its good performance, the model is limited to URL string based features and does not 

leverage domain or DNS related information, which may reduce effectiveness against newly 

registered phishing URLs. In addition, experiments are conducted on only three benchmark 
datasets, and further evaluation on real time data is required. 

 

In the future, we plan to integrate additional domain level features, experiment with lightweight 
ensemble mechanisms, and extend the model to streaming environments in order to assess its 

applicability in real time anti phishing systems. 

 

6. CONCLUSION 
 
This study proposed a phishing URL detection model based on Naive Bayes that combines two 

feature groups: token level TF–IDF and character level n-grams. Experimental results on the 

UCI, PhishTank, and URLNet datasets show that the model achieves high and stable 
performance, with Recall consistently above 0.92 in all scenarios. When trained on the merged 

dataset, the model further demonstrates strong generalization ability, improving sensitivity by 2.0 

percent compared with the average over individual datasets. This confirms that lightweight 
methods, when carefully designed and optimized, can reach effectiveness levels that are 

competitive with more complex approaches. 
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By combining token level and character level features, the model captures both semantic cues 
and structural patterns, enabling effective detection of conventional phishing and brand spoofing 

attacks. Its low computational overhead eliminates the need for GPUs and supports efficient 

deployment on lightweight platforms such as gateways, browser extensions, and edge devices. 

 
Alongside these advantages, the error analysis shows that the model still faces difficulties with 

legitimate URLs that contain many security related keywords, which tend to cause FP, and with 

sophisticated typosquatting variants, which tend to cause FN. These are also promising directions 
for future work. Possible improvements include adding domain level features, expanding the set 

of brand variants, or integrating a lightweight auxiliary model to handle hard borderline cases. 

 
Overall, this study provides an effective, easy to deploy, and highly practical approach to 

phishing detection based on static URL analysis. The results open up potential for application in 

online anti fraud systems and lay a foundation for more advanced developments in future 

research. Future work will explore the integration of additional contextual features while 
maintaining the lightweight nature of the proposed approach. 
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