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ABSTRACT

The convergence of information technology and operational technology in United States critical
infrastructure has created unprecedented efficiency gains while simultaneously expanding attack surfaces
vulnerable to sophisticated cyber threats. This paper examines the application of machine learning to
network intrusion detection in critical infrastructure, with particular emphasis on smart cities and power
grid implementations. Through comprehensive analysis of current threat landscapes, technical
approaches, and operational constraints, the study identifies key challenges impeding the deployment of
machine learning-based security solutions, including data scarcity, class imbalance, concept drift, and
adversarial robustness concerns.

The analysis reveals that while machine learning offers promising capabilities for detecting anomalous
patterns and previously unknown attack vectors beyond traditional signature-based systems, successful
implementation requires addressing fundamental tensions between real-time operational requirements and
computational complexity, between model explainability and detection accuracy, and between privacy
preservation and effective security monitoring. The paper examines specific vulnerabilities in smart grid
architectures, municipal systems, and loT-enabled infrastructure, demonstrating how heterogeneous device
ecosystems and legacy system integration compound security challenges.

Furthermore, the study synthesizes emerging opportunities including ensemble detection approaches,
physics-informed machine learning, transfer learning techniques, federated learning, explainable artificial
intelligence, and collaborative threat intelligence sharing mechanisms. It proposes a framework for cross-
sector collaboration and outlines standardized evaluation methodologies essential for validating machine
learning security solutions in safety-critical environments. The findings indicate that realizing the full
potential of machine learning for infrastructure protection requires coordinated efforts spanning
technology development, workforce capacity building, regulatory framework evolution, and sustained
information sharing across stakeholder communities. This work contributes to the growing body of
knowledge on securing increasingly interconnected critical infrastructure systems upon which modern
society fundamentally depends.
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1. INTRODUCTION

The landscape of critical infrastructure protection in the United States has undergone a
fundamental transformation as networks have evolved from isolated operational technology
environments to highly interconnected systems spanning multiple domains. This convergence of
information technology and operational technology, while enabling unprecedented efficiency and
coordination, has simultaneously expanded the attack surface available to malicious actors. The
emergence of smart cities represents a particularly compelling example of this transformation,
where municipal services ranging from water treatment facilities to traffic management systems
increasingly rely on complex networks of sensors, actuators, and control systems. As cities across
America invest heavily in these interconnected infrastructures, the challenge of securing them
against sophisticated cyber threats has become paramount. Within this context, machine learning
has emerged as a promising approach for detecting network intrusions, offering the potential to
identify anomalous patterns and previously unknown attack vectors that traditional signature-
based systems might miss. However, the application of machine learning to critical infrastructure
protection is fraught with unique challenges that stem from the operational constraints, safety
requirements, and adversarial sophistication characteristic of these environments.

The intersection of critical infrastructure security and machine learning represents more than a
technical challenge; it embodies a fundamental question about how societies can harness
advanced computational techniques to protect the systems upon which modern life depends.
Smart cities epitomize this challenge, as they integrate diverse infrastructures including power
grids, transportation networks, water systems, and emergency services into cohesive digital
ecosystems. Research has demonstrated that these interconnected systems face mounting security
challenges as their complexity increases. The deployment of Internet of Things devices
throughout municipal infrastructure has created millions of potential entry points for attackers,
each representing a vulnerability that must be monitored and protected [1]. The scale of this
challenge is staggering; modern smart city implementations can involve hundreds of thousands of
connected devices generating massive volumes of network traffic that must be analyzed in real-
time to detect malicious activity. Traditional security approaches based on predefined signatures
and rule-based detection have proven inadequate for this environment, as they cannot adapt to the
rapidly evolving tactics employed by sophisticated adversaries. Machine learning offers a
potential solution by enabling systems to learn normal behavior patterns and identify deviations
that may indicate intrusions, but realizing this potential requires overcoming significant technical
and operational obstacles.

1.1. Contributions
The main contributions of this paper are summarized as follows:

1. Critical infrastructure threat analysis:
Presents a structured examination of cyber threats affecting U.S. critical infrastructure,
emphasizing IT-OT convergence, protocol vulnerabilities, and limitations of traditional
intrusion detection systems.

2. Machine learning-based intrusion detection taxonomy:
Provides a concise classification of supervised, unsupervised, deep learning, and hybrid
approaches, analyzed under infrastructure-specific constraints including data imbalance,
concept drift, and real-time operational requirements.

3. Infrastructure-aware challenge assessment:
Identifies key technical and operational challenges such as adversarial robustness, model
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explainability, privacy preservation, and safety-critical false-positive risks in smart grid
and smart city environments.

4. Future-oriented framework and research directions:
Synthesizes emerging solutions—including federated learning, explainable Al, ensemble
methods, and physics-informed models—and outlines collaborative and evaluation
considerations for trustworthy deployment.

2. THE CRITICAL INFRASTRUCTURE THREAT LANDSCAPE

Understanding the threat landscape facing American critical infrastructure requires examining
both the evolving nature of cyber-attacks and the specific vulnerabilities inherent in industrial
control systems and municipal networks. Recent vulnerability disclosures have highlighted the
severity of risks facing networked infrastructure components. The discovery of CVE-2023-
20080, affecting Cisco 10S and 10S XE Software IPv6 DHCP implementations, demonstrated
how fundamental networking protocols can harbor critical vulnerabilities that threaten the
availability of critical systems. Similarly, CVE-2023-28231, a remote code execution
vulnerability in Microsoft Windows DHCPv6 Server, and CVE-2024-38063, affecting Windows
TCP/IP IPv6 implementations, have underscored the reality that even widely deployed, mature
networking technologies contain exploitable flaws that could enable attackers to compromise
critical infrastructure components. The National Security Agency has recognized these concerns,
issuing specific guidance on IPv6 security considerations for critical infrastructure operators,
acknowledging that the transition to next-generation networking protocols introduces new attack
vectors that must be carefully managed.

The threat landscape extends far beyond individual software vulnerabilities to encompass
systemic challenges inherent in how critical infrastructure networks are architected and operated.
Research examining cybersecurity vulnerabilities in smart cities has identified multiple domains
where security weaknesses persist, including energy systems, transportation networks, healthcare
infrastructure, and municipal services [2]. These domains are increasingly interconnected,
creating cascading vulnerability chains where a compromise in one system can propagate to
others. The challenge is compounded by the heterogeneous nature of infrastructure networks,
which often combine legacy systems designed without security considerations alongside modern
loT devices with varying levels of security maturity. This heterogeneity makes it exceptionally
difficult to implement unified security policies or deploy consistent monitoring capabilities across
the entire infrastructure ecosystem. Furthermore, the operational requirements of critical
infrastructure impose constraints that do not exist in traditional IT environments; systems must
maintain high availability, meet strict latency requirements, and operate continuously without the
possibility of taking equipment offline for security updates or patches.

The threat actors targeting critical infrastructure range from opportunistic criminals to
sophisticated nation-state adversaries, each bringing different capabilities and motivations to
bear. Distributed denial of service attacks represents a persistent threat to loT-enabled
infrastructure, with research documenting comprehensive taxonomies of DDoS attack vectors
specifically targeting connected devices [3]. These attacks can overwhelm network resources,
disrupt service availability, and serve as diversions while more sophisticated intrusions occur.
Beyond availability attacks, adversaries increasingly target the integrity and confidentiality of
industrial control systems, seeking to manipulate operational parameters, steal proprietary
information, or establish persistent access for future operations. The convergence of loT
technologies with critical infrastructure has created new attack surfaces that adversaries are
actively exploiting. Studies have shown that 10T devices deployed in smart city environments
frequently suffer from inadequate authentication mechanisms, unencrypted communications, and
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insufficient input validation, creating opportunities for attackers to compromise these devices and
use them as footholds for deeper network penetration [4], [5].

Table 1. Major Vulnerability Categories in Critical Infrastructure Networks

Vulnerability Description Example Potential Impact

Category Manifestations

Protocol Flaws in  fundamental | CVE-2023-20080 Remote code execution,

Vulnerabilities networking protocols (DHCPv6), CVE-2024- | denial of  service,
38063 (IPv6 TCP/IP) network  segmentation

bypass
loT Device | Weak authentication, | Default credentials, | Device compromise,
Security unencrypted plaintext protocols, | botnet recruitment,

communications, inadequate
updates

outdated firmware

network reconnaissance

Legacy System | Systems designed without | Unencrypted SCADA | Operational disruption,

Integration security considerations | protocols, inadequate | data exfiltration,
interfacing with modern | access controls physical safety impacts
networks

Supply  Chain | Compromised components | Malicious  firmware, | Long-term persistent

Risks or software in infrastructure | backdoored hardware access, widespread
systems compromise

Configuration Improper security settings | Open management | Unauthorized  access,

Weaknesses and inadequate hardening interfaces,  excessive | privilege escalation

permissions

Sources: NSA (2023); Riggs et al. (2023); Haq et al. (2023)

3. MACHINE LEARNING APPROACHES TO INTRUSION DETECTION

Machine learning techniques for intrusion detection in critical infrastructure networks can be
broadly categorized into supervised, unsupervised, and deep learning approaches, each with
distinct strengths and limitations. Supervised learning methods rely on labeled datasets of normal
and malicious traffic and can achieve high detection accuracy when trained on representative
data. However, their effectiveness is limited in critical infrastructure environments where
comprehensive labeled datasets are scarce, and attack patterns are often undocumented.
Additionally, models trained on conventional IT network data may not generalize well to
industrial control systems due to fundamental operational differences.

Recent reviews focused on critical infrastructure (Cl) confirm these trade-offs in operational
settings: ML-based IDS for ICS/SCADA/DCS must balance detection gains with scarce labeled
data, zero-day variability, and resource limits that complicate real-time deployment and
evaluation datasets. These surveys also compare modern Cl datasets and highlight gaps when
models trained on IT data are transferred to OT traffic. These findings reinforce the need for
domain-aware model design and careful dataset curation in Cl environments [24]

Unsupervised learning approaches address these limitations by modeling normal network
behavior and detecting deviations as potential intrusions. This paradigm is particularly valuable
for identifying zero-day attacks and novel threats in infrastructure networks. While anomaly
detection techniques have shown promise in distinguishing malicious activity from normal
operations, their practical deployment is challenged by high false positive rates. Legitimate
operational variations caused by load fluctuations, maintenance activities, and seasonal effects
can be difficult to differentiate from actual security incidents without highly nuanced models.
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Deep learning methods, including convolutional and recurrent neural networks, offer advanced
capabilities for detecting complex and temporally correlated attack patterns. These models can
automatically extract features from high-dimensional network traffic data and are well suited for
analyzing large-scale loT and smart infrastructure environments. Despite their effectiveness, deep
learning approaches present challenges related to high computational demands and limited
interpretability, which raise concerns for deployment in resource-constrained and safety-critical
infrastructure systems.

Edge Deployment Hybrid Deployment

o Bern

Challenges Challenges:

Comparative Performance Characteristics
Metric Edge Centralized Hybrid
Detection Latency Low (ms) High (seconds) Medium
Model Complexity Limited “ery High High
Network Resiience High Low Medium-High

Management Esse Difficult Easy Moderate

sage Low High Medium

Horizonts! Scatabllity Medium High Veery High

Frameswork based on: Wheelus & Zhu (2020); Sahy & Mazumdar (2024)

Figure 1. Machine Learning Model Deployment Architectures for Critical Infrastructure

The integration of machine learning into critical infrastructure intrusion detection systems must
address fundamental questions about model deployment architecture and operational integration.
Edge computing approaches, where machine learning models are deployed directly on network
devices or local gateways, offer the advantage of reduced latency and decreased dependence on
network connectivity to centralized processing resources. This architectural approach is
particularly relevant for infrastructure systems with stringent real-time requirements or limited
bandwidth availability. However, edge deployment constrains the complexity of models that can
be employed, as resource-limited devices may lack the computational capacity to execute
sophisticated deep learning architectures. Centralized approaches, conversely, enable the
deployment of more complex models and facilitate coordination of detection across multiple
infrastructure domains, but introduce latency that may be unacceptable for time-critical
applications and create single points of failure. Hybrid architectures that combine edge-based
preliminary analysis with centralized deep inspection represent a promising middle ground but
add architectural complexity and introduce additional security considerations regarding the
communication channels between edge and central components [6][4].

3.1. Technical Challenges in Infrastructure-Specific Intrusion Detection
The application of machine learning to critical infrastructure intrusion detection confronts
technical challenges that distinguish this domain from conventional network security

applications. One fundamental challenge concerns the imbalanced nature of security data in
operational environments. Normal operational traffic vastly outnumbers malicious traffic in most
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infrastructure networks, creating severe class imbalance problems that can cause machine
learning models to achieve high overall accuracy while failing to detect actual intrusions. This
imbalance is particularly acute in critical infrastructure contexts where attacks are relatively rare
events, yet the consequences of failing to detect them can be catastrophic. Addressing class
imbalance requires specialized techniques such as synthetic oversampling, cost-sensitive
learning, or ensemble methods that explicitly account for the differential importance of correctly
classifying minority class instances [7]. However, these techniques introduce their own
complications, including the risk of overfitting to synthetic data or creating models that generate
excessive false positives in attempts to maximize detection of rare attack patterns.

The concept drift phenomenon represents another significant technical challenge that has
profound implications for the long-term effectiveness of machine learning-based intrusion
detection systems. Network behavior in critical infrastructure environments is not static; it
evolves over time due to factors including equipment upgrades, operational procedure changes,
seasonal variations, and the introduction of new services. Machine learning models trained on
historical data can become progressively less accurate as the underlying data distribution shifts
away from the distribution on which they were trained. Research examining I0oT security has
identified concept drift as a critical concern for maintaining detection accuracy over extended
operational periods [8]. Addressing concept drift requires implementing mechanisms for
continuous model updating and retraining, but doing so in critical infrastructure environments
raises challenging questions about how to validate updated models before deployment and how to
ensure that model updates do not inadvertently introduce new vulnerabilities or degrade detection
performance.A recent comprehensive survey of ML strategies for IDS further documents how
model selection, metric choice, and evaluation protocols interact with drift and false-alarm
management in production systems, underscoring the need for periodic recalibration and
explainability to sustain trust [26]

Table 2. Technical Challenges in ML-Based Intrusion Detection for Critical Infrastructure

Challenge Specific Issues Impact on Detection | Mitigation Approaches
Domain Systems
Data Attack traffic | High false negative rates, | Synthetic oversampling
Imbalance represents <0.1% of | models biased toward | (SMOTE), cost-
total traffic majority class sensitive learning,
ensemble methods
Concept Drift | Network behavior | Degraded accuracy, | Online learning,
evolves over time increased false | periodic retraining,
positives/negatives ensemble adaptation
Feature High dimensionality, | Computational overhead, | Domain expertise
Engineering | protocol diversity, | information loss, reduced | integration, automated
domain-specific interpretability feature selection,
semantics dimensionality
reduction
Adversarial Poisoning attacks, | Compromised detection | Adversarial training,
Robustness evasion  techniques, | capability, false | robust optimization,
model exploitation confidence input sanitization
Real-time Latency constraints, | Delayed detection, | Edge computing,
Processing throughput incomplete analysis lightweight models,
requirements hierarchical processing

Sources: Kumari & Jain (2023); Noor & Hassan (2019); Comprehensive Study (2025)
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4. FEATURE ENGINEERING, ADVERSARIAL RISKS, AND OPERATIONAL
CHALLENGES

Feature engineering in critical infrastructure networks is challenging due to diverse industrial
protocols and complex operational behaviors that generate high-dimensional feature spaces.
Unlike traditional IT environments, these systems embed semantic information tied to physical
processes, requiring domain expertise to extract security-relevant features. At the same time,
models must balance feature richness with computational efficiency, as overly complex
representations increase latency and hinder real-time detection.Hybrid ML/DL pipelines that
combine ensemble learners with deep architectures have recently shown strong performance
while explicitly managing class imbalance and feature reduction to keep inference latency
acceptable [27]. Such designs illustrate a practical path to reconcile feature richness with
real-time requirements in modern NIDS [27].

Adversarial machine learning further complicates intrusion detection. Attackers can poison
training data, craft evasive traffic, or exploit model weaknesses, turning ML-based detectors into
targets themselves. Robust training, adversarial defenses, and continuous validation are essential
but often add computational overhead that conflicts with strict real-time constraints in critical
infrastructure.

Operational deployment introduces additional barriers. Infrastructure systems require
near-continuous availability, leaving little flexibility for model retraining or system downtime.
Insufficiently validated model updates risk false negatives that enable attacks or false positives
that burden security teams. Effective integration therefore demands structured alert prioritization,
workflow alignment, and human-centered oversight, supported by explainable models that allow
analysts to interpret detection outputs.

Regulatory and workforce limitations also hinder adoption. Frameworks such as NERC CIP and
the America’s Water Infrastructure Act provide limited guidance for validating ML-based
security systems, creating uncertainty around compliance. Simultaneously, a shortage of
professionals with combined expertise in cybersecurity, machine learning, and operational
technology constrains many organizations—particularly smaller operators—from deploying and
sustaining advanced intrusion detection capabilities.

[ == | o= | == B
— i < =

Figure 2. Integration Framework for ML-Based Intrusion Detection in Infrastructure Operations
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4.1. Smart Grid and Power Infrastructure Security

The electric power grid remains a core critical infrastructure where machine-learning-based
intrusion detection can significantly strengthen security, yet it also highlights the operational
challenges of protecting industrial control environments. Smart grid modernization has
introduced extensive digital communication and control capabilities across generation,
transmission, and distribution systems. While these advances improve efficiency and reliability,
they also expand the cyber attack surface. Research identifies multiple attack vectors—including
threats to SCADA systems, advanced metering infrastructure, distributed energy resources, and
grid communication networks—each capable of causing disruptions ranging from localized
outages to large-scale cascading failures [9]. ML-driven anomaly detection offers promising
early-warning capabilities, but deployment must account for the grid’s strict real-time and
safety-critical requirements.

Modern smart grids operate through layered communication networks spanning high-voltage
transmission systems, distribution networks, and customer-level infrastructure. Each tier exhibits
unique protocols, data flows, and timing behavior, making it difficult for a single intrusion
detection model to generalize across the entire grid. Studies emphasize that effective protection
requires domain-specific ML models tuned to each architectural layer, though this specialization
increases operational complexity and resource demands [9].

False positives pose particularly high risks in the power sector. Unlike IT networks, where
isolating suspicious activity typically has limited physical consequences, automated responses in
grid environments can trigger protective relays, disconnect generation assets, or unintentionally
interrupt service. This creates an inherent tension between rapid automated mitigation and the
need for human oversight in safety-critical scenarios. Accordingly, response architectures must
differentiate between low-risk automated actions (e.g., increased logging, deeper traffic
inspection) and high-risk control actions that require operator approval. ML systems must
therefore deliver interpretable outputs, providing clear confidence indicators and contextual
information that enable operators to make informed, safe decisions during anomalous events.

Table 3. Machine Learning Applications in Smart Grid Security

Grid Domain Security ML Application | Expected Implementation
Challenges Benefits Challenges
SCADA Systems | Unauthorized Supervised Detection of | Limited attack
control commands, | learning for | anomalous training data, real-
data manipulation | command control sequences | time requirements
validation
Advanced Meter tampering, | Anomaly Identification of | Massive data
Metering data privacy, | detection on | compromised volumes, legitimate
Infrastructure communication meter data | meters variability
attacks patterns
Distributed Inverter Time-series Detection of | Weather-driven
Energy manipulation, analysis of | coordinated variations,
Resources coordinated resource anomalies heterogeneous
attacks behavior devices
Grid Protocol  attacks, | Deep  learning | Protocol anomaly | Specialized oT
Communication | eavesdropping, on network | detection protocols, latency
Networks replay attacks traffic constraints
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Substation IEC 61850 | Ensemble Comprehensive Integration with
Automation protocol  attacks, | methods threat detection legacy systems
device combining
compromise multiple
detection
approaches

5. MUNICIPAL SYSTEMS AND SMART CITY SECURITY

Municipal smart city implementations present a particularly complex challenge for machine
learning-based intrusion detection due to the diversity of systems involved and the public safety
implications of security failures. Smart cities integrate numerous infrastructure domains including
traffic management, public safety communications, environmental monitoring, waste
management, and municipal services into interconnected digital ecosystems. Research examining
smart city security has documented the wide-ranging cyber threats facing these systems, from
attacks targeting individual 10T sensors to sophisticated campaigns aiming to disrupt critical
municipal services [10]. The interconnected nature of smart city systems means that a
compromise in one domain can potentially cascade to affect other municipal services, creating
compound effects that could significantly impact public safety and quality of life. Machine
learning-based intrusion detection deployed across smart city infrastructure must therefore
account for the possibility of cross-domain attacks and lateral movement between different
municipal systems.

The privacy implications of security monitoring in smart city environments warrant careful
consideration, as the data collected for intrusion detection purposes may contain information
about citizen behavior and activities. Traffic monitoring systems designed to detect anomalies
that could indicate cyber-attacks will necessarily collect information about vehicle movements
throughout the city. Environmental sensors deployed for pollution monitoring could reveal
patterns of human activity. Research has emphasized that smart city implementations must
carefully balance security monitoring requirements against citizen privacy rights, implementing
appropriate data minimization, anonymization, and retention policies [11]. Machine learning
systems must be designed to extract security-relevant features from municipal network traffic
while avoiding unnecessary collection or retention of personally identifiable information. This
requires thoughtful feature engineering that focuses on network-level characteristics rather than
content, and implementation of data governance frameworks that specify clear policies for how
security monitoring data will be handled.

Smart City Multi-Domain Intrusion Detection Architecture
Municipal

Figure 3. Smart City Multi-Domain Intrusion Detection Architecture
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The heterogeneity of devices and systems deployed in smart city environments creates significant
challenges for developing comprehensive intrusion detection capabilities. A single municipal
network may encompass thousands of different device types from dozens of vendors, operating
various protocols and exhibiting diverse behavioral characteristics. Research examining loT
vulnerabilities and countermeasures has highlighted how this heterogeneity complicates efforts to
establish baseline normal behavior and detect anomalies [12]. Machine learning approaches must
either develop device-specific models tailored to each class of equipment, requiring extensive
training data and ongoing maintenance for each device type, or develop more general models that
can accommodate diverse device behaviors while still maintaining adequate detection sensitivity.
Neither approach is entirely satisfactory; device-specific models impose substantial operational
overhead, while general models may sacrifice detection accuracy in pursuit of broader
applicability. Hybrid approaches that group devices into behavioral clusters and develops
specialized models for each cluster represent a promising middle ground but require sophisticated
clustering algorithms and ongoing model management.

5.1. Data Management and Privacy Considerations

The effectiveness of machine-learning-based intrusion detection in critical infrastructure depends
heavily on high-quality training data, yet such data is difficult to obtain. Unlike conventional IT
environments with abundant public intrusion datasets, infrastructure-specific data is scarce due to
the sensitivity of operational technology networks and concerns that sharing traffic captures or
logs could expose vulnerabilities. Studies highlight that limited access to representative datasets
remains a major barrier to developing tailored ML-based security solutions for IoT and OT
environments [4]. As a result, researchers and operators face persistent data scarcity that restricts
robust model development and evaluation.

Synthetic data generation—using simulations or generative models—offers a potential
workaround by producing artificial traffic resembling real operational behavior. While useful for
prototyping, synthetic datasets often struggle to reproduce the full complexity, edge-case
interactions, and unexpected anomalies found in real systems. Consequently, questions remain
about whether models trained solely on synthetic traffic can generalize reliably in production
environments, where validation itself may require access to sensitive operational data.

Data retention and governance add further complexity. Effective ML models benefit from
long-term historical datasets capturing seasonal variations and diverse operating conditions.
However, retaining large volumes of network traffic and security logs increases the risk of
exposing sensitive infrastructure information in the event of a breach. Prior research emphasizes
that strong data governance—defining what data is collected, how it is protected, retention
periods, and permitted sharing conditions—is essential to balancing security, regulatory, and
privacy requirements [13]. Developing these policies requires coordination with legal, privacy,
and regulatory stakeholders to ensure compliance while maintaining the data pipeline necessary
for reliable machine learning—based intrusion detection.

Table 4. Data Challenges and Solutions for Infrastructure ML Security

Data Security Impact Potential Solutions Trade-offs

Challenge

Training Limited model | Synthetic data generation, | Synthetic data may not capture

Data Scarcity | effectiveness,  poor | simulation environments, | real-world complexity, sharing
generalization data sharing consortia faces confidentiality concerns

Dataset Biased models, poor | Oversampling techniques, | Risk of overfitting,

Imbalance attack detection cost-sensitive  learning, | computational overhead
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transfer learning
Privacy Limited data sharing, | Federated learning, | Performance penalties,
Constraints reduced collaborative | differential privacy, | implementation complexity
learning secure multi-party
computation
Data Quality | Inaccurate labels, | Automated quality | Resource intensive validation,
Issues incomplete captures, | checking, human | cannot eliminate all errors
noise validation, robust learning
algorithms
Temporal Models trained on | Long-term data | Storage costs, evolving attack
Coverage limited time periods | collection, seasonal | landscape may date historical
dataset augmentation data

6. OPPORTUNITIES AND EMERGING DIRECTIONS

Despite the challenges of applying machine learning to critical infrastructure intrusion detection,
several promising opportunities can meaningfully advance security capabilities. One key
direction is the development of ensemble-based intrusion detection systems that combine
supervised, unsupervised, and deep learning methods. Such ensembles leverage the
complementary strengths of multiple approaches, reducing false positives while improving
detection sensitivity compared to single-model solutions [3]. The primary challenge is designing
robust fusion mechanisms that appropriately weight model outputs and resolve conflicts when
classifications diverge.Recent empirical results show that hybrid ensembles that pair tree-based
feature selection (e.g., XGBoost) with CNN/LSTM temporal learners can reduce false alarms
while improving detection across CICIDS2017, UNSW-NB15, and NSL-KDD datasets,
strengthening the practical case for fusion architectures [28]

Explainable artificial intelligence (XAI) presents another important opportunity. Recent
advances—such as attention mechanisms that highlight influential features and counterfactual
explanations that show how inputs must change to alter outcomes—offer potential for increasing
transparency and operator trust [15], [16]. For intrusion detection, XAl can help analysts
understand why traffic was flagged as malicious and support more effective investigation. The
remaining challenge lies in tailoring explanations to operational security workflows so they are
actionable and not overly complex.

Transfer learning and domain adaptation also hold promise for addressing training data scarcity.
Rather than requiring every operator to build models from scratch, transfer learning enables
models trained in one infrastructure domain to be adapted to another with limited fine-tuning [8],
[17]. The key research question is determining which model components generalize across
domains and which must be customized for infrastructure-specific protocols and operational
patterns.

Physics-informed machine learning represents another promising direction. By incorporating
domain knowledge about physical system behavior into learning processes—such as hydraulic
relationships in water systems or power flow dynamics in electrical grids—models can better
distinguish between benign operational anomalies and true cyber threats. This approach enables
detection that aligns more closely with real-world system behavior, reducing false positives and
improving operator confidence [18]. Achieving this requires sustained collaboration between ML
researchers, cybersecurity experts, and domain specialists.
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Testbed environments offer additional opportunities for advancing ML-based intrusion detection.
Platforms such as OpenCyberCity provide realistic, controlled environments for evaluating
algorithms, validating robustness, and enabling adversarial testing prior to deployment [19].
These environments also support synthetic dataset generation under realistic conditions, helping
mitigate data scarcity. However, testbeds must evolve to reflect the complexity and
unpredictability of real infrastructure; strong performance in a laboratory environment does not
guarantee operational effectiveness.

Evolution Pathway for ML-Based Infrastructure Security
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Figure 4. Evolution Pathway for ML-Based Infrastructure Security

7. CROSS-SECTOR COLLABORATION AND INFORMATION SHARING

The development of effective machine learning-based intrusion detection for critical
infrastructure cannot succeed as isolated efforts by individual organizations, but rather requires
coordinated collaboration across sectors, sharing of threat intelligence, and collective
advancement of security capabilities. The challenges facing different infrastructure sectors share
common characteristics, and lessons learned in one domain can inform security approaches in
others. Research has emphasized the importance of collaborative approaches to smart city
cybersecurity, noting that municipalities can benefit substantially from sharing security
intelligence and coordinating defensive strategies [20]. However, establishing effective
information sharing mechanisms faces obstacles including competitive concerns, liability
questions, and the technical challenges of sharing actionable security information while
protecting sensitive operational details.

The establishment of Information Sharing and Analysis Centers specific to various infrastructure
sectors has created formal mechanisms for coordinating security efforts, but these organizations
face ongoing challenges in facilitating effective information exchange about emerging threats and
effective countermeasures. Machine learning-based intrusion detection introduces new
dimensions to information sharing, as organizations could potentially benefit from sharing not
just threat indicators but also detection models, feature engineering approaches, and training
datasets. Research examining cybersecurity in industrial 1oT has explored how blockchain
technologies could potentially facilitate trusted information sharing while maintaining
auditability and attribution [21]. The development of privacy-preserving mechanisms for sharing
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machine learning models and training data could enable infrastructure operators to collectively
develop improved security capabilities without exposing proprietary operational information

[22].

Table 5. Stakeholder Roles in ML-Based Infrastructure Security Development

Stakeholder Primary Contribution to ML | Critical Success
Category Responsibilities Security Factors
Infrastructure Deploy and operate | Provide  operational | Executive commitment,
Operators security systems, | context, validate | adequate resources,
respond to incidents solutions, share | workforce development
anonymized data
Technology Develop security | Integrate ML | Balance proprietary
Vendors products, provide | capabilities, leverage | concerns with
technical support cross-customer insights | collaboration, long-
term support
commitment
Government Set standards, provide | Develop regulatory | Clear policy direction,
Agencies guidance, facilitate | frameworks, fund | adequate funding,
information sharing research,  coordinate | cross-agency
sector collaboration coordination
Academic Conduct fundamental | Advance ML | Access to
Researchers research, develop | techniques,  evaluate | representative data,
novel approaches approaches, train | engagement with
workforce practitioners, research
funding
Industry Facilitate information | Coordinate Member engagement,
Associations sharing, develop best | collaborative security | trusted neutral
practices initiatives,  aggregate | platform, technical
sector knowledge expertise
Security Deliver managed | Scale expertise across | Access to  threat
Service security services, | multiple operators, | intelligence, trained
Providers incident response provide specialized | analysts,  technology
capabilities integration

The role of equipment vendors and technology providers in supporting machine learning-based
security deserves particular attention, as these organizations have visibility across multiple
customer deployments and could potentially identify security patterns that individual operators
cannot observe. Vendors of industrial control systems, loT devices, and infrastructure
management platforms accumulate experience from numerous installations and could leverage
this collective experience to develop security capabilities that benefit all customers. Research has
explored how vendor-provided security services could incorporate machine learning capabilities
that are continuously improved based on anonymized telemetry from customer deployments
(Research on IPv6 Address State Detection and Management Technology, 2024). However, this
model raises questions about data ownership, privacy protection, and the potential for vendor
lock-in, requiring careful contractual and technical safeguards to protect customer interests while
enabling beneficial security collaboration.

Academic research institutions have important roles to play in advancing the state of practice for
infrastructure security, conducting fundamental research on machine learning techniques,
evaluating proposed approaches, and training the next generation of security professionals. The
translation of academic research into operational practice faces well-documented challenges, as
research environments typically do not capture the full complexity and operational constraints of
production infrastructure. Strengthening partnerships between academic researchers and
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infrastructure operators can help ensure that research addresses practically relevant problems and
that promising research results are effectively transitioned to operational deployment. Research
examining security vulnerability assessments has noted the importance of diverse research
communities bringing different perspectives to cybersecurity challenges [23]. Supporting
collaborative research that brings together computer scientists, infrastructure engineers, and
security practitioners can produce solutions that are both technically sophisticated and
operationally viable.

8. STANDARDIZATION AND EVALUATION FRAMEWORKS

Advancing machine-learning-based intrusion detection for critical infrastructure requires
standardized evaluation frameworks that allow objective comparison of techniques and give
operators confidence in security performance. Although numerous ML approaches report high
accuracy, these results often rely on different datasets, metrics, and threat models, making
cross-study comparison difficult. Prior research emphasizes that the absence of uniform
evaluation methodologies significantly hinders assessment of competing loT and OT security
solutions (A review of the security vulnerabilities and countermeasures in the Internet of Things
solutions, 2023). Establishing shared benchmarks, metrics, and testing procedures would
accelerate adoption by enabling operators to make evidence-based technology decisions.

A Kkey requirement is the development of benchmark datasets that accurately represent
operational technology environments. Existing public datasets focus on conventional IT networks
and do not capture the protocols, traffic patterns, or attack vectors seen in industrial systems.
Although emerging research has begun creating infrastructure-specific datasets, comprehensive
multi-domain benchmarks remain limited. Synthetic datasets—generated through simulations or
sanitized real traffic—offer partial solutions but must be rigorously validated to ensure they
reflect the complexity and behavioral nuances essential for evaluating intrusion detection
performance.

Standardizing performance metrics is equally important. Infrastructure environments impose
constraints that conventional measures such as precision, recall, and F-score do not fully capture.
The asymmetric costs of errors—where a single false positive may trigger an unnecessary
shutdown or misoperation—demand metrics that incorporate safety impact, operational
disruption, and latency requirements. High detection accuracy is insufficient if achieved at the
expense of real-time responsiveness or explainability. Recent studies highlight the need for
holistic evaluation frameworks that integrate detection performance with operational impact,
resource demands, and implementation complexity [21].

‘Smart City Multi-Domain Intrusion Detection Architecture

Figure 5. Comprehensive Evaluation Framework for Infrastructure ML Security Systems
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The certification and validation of machine learning-based security systems for use in safety-
critical infrastructure applications presents significant challenges that the security community has
only begun to address. Traditional software assurance approaches based on code review, formal
verification, and exhaustive testing do not translate straightforwardly to machine learning
systems whose behavior is determined by training data rather than explicit programming. How
can an infrastructure operator gain confidence that a machine learning intrusion detection system
will perform reliably across the full range of operational conditions it might encounter? What
testing and validation procedures provide adequate assurance that the system will not produce
dangerous false positives or miss critical attacks? Research examining Al assurance has explored
various approaches including adversarial testing, model interpretability analysis, and formal
verification of neural network properties, but significant work remains to translate these research
concepts into practical validation procedures appropriate for infrastructure security applications.
The development of industry consensus around appropriate validation approaches could help
accelerate the adoption of machine learning security technologies by providing operators with
confidence that deployed systems meet appropriate assurance standards.Recent IDS surveys
further emphasize that progress depends on reproducible pipelines using modern datasets such as
CIC-IDS2017, CICDD0S2019, and UNSW-NB15, along with metrics that go beyond accuracy
(e.g., precision/recall balance, false-positive rate, and detection latency), to support meaningful
cross-study comparison [25]

9. FUTURE RESEARCH DIRECTIONS AND RECOMMENDATIONS

Advancing machine-learning-based intrusion detection for critical infrastructure requires
coordinated progress across research, technology development, and operational practice. Several
priority directions emerge from current challenges. First, new machine learning methods must be
designed specifically for the characteristics of operational technology networks. Many existing
approaches rely on general-purpose algorithms not built for constraints such as extreme data
imbalance, concept drift, adversarial manipulation, and explainability requirements. Research that
integrates these needs into unified algorithmic frameworks could produce models far better
aligned with real-world infrastructure environments.

Second, the intersection of machine learning and formal methods represents an important but
underdeveloped research frontier. Formal verification offers mathematically grounded assurances
about system behavior—critical for safety-sensitive environments—but current progress remains
limited to relatively small neural network architectures. Extending verification techniques to
larger, more complex models and validating properties such as adversarial robustness or bounded
false-positive rates would help address assurance concerns that currently hinder adoption.

Third, human-Al collaboration frameworks tailored to infrastructure security operations warrant
focused attention. Optimal security practice will likely blend automated detection with human
expertise rather than rely exclusively on either. Research is needed to design interfaces,
workflows, and decision-support tools that empower analysts to interpret model outputs,
understand uncertainty, and intervene appropriately under real-world operational constraints.
Insights from human-computer interaction, cognitive psychology, and security operations
research will be crucial for building effective collaboration models.

From a policy and governance perspective, government agencies can accelerate progress by
funding initiatives dedicated to developing and validating ML-based security tools for critical
infrastructure. Such programs could support benchmark datasets, reference implementations, and
standardized validation frameworks. Regulatory bodies should also update compliance guidelines
to address machine-learning-based detection systems explicitly, reducing uncertainty for
operators evaluating deployment.
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Infrastructure operators, in turn, should prepare for increased reliance on ML-driven security by
investing in data collection infrastructure, workforce upskilling, and operational processes that
enable effective model deployment. Proactive engagement with researchers and technology
vendors—such as participation in pilot deployments and field trials—can help organizations
adopt emerging solutions safely and gain strategic advantages.

Finally, the academic research community must balance scientific innovation with practical
relevance. Sustained collaboration with infrastructure operators is essential to ensure models
address genuine operational constraints and produce solutions that remain usable outside
laboratory conditions. Research should both advance generalizable knowledge and deliver
approaches that can be realistically integrated into production environments. The most impactful
work will bridge theory and practice, addressing immediate operational needs while contributing
to long-term advancements in securing critical infrastructure.

10. CONCLUSION

Machine learning offers significant potential to enhance intrusion detection across critical
infrastructure by identifying sophisticated attacks, detecting previously unseen threats, and
adapting to evolving adversary behaviors. However, translating this potential into operational
reality remains challenging due to limitations in algorithm design, data availability, system
integration, regulatory uncertainty, and workforce preparedness. Although recent research has
advanced understanding and proposed promising solutions, considerable work is still required to
achieve reliable, scalable deployment in real-world infrastructure environments.

Realizing the benefits of machine learning will require coordinated action across stakeholder
groups—including infrastructure operators, technology vendors, government agencies, academic
researchers, and industry associations. No single sector can address the multifaceted technical
and organizational barriers alone. Progress depends on sustained information sharing,
collaborative research, and the development of standardized evaluation frameworks, benchmark
datasets, and validation procedures tailored to safety-critical systems. Workforce development
will also be essential to ensure organizations can effectively deploy, manage, and oversee
advanced ML-based security technologies.

As critical infrastructure becomes more interconnected and dependent on digital controls,
traditional security approaches such as network segmentation and signature-based detection alone
are increasingly insufficient. Machine learning provides a pathway to scalable, adaptive, and
real-time security capabilities capable of handling the complexity and volume of modern
loT-enabled environments. Achieving this vision requires long-term commitment to overcoming
the technical and operational challenges outlined throughout this work. The research community
has laid a strong foundation, and continued innovation will drive progress toward mature and
trustworthy machine-learning-based security solutions over the coming decade.

Moving forward, stakeholders must balance optimism with practical considerations. Operators
should avoid both premature adoption of immature technologies and excessive caution that
delays meaningful improvements. Vendors must prioritize solutions aligned with operational
constraints rather than focusing solely on laboratory performance. Researchers must stay
grounded in real deployment needs, while policymakers must develop regulatory frameworks that
encourage innovation while ensuring safety and accountability. Through coordinated and
sustained effort, machine-learning-enhanced security for U.S. critical infrastructure can evolve
from aspiration to reality, providing the protection necessary for an increasingly digital society.
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