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ABSTRACT

The rapid growth of phishing websites poses significant challenges to users and online systems,
particularly as many existing detection approaches rely on webpage content analysis or computationally
expensive deep learning models. This paper proposes a lightweight phishing URL detection method that
integrates token-level Term Frequency—Inverse Document Frequency (TF-IDF) and character-level n-
grams within a Multinomial Naive Bayes classifier. The proposed approach is evaluated on three public
datasets, including the UCI Phishing Website dataset, PhishTank, and URLNet. Experimental results show
that the model achieves F1-scores ranging from 0.904 to 0.940 when trained and tested on individual
datasets, indicating robust detection performance. When the three datasets are merged for training, the
model attains an F1-score of 0.931, with Recall improving by 2.0 percent compared to the average single-
dataset results, reflecting enhanced generalization across diverse data sources. The lightweight nature of
the proposed method enables fast URL classification and practical deployment under hardware
constraints.
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1. INTRODUCTION

The rapid growth of e-commerce, online banking, and digital services has significantly increased
the prevalence of phishing attacks through fraudulent websites, creating an urgent need for
effective and practical detection solutions [1]. Attackers often create websites whose domain
names, interfaces, and structural layouts closely resemble legitimate services, deceiving users
into providing sensitive information such as login credentials, passwords, or financial data. These
attacks not only cause significant losses for users but also damage the reputation and operational
stability of legitimate service providers.

To address this threat, various phishing detection methods have been explored, ranging from
blacklist and whitelist approaches to machine learning [2] and deep learning models [3]. Despite
extensive research efforts, there remains limited work on lightweight and well-optimized models
for static URL analysis that can effectively integrate both token-level and character-level
information. Meanwhile, content-based approaches require downloading HTML code or server-
side resources, which increases computational cost, introduces latency, and poses security risks
when accessing suspicious websites. In contrast, static URL-based approaches are safer and more
cost-effective; however, many studies rely only on simple lexical features or treat Naive Bayes
[4] merely as a baseline, without fully exploiting the potential of combining TF-IDF
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representations [5] with character-level features [6]. Therefore, the key problem addressed in this
study is how to design an effective yet lightweight phishing URL detection method that captures
both semantic and structural patterns while remaining suitable for real-world deployment. To
address this problem, we propose a static URL-based detection approach using an optimized
Naive Bayes classifier combined with token-level TF—IDF and character-level features.

Lightweight and well-optimized static URL analysis models that integrate both token-level and
character-level information are still underexplored. Moreover, many studies evaluate their models
using a single dataset, which limits their generalization ability in real-world deployments where
phishing URLSs originate from diverse sources.

To overcome these limitations, this paper proposes a phishing detection method based on static
URL analysis using an optimized Naive Bayes model enhanced with hybrid features that
combine token-level TF—IDF representations with character-level patterns. The approach does
not require downloading webpage content, ensuring safety, fast inference speed, and suitability
for resource-constrained environments. The model is evaluated on three large and diverse public
datasets UCI Phishing [7], PhishTank [8], and URLNet [9] and compared with widely used
machine learning algorithms such as Support VVector Machine [10], Logistic Regression [11], and
Random Forest [12]. Experimental results show that the proposed model achieves competitive
performance, rapid inference, and strong potential for practical application.

The remainder of this paper is organized as follows. Section 2 presents related approaches.
Section 3 describes the proposed method. Section 4 introduces the datasets, experimental
settings, and evaluation results. Section 5 provides discussion, comparisons with related studies,
and recommendations. Finally, Section 6 concludes the paper.

2. RELATED WORK

Existing research on phishing website detection spans multiple directions, including content-
based analysis, network-level features, static URL characteristics, and learning-based models.
Although these methods achieve promising results, they often suffer from limitations related to
efficiency, deployability, or generalization. Each approach leverages a specific type of
information and achieves certain levels of effectiveness, yet still faces limitations in terms of
processing cost, deployability, or generalization capability. The representative research directions
are summarized in the following subsections.

2.1. Webpage Content Analysis (HTML/DOM)

One of the most common approaches to phishing website detection is the direct analysis of
webpage content, including HTML source code, DOM structure, and interface components.
These methods exploit the rich semantic information contained in a webpage to distinguish
legitimate websites from malicious ones. A representative method in this group is HTMLPhish,
proposed by Opara et al. (2019) [13].

e Model idea: HTMLPhish treats HTML source code as a raw character sequence and uses
character-level embeddings combined with a CNN [14] to automatically learn abnormal
patterns in the HTML structure, instead of relying on handcrafted features such as
iframes, form-action attributes, or script links.

e Dataset: The authors use more than 10,000 webpages, including phishing sites from
PhishTank and legitimate sites from Alexa, and split the data into training and test sets.
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Results: The model achieves an accuracy above 95 percent, outperforming traditional
approaches based on handcrafted features.

Advantages: It directly leverages HTML content, learns deep semantic representations,
and automatically discovers complex patterns in the code.

Limitations: It requires downloading the entire HTML page, which is risky and resource-
intensive; it is unsuitable for real-time environments or low-resource devices; the HTML
data are large; and the method is vulnerable to obfuscation and frequent structural
changes.

2.2. Network and DNS-Based Feature Analysis (Network/DNS-Based)

One approach to phishing website detection is the analysis of network characteristics and domain
behavior, including DNS resolution history, frequency of IP changes, and certificate information.
A representative method in this group is PhishReplicant, proposed by Koide et al. (2023) [15].

Model idea: PhishReplicant uses linguistic features of domain names (such as brand
similarity and character structure) combined with network data such as Passive DNS and
Certificate Transparency logs to detect domain squatting and newly registered malicious
domains at an early stage.

Dataset: The authors use millions of newly registered domains each day, combined with
historical DNS data, CT logs, and phishing lists from PhishTank and OpenPhish.

Results: The model achieves high detection performance, particularly for phishing
domains that appear very early, even before webpage content is created.

Advantages: No need to load HTML; safe; can proactively detect malicious domains
immediately upon registration; suitable for network security systems.

Limitations: Dependence on DNS/CT log data; less effective for newly created domains
without history; unable to detect phishing attacks that use legitimate URLs but host
malicious webpage content.

2.3. Static URL Analysis (Lexical/Character Features)

One of the most effective and widely used approaches in phishing website detection is the direct
analysis of URL strings without loading webpage content. This approach focuses on lexical
features such as URL length, the number of special characters, domain structure, or unusual
character patterns. A representative study for this group is Real-Time Phishing by Sruthi et al.
(2023) [16].

Model idea: The authors design a detection framework based on structural attributes
derived directly from URL strings, such as domain hierarchy, path complexity, and
symbol distribution. These features are used as inputs to lightweight classification
models, including Logistic Regression, Random Forest, and Gradient Boosting, to
separate phishing URLs from legitimate ones.

Dataset: The authors use more than 35,000 URLSs collected from PhishTank, OpenPhish,
and Alexa, including both phishing and legitimate URLS, ensuring diversity in the
evaluation process.

Results: The proposed approach achieves accuracy exceeding 94 percent in real-time
detection settings. Among the evaluated classifiers, Random Forest demonstrates the
strongest performance when trained solely on static URL-based features.

Advantages: No need to load web content; fast processing speed; suitable for real-time
environments; easy to deploy on low-resource devices.
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e Limitations: Vulnerable to attackers who craft URLs that closely resemble legitimate
ones; cannot detect redirection-based attacks; does not exploit deeper character-level or
semantic information of webpage content.

2.4. Machine Learning and Deep Learning

Besides approaches based on HTML content, DNS behavior, and static URL analysis, many
studies have applied machine learning and deep learning techniques to enhance phishing website
detection. Two representative directions include traditional machine learning models and deep
learning models based on character-level URL representations.

Regarding traditional machine learning, a typical study in this category is presented by Rehman
et al. (2025) [17].

e Model idea: The authors evaluate algorithms such as Random Forest, SVM, and Logistic
Regression using the URL features available in the UCI dataset, targeting real-time
phishing URL classification.

e Dataset: The UCI Phishing Websites Dataset, consisting of more than 235,000 URLs and
54 handcrafted features.

e Results: Random Forest achieves an accuracy of about 97 percent, demonstrating strong
potential for practical application.

e Advantages: Lightweight model, fast inference speed, suitable for deployment on
multiple platforms.

e Limitations: Dependence on handcrafted features; reduced effectiveness when attackers
modify URL structures or employ sophisticated obfuscation techniques.

Regarding deep learning, a representative study in this category is the 1D-CNN model proposed
by Haq et al. (2024) [18].

e Model idea: The model employs a 1D-CNN to process URLS as raw character sequences,
enabling direct learning of complex patterns that are difficult to express through
handcrafted methods.

e Dataset: The dataset is compiled from PhishTank, UNB, and Alexa, including both
legitimate and phishing URLSs.

e Results: The model achieves accuracy above 95 percent, outperforming many traditional
machine learning algorithms.

e Advantages: Automatic feature extraction; strong capability in detecting subtle character-
level patterns.

e Limitations: High computational requirements; difficult to deploy in resource-
constrained environments; prone to overfitting when the dataset lacks sufficient diversity.

2.5. General Observations and Research Gaps

A comprehensive review of existing studies shows that each approach offers certain contributions
but also exhibits clear limitations. HTML-based methods achieve high accuracy but involve high
processing costs and pose security risks when webpage content must be loaded. DNS-based
methods require specialized network data, which is not always readily available. Static URL
analysis is lightweight and fast, yet most studies rely on simple lexical features that can be easily
bypassed by sophisticated phishing patterns. Meanwhile, deep learning models offer strong
performance but are difficult to deploy in resource-constrained environments.
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Existing research has paid insufficient attention to combining TF-IDF and character-level
features within lightweight models such as Naive Bayes, particularly in studies evaluated across
multiple datasets. Motivated by this limitation, this paper presents a practical static URL-based
phishing detection approach, described in Section 3.

3. PROPOSED METHOD

This study presents a static URL-based phishing detection approach that integrates token-level
TF-IDF representations with character-level features. These two feature groups complement each
other: TF-IDF captures meaningful tokens that may indicate phishing behavior, while character-
level features help identify subtle manipulation patterns such as typo-squatting, insertion of
unusual characters, or variations resembling legitimate domain names. The combined features are
fed into an optimized Multinomial Naive Bayes model, ensuring fast and effective classification,
suitable for deployment in resource-constrained environments. The components of the proposed
approach are described in the subsequent sections.

3.1. Model Overview

The proposed method employs static URL analysis to detect phishing websites without loading
webpage content. The pipeline consists of five steps: (i) preprocessing URLs, (ii) extracting
token-level TF—IDF features, (iii) extracting character-level n-gram features, (iv) combining the
two feature groups into a unified vector, and (v) classifying using a Multinomial Naive Bayes
model with an optimized decision threshold.

The goal is to construct a lightweight, fast, and effective model suitable for deployment in
resource-constrained environments. The proposed approach targets efficient deployment in
resource-constrained settings, and its five-step workflow is summarized in Figure 1.

Preprocessing of URLs Character n-gram-based Multinomial Naive Bayes-based classification
Feature Extraction with an optimal decision boundary

® Token-level Feature Integration of the two feature °
Extraction using TF-IDF sets into a hybrid feature

) vector
=

/—L
¢t
i

Figure 1. Experimental workflow using static URL analysis to detect phishing websites
3.2. URL Preprocessing and Normalization

The input URL is normalized through a series of steps to reduce noise and ensure maximum
consistency before feature extraction. First, the entire string is converted to lowercase to remove
unnecessary distinctions between uppercase and lowercase characters. Unstable components such
as session IDs, segments starting with “#”, or excessively long query strings that do not provide
discriminative value are removed to avoid introducing additional noise into the modeling process.
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Next, the URL is separated into logical components including protocol, domain, path, and query
to support the tokenization process. These components are split using common characters found

in URL structures such as /7, “.”, “?”, “=”, and “—”, forming a token set that represents the
structural elements of the URL.

In parallel with tokenization, the model also generates character n-grams [19] with n = 2, 3, 4,
allowing it to capture micro-patterns that frequently appear in phishing URLs, such as
manipulated brand strings, inserted unusual characters, or abnormal repetitions. This
preprocessing step helps convert the URL into a normalized form enriched with information and
ready for the subsequent feature extraction stages.

3.3. Proposed Method

The method proposed in this paper focuses on detecting phishing websites based on static URL
analysis to ensure fast processing speed and safety during deployment. Instead of loading HTML
content or requiring complex data from the server side, the model uses only the input URL string
and transforms it into a combined feature set consisting of token-level TF-IDF and character-
level n-grams. These two feature groups are concatenated to form an information-rich
representation, which is then fed into an optimized Naive Bayes model to effectively capture the
distributional characteristics of URL data. The overall procedure is designed to be simple,
lightweight, and suitable for real-time environments as well as resource-constrained devices.

3.3.1. Token-Level TF-IDF Features

Following URL tokenization, tokens are represented as numerical vectors based on their term
frequency and inverse document frequency values. In URL analysis, TF-IDF highlights
frequently occurring tokens with discriminative power between phishing and legitimate URLS,
while reducing the weight of common tokens.

The TF—IDF value of a token t in URL d is defined as:

TF-IDF(t,d) = TF(t,d) x IDF (t) (1)

fi

j,d
jb
occurrence count of token t. The term + 1 is added to avoid division by zero and

where: TF(t,d) = is the normalized frequency of token in URL d , with fj d being the

¢+
the total number of URLs and df; is the number of URLs containing token t and also the term +
1 is added to avoid division by zero.

N . . .
IDF(t) = log (m) is the inverse document frequency of token over the dataset, where N is

Combining TF and IDF allows the model to reduce the weight of common tokens (e.g., “http”,

LIS

“www”, “index”) while increasing the importance of rare tokens that often indicate phishing
intent. Therefore, token-level TF—IDF becomes an important feature group that helps the Naive
Bayes model effectively distinguish legitimate URLs from phishing URLSs.

3.3.2. Character-Level Features (Character-level n-gram)

In parallel with TF—IDF, the model generates character n-grams from the URL string. For a URL
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u, the n-gram set is defined as:

In(W) ={ujl 1 - Ui 41 1siSu[-n+1} (2)
where gp(u) denotes the set of all character n-grams extracted from the URL u, each substring
Uit Yitna
the URL string.

has length n and the constraint 1<i</u|-n+1 ensures valid indexing within

Character n-grams enable the model to capture micro-patterns that token-level processing cannot
detect, such as: insertion of unusual characters (“paypal”, “official”); typo-squatting

9 <¢

(“microsOft”, “amazOn-update”); or abnormal repetitions and structural distortions.

By applying equation (2), character n-grams are vectorized using Count Vectorizer or TF,
forming a feature space much more fine-grained than token-level representations. This
combination allows the Naive Bayes model to better distinguish legitimate URLs from phishing
URLSs, especially in cases where attackers manipulate characters or mimic brand names.

3.3.3. Feature Fusion (Hybrid Feature Fusion)

After generating the two feature groups consisting of token-level TF-IDF and character-level n-
grams, the model proceeds to combine them using a concatenation strategy [20]. For each URL
u, denote:

® Vg (U) : the TF-IDF vector obtained after tokenization and applying formula (1).
e V.. (u):the character feature vector generated from n-grams using formula (2).

Then, the hybrid feature vector is defined as:
Vhyb (U) = thidf (U)" Vchar (U) (3)

where the symbol |l denotes the concatenation operation between the two feature vectors. By
applying formula (3), the Naive Bayes model is able to exploit simultaneously:

e The semantic information and structural patterns at the token level (brand names,
suspicious keywords, etc.).

e The micro-patterns at the character level that tokenization methods cannot capture
(typosquatting, encoding, inserted or repeated characters, etc.).

As a result, the fused vector becomes richer in information, enhancing the ability to distinguish
legitimate URLs from phishing URLs particularly in cases where attackers manipulate characters
or automatically generate deceptive URL variants to evade detection.

3.4. Optimized Naive Bayes Model

Given the hybrid feature representation v, (u) defined in Formula (3), an optimized Naive

Bayes classifier performs Bayesian inference to determine the class label of a URL u.
Specifically, the posterior probability for each class ¢ e{phishing, legitimate} is derived using

Bayes’ theorem:
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POTTP(v; )
P(cl v) = ';T 4)

where v =(v,,V,,...,V,) denotes a feature vector composed of TF—IDF and character n-gram
features, P(c) represents the prior probability associated with class ¢ and P(v;| c) corresponds
to the likelihood of observing featurev; given class c .

Since P(v) is constant for all classes, the model only needs to compute the numerator of (4)

during classification. For improved numerical stability during probability computation, formula
(4) is evaluated in the logarithmic domain.

log P(c| v) oc log P(c) + gj logP(v; 1 ¢) (5)

This log-domain formulation improves numerical stability in practice and serves as the
foundation for training the Multinomial Naive Bayes classifier used in this study.

Algorithm: Detecting Phishing URLs Using the Optimized Naive Bayes Model

This inference algorithm is designed to operate entirely on static URLs without loading HTML
content or accessing webpage resources, ensuring safety and reducing processing time. The input
URL is sequentially transformed through two feature extraction groups: token-level TF—IDF and
character-level n-grams. These features capture both semantic-level patterns and subtle character-
level manipulations commonly found in phishing URLSs.

The two feature sets are combined into a single vector representation, which is subsequently
provided to the Naive Bayes model to estimate class posterior probabilities or determine whether
the phishing likelihood exceeds a predefined threshold. Thanks to the lightweight structure of the
Multinomial Naive Bayes model, inference is fast, suitable for real-time environments, and can
be deployed on edge devices with limited computational resources.

Input:
o Theinput URL u.
o The trained parameter set 8 ={P(c),P(tl ¢)} for c e{phish,legit}.
o Decision threshold 7.

Output:

o Predicted label Y. e{phish,legit} .
o Confidence score s, the phishing class.

Steps:
1. Preprocess the input URL u
2. Extract TF-IDF features and character-level n-gram features to obtain vectors

Vgt (U) and V char (U)
3. Fuse the feature vectors as: X — Vi, (U) = Ve (U Vi, (U)
K
4. For each class ¢ e{phish,legit} compute S¢(x)=1logP(c)+ > IogP(xkl C).
i=1

5. Choose the class with the highest score:
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6. If S, =7 assign Y., <phish otherwise assign Y., < legit

7. Return y 4 and S,

where 7 allows adjusting the trade-off between the detection rate and the false-alarm rate
depending on system requirements.

Since the computation mainly consists of additions and logarithmic lookups, the inference cost is
very low, making the method suitable for resource-constrained environments such as edge
devices, network gateways, or browser extensions

3.5. Training and Inference Procedure

The proposed model operates in two stages, namely training and inference, where the
preprocessing pipeline described in Section 3.1 is applied consistently to maintain consistency
between the training and testing data.

e (i) Preparing and preprocessing the training data: The URL dataset is cleaned and
normalized following Section 3.2, then processed through the feature extraction pipeline
from Section 3.1 up to step (iv).

e (ii) Feature extraction and encoding: The two feature groups, token-level TF-IDF and
character-level n-grams, are computed using formulas (1) and (2), then concatenated into
a hybrid vector according to formula (3).

e (iii) Training the Naive Bayes model: Model training within a Multinomial Naive Bayes
framework estimates prior class probabilities and feature conditional likelihoods. The
optimization process adopts the log-likelihood form given in formula (5).

e (iv) Inference on new URLs: When a new URL arrives, the system applies the same five-
step pipeline described in Section 3.1: preprocessing, feature extraction, feature fusion,
computation of the log-posterior scores using formula (5), and final comparison with the
decision threshold.

e (V) Threshold tuning and evaluation: The decision threshold is refined based on ROC or
F1-score to balance the trade-off between detection rate and false-alarm rate. Finally, the
model is evaluated using Accuracy, Precision, Recall, and F1-score on independent test
datasets.

4. DATASETS AND EXPERIMENTAL SETUP

To comprehensively evaluate the effectiveness of the proposed model, the study employs three
publicly available datasets widely used in the field of URL phishing detection. These datasets
were selected to ensure diversity, generalization capability, and representation of various URL
types found in real-world environments.

By combining traditional sources, real-time streams, and large-scale datasets, the model is
evaluated across diverse conditions, including:

e URLs manually labeled as phishing along with descriptive metadata from traditional
sources,

e Phishing URLs continuously updated from online reporting systems,

e Large-scale URL collections with high variability in lexical and character-level structure

All collected URLs are first processed using the pipeline described in Section 3.2 and then
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applied to model training and evaluation. This ensures consistency between the training and test
sets and helps eliminate unnecessary noise.

4.1. Datasets Used

To evaluate the proposed model comprehensively, the study employs three widely used phishing
URL datasets. These datasets represent three distinct scenarios: traditional benchmark data, real-
time phishing feeds, and large-scale heterogeneous URLs. All datasets are processed using a
unified pipeline so that training and testing follow identical procedures.

(i) UCI Phishing: The original UCI dataset provides 30 handcrafted webpage features but
does not include raw URLs. Therefore, in several open repositories (Kaggle, GitHub), the
community has reconstructed a corresponding set of URLSs based on the available domain
structure and meta-information. This study adopts that reconstructed version, consisting of
11,055 URLs labeled as phishing or legitimate. Significance: This dataset serves as a
baseline reference to illustrate differences in scale and label distribution when compared to
the other sources.

(if)PhishTank: PhishTank is a community-driven platform that provides manually verified
phishing URLs and updates continuously on a daily basis. Since the dataset is not fixed,
this study collects samples during August 2025, resulting in a cleaned set of 20,000 URLS
after removing duplicates and invalid entries. Significance: This dataset evaluates the
model’s adaptability to continuously evolving phishing patterns, where attackers
frequently modify URL structures to evade detection.

(iii) URLNet: This is a large-scale dataset released as part of the URLNet project by Le and
colleagues in 2019, containing approximately 30 thousand legitimate and phishing URLS
with diverse string structures. Significance: This dataset is essential for evaluating the
model’s generalization ability, robustness, and performance when handling complex
phishing patterns. Table 1 reports the sample distribution and class ratios of the
preprocessed datasets.

Table 1. Descriptive statistics of the three datasets used in the experiments.

Dataset S;g:f::es Phishing | Legitimate Pf}';?ilong (%ignlingg])
UCI Phishing 11.055 6.157 4.898 55.7% 61.2+18.4
PhishTank 20.000 12.000 8.000 60.0% 73.5+22.1
URLNet 30.000 15.000 15.000 50.0% 82.4+26.7

Looking at the table, we can observe that URLNet has the highest average URL length, reflecting
the complexity of modern data; PhishTank has a high phishing ratio, making it suitable for
evaluating sensitivity (Recall); and UCI exhibits lower noise levels, helping the model learn basic
phishing patterns.
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Figure 2. Visualization of the statistical characteristics of the three datasets

To visualize the values in Table 1, Figure 2 presents a matrix that shows the differences between
the main characteristics of each dataset. The figure clearly illustrates variations in data scale, the
phishing ratio, and the average URL length through the shading level of each cell. Datasets with
larger values, for example the total number of samples in URLNet or the number of phishing
URLs in PhishTank, are shown with darker colors, allowing readers to quickly observe
distribution trends. As a result, readers can readily identify factors that may impact the results
observed in subsequent experiments.

4.2. Strategy for Using the Datasets and Experimental Scenarios

In this study, the datasets described in Section 4.1 are applied both individually and jointly to
examine the model’s behavior across data originating from different sources. Based on this
design, two experimental scenarios are constructed as follows.

(i) Single dataset scenario: This setting considers independent training and evaluation on
each dataset, namely UCI, PhishTank, and URLNet. An 80-20 data partition is applied to
each dataset for training and testing, with class proportions kept unchanged. The entire
pipeline of preprocessing, feature extraction using TF IDF and character n-gram features,
feature fusion, and Naive Bayes training is applied identically across all datasets. This
scenario allows the model to be assessed within the internal distribution of each dataset.

(i) Merged dataset scenario: In this scenario, the UCI, PhishTank, and URLNet datasets are
merged into a single combined dataset. Duplicate, corrupted, or invalid records are
removed to avoid bias. The merged dataset is then divided into training and test sets, which
introduces an additional test partition without needing to adjust the sample size. While
preprocessing and feature extraction remain unchanged from the first scenario, the model
is trained on a more diverse distribution of data sources and URL types. This scenario
enables the evaluation of the model’s generalization ability when processing mixed URL
data originating from different sources.

4.3. Experimental Environment and Configuration

To ensure transparency throughout the evaluation process, this section presents the full
experimental environment used during model training and inference. A clear description of the
experimental context is necessary so that readers can understand the hardware, software
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resources, and the structure of the processing pipeline applied in the study. The software
environment is a key factor, as it governs the computation and integration of TF—IDF features,
character n-grams, and the Naive Bayes classifier. The details are divided into the following
components for clarity and reproducibility.

4.3.1. Experimental Environment

All experiments in this study were carried out on a standard computing environment to ensure
reproducibility of results and to reflect practical deployment conditions of a lightweight model.
The proposed workflow is developed in Python and relies on widely used machine learning
libraries, including scikit learn, NumPy, Pandas, and Matplotlib, to support model training, data
processing, and result visualization.

Model training was performed on a standard workstation with an Intel Core i7 CPU and 16 GB of
RAM. Due to the low computational complexity of the Naive Bayes classifier with TF—IDF and
n-gram features, GPU acceleration was unnecessary, supporting deployment in resource
constrained environments such as edge devices and browser extensions.

4.3.2. Hyperparameter Settings and Feature Extraction Pipeline

To ensure transparency and reproducibility, this section presents all hyperparameters used during
the feature extraction pipeline and the Naive Bayes model, along with explanations for each
design choice.

(i) TF IDF at the token level:

e The vocabulary size for TF IDF is limited to 20 000 tokens, which is a widely used
threshold. This selection is based on the observation that the distribution of URL tokens
typically follows a long tail pattern, where many rare tokens carry minimal meaningful
information while significantly increasing the dimensionality of the feature matrix.
Therefore, reducing the vocabulary size to 20000 helps minimize computational cost
without negatively affecting effectiveness.

e The minimum document frequency parameter is set to 2 to remove tokens that appear
only once, as these tokens usually belong to random query strings and do not contribute
stable patterns for learning. Tokens with high rarity often lead to poor generalization
across phishing URLSs.

e Tokenization is performed on URLs using characters such as “/”, “.”, “?”, “="_ %" and “
”, which represent common logical separators in domain and path structures. This
approach ensures semantic consistency in URL structure, helping TF IDF recognize
important tokens such as suspicious domains or abnormal path segments.

e The entire URL is converted to lowercase because URLs are case insensitive; if left
unchanged, TF IDF would treat “Login” and “login” as different tokens, reducing
representation consistency.

e Tokens outside the vocabulary are mapped to the symbol “UNK” to ensure that the
model can still process unseen tokens during inference while preventing uncontrolled
vocabulary growth.

(ii) Character n-gram features:

e Character level features are constructed based on n-grams with n = 2, 3, 4, which is a
widely used choice in many studies on URL analysis and phishing detection.
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e Bigrams with n = 2 help the model capture short character patterns such as “//”, “:”,
or other signals commonly found in malicious URLS.

e Trigrams and four grams are used to detect deceptive brand patterns, for example “pay”,
“app”, “ver”, or altered variants such as “mic”, “mlc”, “ama”, “arn” which frequently
appear in spoofed domains (typosquatting).

e The feature space is limited to approximately 30000 n-grams with the highest frequency.
Experimental studies show that exceeding this threshold does not improve effectiveness
while significantly increasing computational cost. The minimum document frequency
parameter is set to 3 to remove rare n-grams that do not provide meaningful
discriminatory value and would make the model less efficient.

e Character n-gram encoding is performed using CountVectorizer rather than TF IDF
because Multinomial Naive Bayes works best with frequency-based data, which is
consistent with the Multinomial distribution assumption.

(iii) Feature fusion:

e The two feature groups are combined by concatenating their feature vectors, resulting in
a final vector of approximately 50 000 to 60 000 dimensions. Dimensionality reduction is
avoided because sparse yet discriminative URL features may lose subtle patterns, such as
brand impersonation or irregular character sequences, that are vital for phishing
detection.

(iv) Multinomial Naive Bayes:

e The Multinomial Naive Bayes [21] model uses the smoothing parameter alpha
a €{0.5,1.0,1.5}, which is selected based on validation results. A smaller alpha equals
0.5 helps the model emphasize strong lexical signals in the feature space, while a larger
alpha equals 1.5 stabilizes the model when facing many rare feature patterns coming
from diverse URL distributions.

e The classification threshold is fine tuned using ROC or F1 score based on the objective
of the system. In phishing detection, the threshold is often shifted upward to increase
Recall, since missing a phishing URL is usually more dangerous than a lower Precision.

e The final decision is based on the log posterior probability, which avoids numerical
underflow when computing the product of many small probabilities in the Multinomial
model.

4.4. Experimental Results on Individual Datasets (Single-dataset Scenario)

The hybrid Naive Bayes model is evaluated independently on the UCI Phishing, PhishTank, and
URLNet datasets under an 80-20 data split, with comparative results reported in Table 2.

Table 2. Performance of the hybrid Naive Bayes model on individual datasets.

Dataset Accuracy | Precision | Recall | Fl-score
UCI Phishing 0.939 0.928 0.952 0.940
PhishTank 0.918 0.901 0.937 0.918
URLNet 0.904 0.887 0.922 0.904

Table 2 summarizes the experimental results of the hybrid Naive Bayes model with TF IDF and
character-level features on the UCI, PhishTank, and URLNet datasets using the Accuracy,
Precision, Recall, and F1 score metrics. To visualize the differences among datasets, Figure 3

25



International Journal of Network Security & Its Applications (IJINSA) Vol.18, No.1, January 2026

illustrates these four metrics in the form of bar charts, enabling quick observation of performance
variations when the data source changes.

0.96 Accuracy
Precision
. Recall
0.95 Fl-score
0.94
0.93}
g
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[}
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0.89f
0.88 UCI Phishing PhishTank URLNet

Figure 3. Comparison of the hybrid Naive Bayes model performance across the three datasets
From Table 2 and Figure 3, several detailed observations can be made as follows:

e (i) The UCI dataset yields the best results: Because the URL structure in this dataset is
relatively simple and contains many “classic” phishing samples, the model achieves
Accuracy of 0.939, Recall of 0.952, and an F1 score of 0.940. This indicates that the
model is able to effectively learn well known patterns frequently appearing in the training
data.

e (ii) PhishTank is more challenging, yet the model still maintains high Recall: Phishing
URLs in the PhishTank dataset are continuously updated, and their structures change
frequently, resulting in greater variability and complexity. Despite this, the model
achieves Recall of 0.937 and F1 score of 0.918, highlighting the strong contribution of
character level n-gram features in identifying brand impersonation and anomalous URL
strings.

e (iii) URLNet is the most complex dataset, although the model still performs stably:
URLNet contains a diverse range of domains, structures, and encoded character
sequences, making classification more difficult. Nevertheless, the model reaches
Accuracy of 0.904 and F1 score of 0.904, which is a notably competitive performance for
a lightweight model such as Naive Bayes.

e (iv) Hybrid features consistently improve Recall across all datasets: In all three datasets,
Recall remains above 0.92, demonstrating that the model is highly sensitive to phishing
URL detection. This is extremely important in security systems, where missing a
phishing website poses a higher risk than generating false alarms. The combination of TF
IDF token level features and character n-gram features plays a crucial role in this
improvement, helping the model achieve a strong balance between overall accuracy and
the ability to detect phishing threats.

4.5. Results on the Merged Dataset Scenario

Table 3 presents the results of the model when trained and evaluated on the merged dataset
consisting of UCI, PhishTank, and URLNet. This scenario closely reflects real world conditions,
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where URLSs originate from diverse sources with varying levels of heterogeneity.

Table 3. Performance of the hybrid Naive Bayes model on the merged dataset.

Metric | Merged dataset | Average of 3 datasets | Improvement
Accuracy 0.938 0.931 +0.7%
Precision 0.915 0.907 +0.8%

Recall 0.947 0.928 +2.0%
F1-score 0.931 0.925 +0.6%

The merged-dataset setting yields the largest gain in recall (+2.0 percent), reflecting improved
sensitivity to diverse phishing patterns. This is particularly important in phishing detection, where
false negatives are more costly than false positives.

However, Accuracy and Precision slightly decrease compared with the model trained
independently on each single dataset. The reason lies in the higher heterogeneity of the merged
dataset, which reduces the model's ability to maintain the same level of “purity” as when learning
from a clean, single source. A number of legitimate URLs with uncommon structures from
URLNet and PhishTank may be misclassified as phishing, resulting in a lower Precision.

096
Merged dataset
Average of 3 datasets

0.85r +2.1%

+0.7% +0.6%

092} +0.8%

091

0.90

Accuracy Precision Recall Fl-score

Figure 4. Comparison on merged data and the average of the three datasets

To visualize the results, Figure 4 compares the performance of the model under the two
scenarios: training on each dataset individually and training on the merged dataset. Figure 4
shows that although some measures slightly decrease, the merged-dataset setting yields improved
overall performance, especially in recall, indicating better generalization across diverse data
sources. This demonstrates that training across multiple data sources helps the model generalize
better and operate more robustly when deployed in real world environments.

Based on the findings from Tables 2 and 3, several key observations can be made:

e The hybrid Naive Bayes model is truly effective for phishing detection based on static
URL analysis.

e Character level n-grams play a crucial role in identifying obfuscated domain names and
suspicious lexical patterns.

e TF IDF contributes significantly to capturing meaningful tokens (brand names,
keywords, suspicious terms).
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e The merged dataset scenario provides the highest overall performance and the best
generalization.

e The achieved performance is remarkably high for a lightweight model that does not
require GPU resources or access to HTML content.

e These findings also support the central argument of the study: when properly optimized
with the right combination of token level and character level features, the Naive Bayes
model can achieve competitive performance in URL phishing detection, making it highly
suitable for practical deployment in resource constrained environments.

5. DISCUSSION

In this section, we provide a deeper analysis of the implications of the experimental results,
compare the proposed model with several related studies, evaluate the contribution of each
feature group, clarify the rationale behind dataset selection and model configuration, and
highlight the current limitations as well as future research directions.

5.1. Comparison with Existing Studies

Table 4 compares the proposed approach with representative deep learning and traditional
machine learning methods for URL phishing detection. When compared with recent studies
presented in Table 4, it is evident that many approaches based on deep learning, such as those
proposed by Ovi et al. (2024) and Yildirim et al. (2023), achieve high performance but incur
substantial computational costs and rely heavily on GPU resources. This reliance poses
significant challenges for real world deployment in realtime environments or on edge devices,
especially when processing large volumes of continuously updated URLSs. In contrast, traditional
machine learning studies that rely on hand crafted features, such as those by Hadi et al. (2024)
and Garnayak et al. (2023), offer lower computational cost but their performance is constrained
by the inherent limitations of manually engineered features, which are difficult to scale and often
fail to capture emerging attack variants.

In this context, the Hybrid Naive Bayes model proposed in this study demonstrates an optimal
balance between effectiveness and deployment cost. By integrating token level TF—IDF features
with character level n-grams, the model is capable of capturing both semantic phishing cues and
fine-grained brand spoofing patterns, which are highly prevalent in modern phishing attacks.
Notably, the entire pipeline operates fully on CPU with low processing latency, while still
achieving competitive performance compared with more complex deep learning models. This
finding suggests that lexical feature-based approaches remain valuable when designed and
optimized appropriately.

From an application perspective, the proposed model exhibits superior deployability compared
with most studies in the comparison table. Its independence from GPU resources, the absence of
HTML content processing, and the non-reliance on hand crafted features make it easy to integrate
into practical systems such as firewalls, browsers, network gateways, or 10T devices. These
results reinforce the conclusion that a lightweight and properly optimized model can deliver
reliable phishing URL detection performance and may even be more suitable than heavier models
when deployed in resource constrained environments.

Table 4. Comparison with related studies.

Study Method Fejggges Cost Deployability Remarks
Ovi etal., | Ensemble + URL + High Low Strong performance but
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2024 [22] | Deep Learning | HTML complex models,
difficult for realtime
deployment

Yildirim Neural .

etal., Networks I(éczlraljtlglr_- High Medium bGuq[og gﬁir;g;a(glz:itjlon

2023[23] | (DNN) d

Hadi et Lexical + Depends on hand-

al., 2024 RF, SVM, LR | statistical Medium High crafted features, less

[24] features scalable

Gamayak _ Suitable as a baseline

etal, Traditional ML URL lexical Medium High but less acpurate than

features deep learning

2024 [25]
approaches
Balances accuracy

. . . TF-IDF + and deployment cost;
This Hybrid Naive character n- | Very low High efficient for low
study Bayes
gram resource
environments

5.2. Rationale for Choosing the Two Feature Groups (Hybrid Features)

Token-level and character-level features are jointly adopted due to their complementary roles in
URL phishing detection. Token level TF—IDF vectors effectively capture semantic indicators,
including brand names, unusual keywords, and behavior related terms such as “secure”, “update”,
“session”, and “verify”. These cues frequently appear in traditional phishing URLs and carry
high discriminative value.

Meanwhile, character level n-gram features focus on the structural form of the URL string,
enabling the model to detect brand impersonation variants (typosquatting) such as “paypal”,
“go0gle”, and other irregular character sequences that are difficult to analyze using token level
features. N-grams of lengths two to four allow the model to learn both local structural patterns
and repetitive micro patterns commonly used by attackers to bypass vocabulary-based systems.

The integration of semantic and structural URL features results in a discriminative feature
representation with low computational overhead. This explains why the hybrid model achieves
consistently high Recall across all datasets and maintains stable performance, while also
outperforming other approaches on the merged dataset. This hybrid strategy therefore provides a
well-balanced tradeoff between generalization, sensitivity, and practical deployability.

5.3. Error Analysis

This subsection analyzes common misclassification cases to better understand the model’s
behavior. Errors mainly include false positives on legitimate URLs and false negatives on
phishing URLs. The results show that errors are concentrated in two groups: legitimate URLS
mistakenly classified as phishing (FP) and phishing URLSs that remain undetected (FN).

False positives mainly occur on legitimate URLs that contain many suspicious tokens, such as
“secure”, “payment”, “verify”, or URLs with long and complex path structures. For example:
“https://secure-payment-update.example.co/login/verify-step” these legitimate URLs include
features commonly appearing in phishing, which mislead the model. This explains why Precision
decreases when training on the merged dataset, as the classifier becomes more sensitive to high-

risk patterns.
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In contrast, false negatives often appear in phishing URLs that use subtle obfuscation or
typosquatting techniques. For example: “http:/paypal-security-center.com/user/resolve” here,
the use of ““1” instead of “1” makes token-level TF—IDF less effective, and character n-grams may
fail to capture this rare transformation. Some highly obfuscated URLs or encoded strings create
additional difficulty, making the extracted features sparse and harder for the model to distinguish.
Overall, these error patterns indicate that the model performs consistently well on common
phishing samples but faces challenges with sophisticated variants and with legitimate URLS
containing many security-related tokens. These observations serve as important insights for
proposing improvements in subsequent steps.

5.4. Insights and Recommendations

The combined results and error analysis show that the hybrid Naive Bayes model achieves very
high performance despite its low complexity. This confirms that simple methods, when properly
optimized, can still deliver competitive effectiveness in phishing URL detection. The integration
of token level TF-IDF and character level n-grams plays a crucial role in improving sensitivity,
which is clearly reflected in the outstanding Recall obtained on the merged dataset.

By combining high detection performance with low computational cost, the proposed model is
well suited for real time security applications, including online banking, e wallet services, and
browser based URL filtering, while avoiding the heavy resource requirements of GPU intensive
neural models.

However, the model still has some limitations, mainly reflected in FP and FN errors. The slight
decrease in Precision in the merged scenario indicates the need for a post filtering mechanism to
reduce false alarms. In addition, detecting sophisticated brand spoofing variants remains
challenging. We recommend several extensions, such as enriching a library of brand variants,
exploiting domain level features such as WHOIS information or domain age, or using a
lightweight auxiliary model to check borderline cases.

5.5. Limitations and Future Directions

Despite its good performance, the model is limited to URL string based features and does not
leverage domain or DNS related information, which may reduce effectiveness against newly
registered phishing URLs. In addition, experiments are conducted on only three benchmark
datasets, and further evaluation on real time data is required.

In the future, we plan to integrate additional domain level features, experiment with lightweight
ensemble mechanisms, and extend the model to streaming environments in order to assess its
applicability in real time anti phishing systems.

6. CONCLUSION

This study proposed a phishing URL detection model based on Naive Bayes that combines two
feature groups: token level TF—IDF and character level n-grams. Experimental results on the
UCI, PhishTank, and URLNet datasets show that the model achieves high and stable
performance, with Recall consistently above 0.92 in all scenarios. When trained on the merged
dataset, the model further demonstrates strong generalization ability, improving sensitivity by 2.0
percent compared with the average over individual datasets. This confirms that lightweight
methods, when carefully designed and optimized, can reach effectiveness levels that are
competitive with more complex approaches.
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By combining token level and character level features, the model captures both semantic cues
and structural patterns, enabling effective detection of conventional phishing and brand spoofing
attacks. Its low computational overhead eliminates the need for GPUs and supports efficient
deployment on lightweight platforms such as gateways, browser extensions, and edge devices.

Alongside these advantages, the error analysis shows that the model still faces difficulties with
legitimate URLSs that contain many security related keywords, which tend to cause FP, and with
sophisticated typosquatting variants, which tend to cause FN. These are also promising directions
for future work. Possible improvements include adding domain level features, expanding the set
of brand variants, or integrating a lightweight auxiliary model to handle hard borderline cases.

Overall, this study provides an effective, easy to deploy, and highly practical approach to
phishing detection based on static URL analysis. The results open up potential for application in
online anti fraud systems and lay a foundation for more advanced developments in future
research. Future work will explore the integration of additional contextual features while
maintaining the lightweight nature of the proposed approach.
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