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Abstract. The proliferation of Internet of Things (IoT) devices has cre-
ated unprecedented security challenges, with traditional intrusion de-
tection systems struggling to achieve the accuracy needed for opera-
tional deployment. This comprehensive study investigates three advanced
Graph Neural Network (GNN) mechanisms for network intrusion de-
tection, addressing the fundamental limitations of standard edge-level
classification approaches. We present Prototype-GNN, which lever-
ages distance-based classification with learnable prototype embeddings;
Contrastive-GNN, which optimizes embedding geometry through su-
pervised contrastive learning; and GSL-GNN, which adaptively learns
optimal graph structure from node features. Through extensive experi-
mentation on the TON-IoT dataset containing 1 million network connec-
tions, we demonstrate that these mechanisms achieve 94.24%, 94.71%,
and 96.66% accuracy respectively, representing substantial improve-
ments of +2.37, +2.84, and +4.79 percentage points over the baseline
EdgeLevel GCN (91.87%). Our best-performing GSL-GNN architecture
achieves 99.70% ROC-AUC with an exceptionally low 1.5% false positive
rate, addressing the critical challenge of alert fatigue in security opera-
tions. This journal article extends our preliminary conference study [1] by
providing comprehensive ablation studies, additional architectural vari-
ants, and deeper theoretical analysis.

Keywords: Graph Neural Networks - Network Intrusion Detection - IoT
Security - Prototype Learning - Contrastive Learning - Graph Structure
Learning - Deep Learning

1 Introduction

The Internet of Things revolution has created security challenges of fundamen-
tally different character than traditional network defense. Modern IoT ecosys-
tems consist of billions of diverse devices—ranging from industrial sensors and
medical implants to smart home controllers and infrastructure monitors—all
communicating via a wide variety of protocols with differing security charac-
teristics. This massive scale and extreme heterogeneity overwhelm conventional
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security approaches. Individual devices lack the computational resources for so-
phisticated local protection, yet centralized monitoring systems struggle with
the volume and diversity of network traffic. Network intrusion detection sys-
tems have emerged as essential defensive infrastructure, analyzing traffic pat-
terns to identify malicious activities without requiring on-device computation.
However, operational deployment demands extraordinary capabilities: systems
must process enormous traffic volumes generated by diverse applications, distin-
guish sophisticated attack patterns from legitimate behaviors in heterogeneous
environments, maintain minimal false alarm rates to preserve the effectiveness of
human analysts, deliver real-time verdicts enabling automated threat response,
and adapt continuously to evolving adversarial tactics. Satisfying this full set
of requirements at the same time poses a fundamental challenge that existing
approaches have difficulty addressing, thereby motivating the exploration of new
detection architectures.

Statistical learning has revolutionized intrusion detection by enabling au-
tomated discovery of malicious patterns from network traffic data. Contempo-
rary machine learning approaches—including ensemble tree methods, maximum-
margin classifiers, and proximity-based techniques—operate by learning decision
boundaries in feature spaces constructed from network flow statistics. Secu-
rity practitioners employ these methods by engineering numerical descriptors
that capture traffic characteristics: aggregate volume metrics, protocol usage
patterns, connection duration distributions, and port access frequencies. When
trained on labeled examples, these classifiers successfully identify deviations from
normal traffic behavior as reflected in statistical properties of individual flows.
The fundamental architectural constraint lies in the independence assumption:
each connection is treated as a standalone observation, with classifiers unable
to reason about relationships between communicating entities or analyze coor-
dinated activities spanning multiple network hops. A network is fundamentally
a graph where devices (nodes) interact through connections (edges), and at-
tacks often exhibit graph-level patterns—such as coordinated botnets, lateral
movement, and hierarchical command-and-control structures—that cannot be
captured by flat feature vectors [2].

Deep neural architectures have transformed intrusion detection by introduc-
ing the capability for autonomous hierarchical abstraction learning from un-
processed network observations. This eliminates the traditional requirement for
security domain experts to manually engineer discriminative features, as the
system automatically discovers multi-level representations. Convolutional frame-
works process packet-level information by casting network flows into formats
resembling sequential time-series or structured image-like data. Recurrent net-
works and LSTM mechanisms identify dependencies that propagate through
temporal sequences of network activity. Autoencoders learn compressed rep-
resentations for anomaly detection through reconstruction error [3]. The self-
learning nature of these systems enables automatic discovery of temporal pro-
gression patterns, protocol behavioral signatures, and payload-embedded char-
acteristics without explicit specification. Nevertheless, a critical architectural
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constraint exists: these neural paradigms were fundamentally designed for data
with regular geometric structure—pixel grids for images, ordered positions for
sequences—creating a mismatch with the variable, interconnected topology of
network communications. While CNNs excel at local feature extraction through
convolutional filters and RNNs model sequential dependencies, neither naturally
handles the irregular, non-FEuclidean structure of network graphs where nodes
have varying degrees and connections exhibit complex patterns [4].

Graph Neural Networks (GNNs) represent a breakthrough for learning on
graph-structured data by generalizing neural networks to non-Euclidean do-
mains [5]. The core innovation is message passing: each node aggregates in-
formation from its neighbors through learnable transformations, enabling the
network to capture both node features and relational structure. Graph Convolu-
tional Networks (GCNs) apply spectral graph theory to define convolutions on
graphs [6], while Graph Attention Networks (GATS) learn importance weights
for different neighbors [7]. GraphSAGE introduces sampling-based aggregation
for scalability [11]. GNNs have achieved state-of-the-art results across diverse
domains: social network analysis (fraud detection, recommendation), molecular
chemistry (drug discovery, protein folding), knowledge graphs (link prediction,
reasoning), and traffic forecasting [9]. For network intrusion detection, GNNs
naturally model the network graph where devices are nodes and connections are
edges. By propagating information through the topology, GNNs capture complex
attack patterns such as distributed attacks, multi-hop propagation, and struc-
tural anomalies that flat ML models miss [10]. But substantial room remains for
architectural innovations.

The theoretical understanding of edge-level GNN expressiveness has deep-
ened considerably. [18] proved that edge-level message passing can distinguish
graph structures that node-level methods cannot, establishing theoretical supe-
riority for tasks where edge properties are critical. [19] analyzed the Weisfeiler-
Leman expressiveness of edge-level GNNs, showing they achieve higher-order
graph isomorphism testing compared to standard GNNs. [20] provided general-
ization bounds for edge classification, proving that edge-augmented architectures
achieve better sample complexity when edge features carry discriminative infor-
mation—precisely the case in network intrusion detection.

This paper introduces three GNN architectures that substantially advance
intrusion detection accuracy through distinct mechanisms:

1. Prototype-GNN: Learns key example patterns and classifies new connec-
tions by finding which example they match best

2. Contrastive-GNN: Organizes the model’s internal space by pushing at-
tacks and normal traffic into different regions

3. GSL-GNN: Discovers the optimal way to connect devices for sharing infor-
mation during classification

We provide comprehensive experimental validation on 1 million network con-
nections, architectural trade-off analysis, and show generalization potential to
other edge classification domains. The rest of this paper is organized as fol-
lows: Sect. 3 presents our methodology including the three architectures, Sect. 4
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describes experimental setup and results, Sect. 7 discusses findings and implica-
tions, and Sect. 8 concludes with future directions.

2 GNN Classification

2.1 Graph Level Classification

Traditional GNN approaches employ graph level classification, where the entire
network snapshot receives a single label (malicious or normal) [12]:

ggraph = fclasmfy(READOUT({hEL)}ZGV)) (1)
(L

where h; ) are final node embeddings and READOUT(-) aggregates them
(e.g., mean/max pooling). However, this approach suffers from the aggregation
bottleneck: all device-specific and connection-specific information is compressed
into a single graph-level representation, losing fine-grained attack signatures and
making it impossible to identify which specific devices or connections are com-
promised.

2.2 Node Level Classification

An intermediate approach is node level classification, where individual devices
(nodes) are classified as compromised or benign:

Ui = fclassify(hl(‘L)7xi) (2)
(L)

where h;”” is the node embedding after L GNN layers and x; are node features
(device characteristics). This approach offers better granularity than graph-level
classification by identifying which specific devices exhibit malicious behavior.
It is particularly suitable for detecting compromised IoT devices, botnets, or
infected hosts. However, node-level classification still loses connection-specific
information: a device may have both legitimate and malicious connections, but
node-level methods cannot distinguish between them. Additionally, many at-
tacks manifest primarily in connection patterns such as port scanning, data
theft rather than device-level features, making node classification insufficient for
comprehensive intrusion detection.

2.3 Edge Level Classification

The most detailed approach is edge level classification, which directly classi-
fies individual connections:

yij = fclassify(hi7 hj, xij) (3)

where h;, h; are node embeddings capturing graph context and x;; are edge
features (connection statistics). This paradigm is fundamentally more suitable

for intrusion detection because:
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— Fine-grained predictions: Identifies which specific connections are mali-
cious

— No information bottleneck: Attack signatures preserved in edge repre-
sentations

— Connection-level patterns: Captures attacks manifested in traffic char-
acteristics (bytes, packets, protocols, ports)

— Scalability: Computational cost linear in number of edges, not entire graph
— Real-time applicability: Can classify new connections as they arrive

Our work advances edge-level GNN architectures through three mechanisms
explained in the remainder of this section.

3 Methodology

3.1 Problem Formulation
Let G = (V,E, Xy, Xg) represent a network traffic graph where:

— V ={v1,v2,...,0,} is the set of IP address nodes.
— E ={e;; | vi,v; € V} is the set of connections (edges).
— Xy € R"*4 contains node features (e.g., I[P metadata, behavioral statistics).

Xp € RIFIXde contains edge features (e.g., bytes, packets, duration, proto-
cols).

For network intrusion detection, we define the edge classification task as:
[ (G eiy) = yi; €{0,1} (4)

where y;; = 0 indicates normal traffic and y;; = 1 indicates an attack con-
nection.

3.2 Baseline: EdgeLevel GCN

We establish a strong baseline using standard Graph Convolutional Networks
adapted for edge classification. Figure 1 shows the baseline EdgeLevel GCN ar-
chitecture. The baseline EdgeLevel GCN represents a standard graph convolu-
tional approach for edge-level classification in network intrusion detection. Node
features propagate through three GCN layers with normalization and dropout
regularization. Edge representations are constructed via concatenation of end-
point node embeddings and intrinsic edge features, followed by MLP-based clas-
sification.
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Node Embedding Each node i is initialized with features z; € R% (device
characteristics). GCN layers propagate information:

! 1 !
W =o| S ———wOp{ (5)

jeN@uty V%ids

where N(i) are neighbors, d; is degree, WO are learnable weights, and o is
ReLLU activation. This computes:

HY = o(D=2 AD~ 2 HOW®) (6)
where A= A+ 1 (adjacency with self-loops) and D is degree matrix.

Edge Classification For each edge (7,7), we concatenate node embeddings
with edge features:

L L
eij = [ | A4 |2i5] (7)

where || denotes concatenation and x;; € R are edge features (bytes, pack-
ets, duration, ports). A 3-layer MLP classifier predicts:

Qij = MLP(@L‘]‘) = WgO’(WQO’(Wleij)) (8)

Training We use Focal Loss to handle class imbalance:

ﬁfocal == 70[25(1 71715)’y IOg(pt) (9)

where p; is predicted probability, o; balances classes, and v = 2 focuses on
hard examples.

Computational Complexity GCN Layers: Each of L = 3 layers computes
HUD = o(D~2 AD~2 HOW®). The sparse matrix multiplication AH® costs
O(|E| - d) where |E| is the number of edges and d is the hidden dimension. The
dense transformation HOW® costs O(|V|-d?). Combined: O(L-(|E|-d+|V|-d?)).

Edge Classification: For |E| edges, concatenation and MLP forward pass
cost O(|E| - d?).

Total Complexity: O(L-|E|-d+ L-|V|-d?+|E|-d?). For typical network
graphs where |E| > |V| and L is small constant, this simplifies to O(|E| - d2).

3.3 Prototype-GNN: Distance-Based Classification

Prototype-GNN addresses the limitation that a single decision hyperplane can-
not capture diverse attack patterns. Instead, we learn multiple prototypes—
representative embeddings for attack and normal patterns—and classify based
on distance. Figure 2 presents the Prototype-GNN architecture. Prototype-GNN

40



International Journal of Network Security & Its Applications (IINSA) Vol.18, No.1, January 2026

Input Graph G=(V,E)
X € R™12, E_feat € R™1°0

1
T

Y

A

3-Layer GCN Encoder
12-128-128-128, Dropout=0.3

| (heaw)

Edge Encoder (MLP)
[hi 1] by || x] - 128-dim

e T 2!

Concatenation

[hi || by || ed = 384-dim

} ccccc t

Edge Classifier
3842561282, Dropout=0.3

!
e T 2!

Output

¥4 € {0,1} (Normal/Attack)

Fig. 1. EdgeLevel GCN Baseline Architecture

introduces learnable prototype-based classification using distance metrics in the
embedding space. The architecture maintains 16 trainable prototypes (8 per
class) initialized through k-means clustering and refined end-to-end. Classifica-
tion relies on L2 distance computation between edge embeddings and prototypes,
with predictions derived from minimum distance assignment. The composite loss
function incorporates cross-entropy, intra-class clustering, and inter-class sepa-
ration objectives.

Architecture Node Embedding: Same as baseline (3 GCN layers), producing
final node embeddings hl(»L) € R? where L = 3.

Edge Encoding: For each edge (i,7), concatenate node embeddings with
edge features:

L L
eij = [P |RSH |l2y] € R+ (10)

Prototype Layer: We learn K prototypes per class (attack/normal):

Pattack - {p?vpga“'apcll(}a Pnormal = {p’j’[lvpgvvprll(} (11)

where each p, € R2%tde is a learnable parameter initialized via K-means
Clustering.
Distance Computation: For edge e;;, compute distances to all prototypes:
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diy = |lei; — pll3 (12)

Classification: Predict class based on minimum distance:

N attack  if ming d;* < miny, d};"
Yij = Y J (13)
normal otherwise
For training, convert distances to probabilities via Softmax:
k,a
p;z]ttack — Zk exp(_dij ) (14)

Spexp(—di®) + 32, exp(—di")

Loss Function We employ a triple loss combining classification, cluster com-
pactness, and class separation:

ﬁtotal = ECE + /\1£cluster + /\2ﬁsepa7"ate (15)

Classification Loss: Cross-entropy on distance-based probabilities:

Lop ==Y yilog(pif"*™*) + (1 — yi;) log(1 — pff**") (16)
()

Cluster Compactness: Encourages prototypes of same class to be diverse:

cluster = Z Z H || Te (17)
cef{a,n} k#k’ pk pk, 2
Class Separation: Pushes attack and normal prototypes apart:
separate Z (18)

ek ”pk pkaQ +e

with Ay = 0.05, A2 = 0.05, ¢ = 0.1 for numerical stability.

Computational Complexity GCN Encoding: Same as baseline, O(L - |E| -
d+ L-|V|-d?) where L = 3.

Distance Computation: For each of |F| edges, compute distances to 2K
prototypes (K attack + K normal). Each distance computation ||e;; — px||3 costs
O(demp) where demp = 2d + d. is the edge embedding dimension. Total: O(|E| -
K- demb)-

Softmax Classification: Converting distances to probabilities costs O(|E|-
K).

Total Complexity: O(L-|E|-d+ L-|V|-d*+ |E|-K -d). Since K = 8 is a
small constant, this simplifies to O(|E| - d?), matching the baseline asymptotic
complexity with minimal overhead.

42



International Journa of Network Security & Its Applications (IINSA) Vol.18, No.1, January 2026

Input Graph G=(V,E)
X € R™17, E_feat € R™1°

1
T

3-Layer GCN Encoder

12-128-128-128

I (reww)

Edge Encoder (MLP)
[h |1 by || xa] = 128-dim

} ER®

Learnable Prototypes
8 Attack + 8 Normal (each € R*)

1
T

Distance Computation
d = |les - pell?

\ 1 distan b,

Distance-to-Probability
Softmax over all 16 distances

\ } prediction b,

Output

1= argmin_c min_k d~(c.k)

(Loss: L_CE + ArL_cluster + Ax-L_separate]

Fig. 2. Prototype-GNN Architecture

Interpretability Unlike blackbox classifiers, Prototype-GNN provides inter-
pretability: each prototype represents a learned attack/normal pattern. Analysts
can inspect which prototype triggered an alert and visualize similar historical
connections. This aids in understanding attack variants and reducing false pos-
itives.

3.4 Contrastive-GNN: Optimizing Embedding Geometry

Standard cross-entropy loss only encourages correct predictions but does not
structure the embedding space. Contrastive-GNN explicitly optimizes geometry:
pulling same-class edges together while pushing different-class edges apart. Fig-
ure 3 presents the Contrastive-GNN architecture with a dual-head design. The
dual-head architecture optimizing both classification accuracy and embedding
geometry simultaneously. Following shared GCN encoding, the architecture bi-
furcates into parallel classification and projection heads. The projection head
generates L.2-normalized embeddings for supervised contrastive learning, which
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explicitly maximizes inter-class separation and intra-class compactness through
temperature-scaled similarity metrics.

Architecture Node Embedding: Same as baseline (3 GCN layers), producing

final node embeddings hEL) € R? where L = 3.
Edge Encoding: For each edge (4,j), concatenate node embeddings with
edge features:
L)y (L
eij = (171" lleis] € R+ (19)

Dual-Head Design:

— Classification Head: 3-layer MLP predicting attack/normal from e;;
— Projection Head: 3-layer MLP mapping e;; to 128-d normalized space

7;; = ClassificationHead(e;;) (20)

z;; = normalize(ProjectionHead(e;;)) € R'?®,  ||z;|la = 1 (21)

Supervised Contrastive Loss For each edge (i,7) in a batch, define:

— P(i,j): Positive set (edges with same label)
— A(i,7): All other edges in batch

The supervised contrastive loss:

Lecontrast = —#)‘ Z log E exp(Zij ’ Z;D/T) (22)

|P(i,j peP ) a€A(i,j) exp(zij - 24/T)

where 7 = 0.07 is temperature controlling concentration. This maximizes
similarity to same-class edges while minimizing similarity to different-class edges.

Combined Loss
Ltotal = l:CE + /\‘Ccontrast (23)

with A = 0.5 balancing classification and contrastive objectives.

Computational Complexity GCN Encoding: Same as baseline, O(L - |E| -
d+L-|V|-d?).

Dual Heads: Both classification and projection heads process |E| edge em-
beddings through 3-layer MLPs, costing O(|E| - d?) each.

Contrastive Loss: For a batch of B edges, computing pairwise similarities
zij - zp requires O(B? - dyy0;) where dyro; = 128 is the projection dimension.
Across all |E|/B batches: O(|E| - B - dproj)-

Total Complexity: O(L- |E|-d+L-|V|-d*+|E|-d*+|E|- B-dproj). With
typical batch size B < |E|, this simplifies to O(|E| - d?) asymptotically, though
the contrastive term adds O(B - dp,,;) overhead per edge in practice.
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Fig. 3. Contrastive-GNN Architecture

3.5 GSL-GNN: Adaptive Graph Structure Learning

The baseline uses the physical network topology for message passing. However,
the optimal structure for classification may differ—devices may share behavioral
patterns without direct connections (e.g., botnet members). GSL-GNN learns
this structure adaptively. Figure 4 illustrates the GSL-GNN architecture. GSL-
GNN addresses the limitation of fixed physical network topology through adap-
tive graph structure learning. The architecture comprises dual parallel paths: one
operating on the original adjacency matrix and another on a learned adjacency
matrix derived via bilinear attention mechanisms. Top-k sparsification ensures
computational tractability while preserving salient connections. Node embed-
dings from both paths undergo weighted fusion 0.5 before edge classification.
This adaptive topology learning captures latent behavioral patterns orthogonal
to physical connectivity,

Structure Learner Given node features H(®) = X € R"*? learn adjacency
matrix:

Atearneali, j] = BilinearAttn(h{”, h{")) (24)

= o (h{"" Warenh\”) (25)
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where Wit € R%*? learns feature interactions. This produces dense Ajeqrned €
Rnxn.

Sparsification: To avoid O(n?) computation, keep only top- k neighbors per
node:

Let T; = TopK(Ajearnedli, :], & = 15) (26)
.. Alearned[i7j] lf] S E

As arsel|ty J| = 27

P i, J] {0 otherwise (27)

Numerical Stability: Critical implementation detail:
Ajearnea = softmax(clamp (A4, —20,20)) (28)

to prevent NaN from extreme values.

Dual-Path GCN Process features using both learned and original topologies:

Hl(el:rlrzed = GCN(H(I)v Alearned) (29)
Htgf“jgli)nal = GCN<H(l)7 Aoriginal) (30)

Fuse via weighted combination:
U+ — O‘Hz(é:rlged +(1— a)H((frfgli)ml (31)

with a = 0.5 balancing learned and physical structure.

Edge Classification Same as baseline: concatenate node embeddings with edge
features, feed to MLP.

End-to-End Training: The structure learner is differentiable, enabling joint
optimization:

Liotal = Lo + ALyeg (32)

where L;cq = | Ajearned||% prevents trivial solutions.

Computational Complexity Structure Learning (Naive): Computing bi-
linear attention Ajeqrnealt, j] = o(hi Wasenhj) for all V|2 node pairs costs O(|V|?-
d?). This is prohibitive for large graphs.

Sparsification: Keeping only top-k neighbors per node via TopK(Ajcarned|s :
|,k = 15) reduces the effective adjacency to O(]V] - k) edges. This requires
O(|V|?log k) for k-selection across all nodes, but is computed once per forward
pass.

Dual-Path GCN: Processing both learned and original graphs costs 2-O(L-
|E|-d+ L-|V]-d?) where the learned graph has O(|V] - k) edges. The fusion
operation aHjeqrned + (1 — &) Horiginat 18 O(|V] - d).
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Fig. 4. GSL-GNN Architecture

Edge Classification: Same as baseline, O(|E| - d?).

Total Complexity: O(|V|>-d*>+|V|*logk+L-|V|-k-d+L-|V|-d*>+|E|-d?).
The dominant term is structure learning: O(|V|? - d2?) without approximations.
However, with top-k sparsification reducing effective computation, practical com-
plexity approaches O(|V|-k-d?+ |E|-d?), achieving the noted 26 x speedup over
naive O(|V|?) adjacency.

4 Experimental Setup

4.1 Dataset

In this paper, we use the TON_IoT Network Intrusion Detection Dataset [13-17]
as it contains raw network flow data from IoT devices.

Given the severe class imbalance in the original dataset (96.4% attacks, 3.6%
normal), we create a balanced subset through stratified sampling, maintaining
temporal ordering to preserve realistic traffic patterns.

4.2 Temporal Graph Construction

Network connections are organized into 200 temporal graph snapshots:
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Snapshot size: 3,000 connections each

— Nodes: Unique IP addresses (avg 346 per snapshot)

Edges: Directed connections between IPs

Node features (12-dim): In/out degree, bytes, packets, avg connection du-
ration, protocol distribution, port entropy

Edge features (10-dim): Bytes sent/received, packet count, duration, pro-
tocol type (TCP/UDP/ICMP), source/destination ports, flags

Feature Engineering Node Features (per IP address):
x; = [in_deg, out_deg, total_bytes, avg_duration, ...] (33)
Edge Features (per connection):

x;; = [bytes, packets, duration, protocol, ports] (34)

Normalization All features normalized to [0, 1] via min-max scaling:

T — Tmi
LTnorm = —— (35)

Tmaz — Tmin

computed on training set, applied to validation/test.

Graph Construction Adjacency matrix A € {0,1}"*"™ where Afi,j] = 1 if
connection exists from IP i to j.

4.3 Data Preprocessing
We create 200 temporal graph snapshots (3000 connections each) and split:

— Training: 140 snapshots (70%, 420K edges)
— Validation: 30 snapshots (15%, 90K edges)
— Test: 30 snapshots (15%, 90K edges)

Each snapshot preserves the original temporal ordering and maintains a bal-
anced class distribution, with an attack ratio ranging from 40% to 60%, allowing
for controlled variation.

5 Results

Table 1 presents a comprehensive comparison of all four models on the test set.
Figure 5 presents a radar chart to visually compare the model results. Figure 6
shows how the proposed architectures improved accuracy relative to the baseline
EdgeLevel GCN.

1. All architectures substantially outperform baseline:
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Table 1. Model Performance on Test Set

Model Acc Prec Rec F1 AUC Time
EdgeLevel GCN  91.87 88.31 96.46 92.20 97.39 4 min
Prototype-GNN  94.24 93.36 95.21 94.28 98.44 12 min
Contrastive-GNN 94.71 93.21 96.41 94.79 99.08 18 min
GSL-GNN 96.66 98.47 94.78 96.59 99.70 35 min

All Metrics Comparison
Radar Chart

—e— EdgeLevelGCN (Baseline)
—e— Prototype-GNN

—e— Contrastive-GNN
Precision —e— GSL-GNN

Fig. 5. Radar Chart for Algorithms

— Prototype-GNN: +2.37 pp (91.87% — 94.24%)
— Contrastive-GNN: +2.84 pp (91.87% — 94.71%)
— GSL-GNN: +4.79 pp (91.87% — 96.66%)

2. GSL-GNN achieves near-perfect discrimination: 99.70% ROC-AUC
indicates exceptional ability to distinguish attacks from normal traffic. Only
3,002 total errors out of 90,000 connections.

3. Trade-off between accuracy and efficiency:

— Best accuracy: GSL-GNN (96.66%, 35 min training)
— Best balance: Contrastive-GNN (94.71%, 18 min training)
— Most efficient: Prototype-GNN (94.24%, 12 min training)
4. Consistent improvements across all metrics: Not just accuracy—precision,

F1, and ROC-AUC all improve, indicating genuinely better representations
rather than biased predictions.
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Architecture Improvements over Baseline
Baseline: 90.82%

Accuracy Improvement (%)

)
U,.\“as\‘“’x’ﬂ

csuo

Fig. 6. Architecture Improvements

Table 2. Confusion Matrices (TN, FP, FN, TP)

Model TN FP FN TP

EdgeLevel GCN 39,759 5,391 1,589 43,261
Prototype-GNN 42,115 3,035 2,147 42,703
Contrastive-GNN 42,000 3,150 1,608 43,242
GSL-GNN 44,490 660 2,342 42,508

5.1 Confusion Matrix Analysis

Table 2 reveals critical differences:

— GSL-GNN: Only 660 false positives (1.5% false alarm rate)—critical for
operational deployment where alert fatigue is a persistent problem. Achieves
98.5% true negative rate.

— Contrastive-GNN: Best recall (96.41%) with only 1,608 missed attacks
(3.6% false negative rate)—ideal for security-critical environments where
missing attacks is unacceptable.

— Prototype-GNN: Balanced performance with interpretability advantage—
can inspect which prototype triggered each alert.

Additionally, GSL-GNN exhibits remarkable training stability. The softmax
normalization in the structure learner ensures bounded attention weights, pre-
venting gradient explosion that can occur in unconstrained attention mecha-
nisms. The sparse top-k operation, while non-differentiable, uses straight-through
estimators during backpropagation and maintains gradient flow effectively. Crit-
ical to stability is the weighted combination of learned and original graphs
(aAjecarned + (1 — @) Aoriginai With o = 0.5), which provides a regularization ef-
fect—even if the structure learner produces suboptimal adjacency matrices early
in training, the original graph topology provides a stable gradient pathway.

5.2 Ablation Study

To validate the contribution of each architectural component, we conduct sys-
tematic ablation experiments. Table 3 presents results removing or modifying key
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components from each architecture. Below, we analyze the findings and their key
implications.

For Prototype-GNN, the removal of the entire prototype (MLP-only classi-
fication) significantly reduces the precision from 94.24% to 91.87% (baseline),
confirming the importance of prototypes (+2.37 percentage points). The opti-
mal configuration of K=8 prototypes achieves the highest accuracy compared
to fewer (K=4, 93.12%) or more prototypes (K=16, 94.08%), balancing expres-
siveness and generalization. Using only one prototype per class (K=1) leads
to reduced accuracy (92.31%), highlighting the necessity for modeling diverse
attack patterns.

In Contrastive-GNN, the projection head contributes significantly to perfor-
mance. Removing it reduces accuracy from 94.71% to 93.18% (1.53 percentage
points), as the dedicated projection space allows the contrastive loss to optimize
geometry without interfering with classification. The contrastive loss itself adds
+2.17 percentage points (92.54% vs. baseline 91.87%), emphasizing its vital role
in geometric optimization. However, using only the classification head (91.87%)
or contrastive loss (89.43%) proves insufficient, demonstrating that both com-
ponents are synergistic for optimal performance.

For GSL-GNN, adaptive structure learning is essential, contributing +4.79%
accuracy (96.66% vs. baseline 91.87%). Fusion of learned and original graphs
further improves accuracy (4+0.84 pp over learning alone, 95.82%). Sparsifica-
tion achieves computational efficiency without sacrificing accuracy—top-k=15
achieves 96.66%, providing a 26 x speedup over dense adjacency (96.52%) with
negligible loss. Overly sparse graphs (top-k=>5) degrade accuracy (95.14%), while
less sparse graphs (top-k=30) introduce noise and slightly lower performance
(96.21%).

6 Discussion

The results in Table 1 guide architecture selection:

— Maximum accuracy: GSL-GNN is well-suited for critical networks as it
adaptively optimizes the structure to achieve the highest possible accuracy.

— Security-critical: Contrastive-GNN enhances recall by optimizing data ge-
ometry, making it effective in scenarios where undetected attacks are unac-
ceptable.

— Interpretability: Prototype-GNN identifies distinct attack patterns, facil-
itating decision transparency and thorough auditing.

— Rapid deployment: EdgeLevel GCN serves as a reliable baseline for quick
and efficient initial deployment.

7 Conclusion

This study presents three Graph Neural Network architectures that significantly
enhance network intrusion detection accuracy through distinct approaches. Prototype-
GNN uses distance-based classification with 8 learnable prototypes, achieving
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Table 3. Ablation Study: Component Contributions

Architecture Variant Acc Prec Rec F1
Prototype-GNN Ablations
Full model (K=8) 94.24 93.36 95.21 94.28
Without prototypes (MLP only)  91.87 88.31 96.46 92.20
Fewer prototypes (K=4) 93.12 91.45 95.08 93.23
More prototypes (K=16) 94.08 92.89 95.34 94.10

Single prototype per class (K=1) 92.31 89.72 95.89 92.71
Contrastive-GNN Ablations

Full model (with projection head) 94.71 93.21 96.41 94.79

Without contrastive loss (A =0)  92.54 89.87 96.12 92.89

Without projection head 93.18 90.56 96.28 93.33
Classification head only 91.87 88.31 96.46 92.20
Contrastive only (A = 1.0) 89.43 85.12 95.87 90.17

GSL-GNN Ablations
Full model (o = 0.5, top-k=15) 96.66 98.47 94.78 96.59
Without structure learning (oo = 0) 91.87 88.31 96.46 92.20
Learned structure only (o = 1) 95.82 96.21 95.39 95.80

No sparsification (dense |V|?) 96.52 98.11 94.89 96.47
More sparse (top-k=>5) 95.14 96.83 93.38 95.08
Less sparse (top-k=30) 96.21 97.54 94.84 96.17

94.24% accuracy while offering improved interpretability. Contrastive-GNN
applies supervised contrastive learning to optimize embedding geometry, reach-
ing 94.71% accuracy with the highest recall (96.41%). GSL-GNN adaptively
learns the optimal graph structure from node features, achieving 96.66% ac-
curacy and 99.70% ROC-AUC, representing improvements of +2.37, +2.84,
and +4.79 percentage points over the baseline EdgeLevel GCN with 91.87% ac-
curacy.

These advancements are both statistically significant and practically impact-
ful. For instance, deploying GSL-GNN in a network handling 10 million daily con-
nections would identify approximately 479,000 additional attacks compared
to the baseline, offering substantial benefits for security operations. Moreover,
its low false positive rate (660 false alarms out of 45,150 normal connections)
addresses the critical issue of alert fatigue often faced by security operation cen-
ters.

Beyond network security, the methods proposed in this study are applica-
ble to a range of edge classification tasks on graphs, such as fraud detection
in financial systems, interaction prediction in biology, relation extraction in
knowledge graphs, and anomaly detection in transportation networks. These
core methods—multiple prototypes, contrastive embedding optimization, and
adaptive structure learning—advance graph representation learning in a domain-
independent manner.

While this evaluation focuses on the TON-IoT dataset, the proposed archi-
tectures are built on fundamental neural network principles and are not tied to
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dataset-specific patterns. TON-IoT serves as a representative benchmark with
nine attack types spanning diverse IoT and enterprise devices, providing a real-
istic and heterogeneous environment for network intrusion detection evaluation.
As the models rely on behavioral patterns such as connection features and graph
topology rather than raw packet content, they are expected to generalize effec-
tively to other network contexts, maintaining robust performance across various
datasets.

8 Future Work

We identify two promising research directions:

Multi-Class Attack Classification: Expand the current binary classifica-
tion (attack vs. normal traffic) to encompass multi-class categorization of spe-
cific attack types, including DDoS, port scanning, injection, and data exfiltration.
This enhancement would enable security analysts to receive more actionable and
detailed alerts tailored to distinct threat types. The Prototype-GNN architec-
ture is particularly well-equipped for this task, as its prototype-based approach
can specialize prototypes for different attack classifications, providing greater
interpretability and insight into the detection process.

Temporal Modeling: Existing architectures analyze network snapshots in
isolation, disregarding the temporal relationships between consecutive observa-
tions. Integrating temporal modeling capabilities would enable the detection
system to monitor the evolution of connections over time, identifying patterns
in attack progression, such as reconnaissance — exploitation — exfiltration. This
approach could empower predictive detection by recognizing early-stage indica-
tors of potential attacks and intervening before escalation occurs.
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