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ABSTRACT 

 
The convergence of information technology and operational technology in United States critical 

infrastructure has created unprecedented efficiency gains while simultaneously expanding attack surfaces 

vulnerable to sophisticated cyber threats. This paper examines the application of machine learning to 

network intrusion detection in critical infrastructure, with particular emphasis on smart cities and power 

grid implementations. Through comprehensive analysis of current threat landscapes, technical 

approaches, and operational constraints, the study identifies key challenges impeding the deployment of 

machine learning-based security solutions, including data scarcity, class imbalance, concept drift, and 

adversarial robustness concerns. 

The analysis reveals that while machine learning offers promising capabilities for detecting anomalous 

patterns and previously unknown attack vectors beyond traditional signature-based systems, successful 

implementation requires addressing fundamental tensions between real-time operational requirements and 
computational complexity, between model explainability and detection accuracy, and between privacy 

preservation and effective security monitoring. The paper examines specific vulnerabilities in smart grid 

architectures, municipal systems, and IoT-enabled infrastructure, demonstrating how heterogeneous device 

ecosystems and legacy system integration compound security challenges. 

Furthermore, the study synthesizes emerging opportunities including ensemble detection approaches, 

physics-informed machine learning, transfer learning techniques, federated learning, explainable artificial 

intelligence, and collaborative threat intelligence sharing mechanisms. It proposes a framework for cross-

sector collaboration and outlines standardized evaluation methodologies essential for validating machine 

learning security solutions in safety-critical environments. The findings indicate that realizing the full 

potential of machine learning for infrastructure protection requires coordinated efforts spanning 

technology development, workforce capacity building, regulatory framework evolution, and sustained 

information sharing across stakeholder communities. This work contributes to the growing body of 
knowledge on securing increasingly interconnected critical infrastructure systems upon which modern 

society fundamentally depends. 
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1. INTRODUCTION 
 
The landscape of critical infrastructure protection in the United States has undergone a 

fundamental transformation as networks have evolved from isolated operational technology 

environments to highly interconnected systems spanning multiple domains. This convergence of 

information technology and operational technology, while enabling unprecedented efficiency and 
coordination, has simultaneously expanded the attack surface available to malicious actors. The 

emergence of smart cities represents a particularly compelling example of this transformation, 

where municipal services ranging from water treatment facilities to traffic management systems 
increasingly rely on complex networks of sensors, actuators, and control systems. As cities across 

America invest heavily in these interconnected infrastructures, the challenge of securing them 

against sophisticated cyber threats has become paramount. Within this context, machine learning 

has emerged as a promising approach for detecting network intrusions, offering the potential to 
identify anomalous patterns and previously unknown attack vectors that traditional signature-

based systems might miss. However, the application of machine learning to critical infrastructure 

protection is fraught with unique challenges that stem from the operational constraints, safety 
requirements, and adversarial sophistication characteristic of these environments. 

 

The intersection of critical infrastructure security and machine learning represents more than a 
technical challenge; it embodies a fundamental question about how societies can harness 

advanced computational techniques to protect the systems upon which modern life depends. 

Smart cities epitomize this challenge, as they integrate diverse infrastructures including power 

grids, transportation networks, water systems, and emergency services into cohesive digital 
ecosystems. Research has demonstrated that these interconnected systems face mounting security 

challenges as their complexity increases. The deployment of Internet of Things devices 

throughout municipal infrastructure has created millions of potential entry points for attackers, 
each representing a vulnerability that must be monitored and protected [1]. The scale of this 

challenge is staggering; modern smart city implementations can involve hundreds of thousands of 

connected devices generating massive volumes of network traffic that must be analyzed in real-
time to detect malicious activity. Traditional security approaches based on predefined signatures 

and rule-based detection have proven inadequate for this environment, as they cannot adapt to the 

rapidly evolving tactics employed by sophisticated adversaries. Machine learning offers a 

potential solution by enabling systems to learn normal behavior patterns and identify deviations 
that may indicate intrusions, but realizing this potential requires overcoming significant technical 

and operational obstacles. 

 

1.1. Contributions 
 

The main contributions of this paper are summarized as follows: 
 

1. Critical infrastructure threat analysis: 
Presents a structured examination of cyber threats affecting U.S. critical infrastructure, 
emphasizing IT–OT convergence, protocol vulnerabilities, and limitations of traditional 

intrusion detection systems. 

2. Machine learning–based intrusion detection taxonomy: 
Provides a concise classification of supervised, unsupervised, deep learning, and hybrid 
approaches, analyzed under infrastructure-specific constraints including data imbalance, 

concept drift, and real-time operational requirements. 

3. Infrastructure-aware challenge assessment: 
Identifies key technical and operational challenges such as adversarial robustness, model 
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explainability, privacy preservation, and safety-critical false-positive risks in smart grid 
and smart city environments. 

4. Future-oriented framework and research directions: 
Synthesizes emerging solutions—including federated learning, explainable AI, ensemble 

methods, and physics-informed models—and outlines collaborative and evaluation 
considerations for trustworthy deployment. 

 

2. THE CRITICAL INFRASTRUCTURE THREAT LANDSCAPE 
 
Understanding the threat landscape facing American critical infrastructure requires examining 

both the evolving nature of cyber-attacks and the specific vulnerabilities inherent in industrial 

control systems and municipal networks. Recent vulnerability disclosures have highlighted the 

severity of risks facing networked infrastructure components. The discovery of CVE-2023-
20080, affecting Cisco IOS and IOS XE Software IPv6 DHCP implementations, demonstrated 

how fundamental networking protocols can harbor critical vulnerabilities that threaten the 

availability of critical systems. Similarly, CVE-2023-28231, a remote code execution 
vulnerability in Microsoft Windows DHCPv6 Server, and CVE-2024-38063, affecting Windows 

TCP/IP IPv6 implementations, have underscored the reality that even widely deployed, mature 

networking technologies contain exploitable flaws that could enable attackers to compromise 
critical infrastructure components. The National Security Agency has recognized these concerns, 

issuing specific guidance on IPv6 security considerations for critical infrastructure operators, 

acknowledging that the transition to next-generation networking protocols introduces new attack 

vectors that must be carefully managed. 
 

The threat landscape extends far beyond individual software vulnerabilities to encompass 

systemic challenges inherent in how critical infrastructure networks are architected and operated. 
Research examining cybersecurity vulnerabilities in smart cities has identified multiple domains 

where security weaknesses persist, including energy systems, transportation networks, healthcare 

infrastructure, and municipal services [2]. These domains are increasingly interconnected, 
creating cascading vulnerability chains where a compromise in one system can propagate to 

others. The challenge is compounded by the heterogeneous nature of infrastructure networks, 

which often combine legacy systems designed without security considerations alongside modern 

IoT devices with varying levels of security maturity. This heterogeneity makes it exceptionally 
difficult to implement unified security policies or deploy consistent monitoring capabilities across 

the entire infrastructure ecosystem. Furthermore, the operational requirements of critical 

infrastructure impose constraints that do not exist in traditional IT environments; systems must 
maintain high availability, meet strict latency requirements, and operate continuously without the 

possibility of taking equipment offline for security updates or patches. 

 

The threat actors targeting critical infrastructure range from opportunistic criminals to 
sophisticated nation-state adversaries, each bringing different capabilities and motivations to 

bear. Distributed denial of service attacks represents a persistent threat to IoT-enabled 

infrastructure, with research documenting comprehensive taxonomies of DDoS attack vectors 
specifically targeting connected devices [3]. These attacks can overwhelm network resources, 

disrupt service availability, and serve as diversions while more sophisticated intrusions occur. 

Beyond availability attacks, adversaries increasingly target the integrity and confidentiality of 
industrial control systems, seeking to manipulate operational parameters, steal proprietary 

information, or establish persistent access for future operations. The convergence of IoT 

technologies with critical infrastructure has created new attack surfaces that adversaries are 

actively exploiting. Studies have shown that IoT devices deployed in smart city environments 
frequently suffer from inadequate authentication mechanisms, unencrypted communications, and 
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insufficient input validation, creating opportunities for attackers to compromise these devices and 
use them as footholds for deeper network penetration [4], [5]. 

 
Table 1. Major Vulnerability Categories in Critical Infrastructure Networks 

 
Vulnerability 

Category 

Description Example 

Manifestations 

Potential Impact 

Protocol 

Vulnerabilities 

Flaws in fundamental 

networking protocols 

CVE-2023-20080 

(DHCPv6), CVE-2024-
38063 (IPv6 TCP/IP) 

Remote code execution, 

denial of service, 
network segmentation 

bypass 

IoT Device 

Security 

Weak authentication, 

unencrypted 

communications, inadequate 

updates 

Default credentials, 

plaintext protocols, 

outdated firmware 

Device compromise, 

botnet recruitment, 

network reconnaissance 

Legacy System 

Integration 

Systems designed without 

security considerations 

interfacing with modern 

networks 

Unencrypted SCADA 

protocols, inadequate 

access controls 

Operational disruption, 

data exfiltration, 

physical safety impacts 

Supply Chain 

Risks 

Compromised components 

or software in infrastructure 

systems 

Malicious firmware, 

backdoored hardware 

Long-term persistent 

access, widespread 

compromise 

Configuration 

Weaknesses 

Improper security settings 

and inadequate hardening 

Open management 

interfaces, excessive 
permissions 

Unauthorized access, 

privilege escalation 

 

Sources: NSA (2023); Riggs et al. (2023); Haq et al. (2023) 

 

3. MACHINE LEARNING APPROACHES TO INTRUSION DETECTION 
 

Machine learning techniques for intrusion detection in critical infrastructure networks can be 

broadly categorized into supervised, unsupervised, and deep learning approaches, each with 

distinct strengths and limitations. Supervised learning methods rely on labeled datasets of normal 
and malicious traffic and can achieve high detection accuracy when trained on representative 

data. However, their effectiveness is limited in critical infrastructure environments where 

comprehensive labeled datasets are scarce, and attack patterns are often undocumented. 
Additionally, models trained on conventional IT network data may not generalize well to 

industrial control systems due to fundamental operational differences. 

 
Recent reviews focused on critical infrastructure (CI) confirm these trade-offs in operational 

settings: ML-based IDS for ICS/SCADA/DCS must balance detection gains with scarce labeled 

data, zero-day variability, and resource limits that complicate real-time deployment and 

evaluation datasets. These surveys also compare modern CI datasets and highlight gaps when 
models trained on IT data are transferred to OT traffic. These findings reinforce the need for 

domain-aware model design and careful dataset curation in CI environments [24] 

 
Unsupervised learning approaches address these limitations by modeling normal network 

behavior and detecting deviations as potential intrusions. This paradigm is particularly valuable 

for identifying zero-day attacks and novel threats in infrastructure networks. While anomaly 

detection techniques have shown promise in distinguishing malicious activity from normal 
operations, their practical deployment is challenged by high false positive rates. Legitimate 

operational variations caused by load fluctuations, maintenance activities, and seasonal effects 

can be difficult to differentiate from actual security incidents without highly nuanced models. 



International Journal of Network Security & Its Applications (IJNSA) Vol.18, No.1, January 2026 

59 

Deep learning methods, including convolutional and recurrent neural networks, offer advanced 
capabilities for detecting complex and temporally correlated attack patterns. These models can 

automatically extract features from high-dimensional network traffic data and are well suited for 

analyzing large-scale IoT and smart infrastructure environments. Despite their effectiveness, deep 

learning approaches present challenges related to high computational demands and limited 
interpretability, which raise concerns for deployment in resource-constrained and safety-critical 

infrastructure systems. 

 

 
 

Figure 1. Machine Learning Model Deployment Architectures for Critical Infrastructure 

 

The integration of machine learning into critical infrastructure intrusion detection systems must 
address fundamental questions about model deployment architecture and operational integration. 

Edge computing approaches, where machine learning models are deployed directly on network 

devices or local gateways, offer the advantage of reduced latency and decreased dependence on 
network connectivity to centralized processing resources. This architectural approach is 

particularly relevant for infrastructure systems with stringent real-time requirements or limited 

bandwidth availability. However, edge deployment constrains the complexity of models that can 

be employed, as resource-limited devices may lack the computational capacity to execute 
sophisticated deep learning architectures. Centralized approaches, conversely, enable the 

deployment of more complex models and facilitate coordination of detection across multiple 

infrastructure domains, but introduce latency that may be unacceptable for time-critical 
applications and create single points of failure. Hybrid architectures that combine edge-based 

preliminary analysis with centralized deep inspection represent a promising middle ground but 

add architectural complexity and introduce additional security considerations regarding the 

communication channels between edge and central components [6][4]. 

 

3.1. Technical Challenges in Infrastructure-Specific Intrusion Detection 
 

The application of machine learning to critical infrastructure intrusion detection confronts 

technical challenges that distinguish this domain from conventional network security 

applications. One fundamental challenge concerns the imbalanced nature of security data in 
operational environments. Normal operational traffic vastly outnumbers malicious traffic in most 
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infrastructure networks, creating severe class imbalance problems that can cause machine 
learning models to achieve high overall accuracy while failing to detect actual intrusions. This 

imbalance is particularly acute in critical infrastructure contexts where attacks are relatively rare 

events, yet the consequences of failing to detect them can be catastrophic. Addressing class 

imbalance requires specialized techniques such as synthetic oversampling, cost-sensitive 
learning, or ensemble methods that explicitly account for the differential importance of correctly 

classifying minority class instances [7]. However, these techniques introduce their own 

complications, including the risk of overfitting to synthetic data or creating models that generate 
excessive false positives in attempts to maximize detection of rare attack patterns. 

 

The concept drift phenomenon represents another significant technical challenge that has 
profound implications for the long-term effectiveness of machine learning-based intrusion 

detection systems. Network behavior in critical infrastructure environments is not static; it 

evolves over time due to factors including equipment upgrades, operational procedure changes, 

seasonal variations, and the introduction of new services. Machine learning models trained on 
historical data can become progressively less accurate as the underlying data distribution shifts 

away from the distribution on which they were trained. Research examining IoT security has 

identified concept drift as a critical concern for maintaining detection accuracy over extended 
operational periods [8]. Addressing concept drift requires implementing mechanisms for 

continuous model updating and retraining, but doing so in critical infrastructure environments 

raises challenging questions about how to validate updated models before deployment and how to 
ensure that model updates do not inadvertently introduce new vulnerabilities or degrade detection 

performance.A recent comprehensive survey of ML strategies for IDS further documents how 

model selection, metric choice, and evaluation protocols interact with drift and false-alarm 

management in production systems, underscoring the need for periodic recalibration and 
explainability to sustain trust [26] 

 
Table 2. Technical Challenges in ML-Based Intrusion Detection for Critical Infrastructure 

 
Challenge 

Domain 

Specific Issues Impact on Detection 

Systems 

Mitigation Approaches 

Data 
Imbalance 

Attack traffic 
represents <0.1% of 

total traffic 

High false negative rates, 
models biased toward 

majority class 

Synthetic oversampling 
(SMOTE), cost-

sensitive learning, 

ensemble methods 

Concept Drift Network behavior 

evolves over time 

Degraded accuracy, 

increased false 

positives/negatives 

Online learning, 

periodic retraining, 

ensemble adaptation 

Feature 

Engineering 

High dimensionality, 

protocol diversity, 

domain-specific 

semantics 

Computational overhead, 

information loss, reduced 

interpretability 

Domain expertise 

integration, automated 

feature selection, 

dimensionality 

reduction 

Adversarial 

Robustness 

Poisoning attacks, 

evasion techniques, 

model exploitation 

Compromised detection 

capability, false 

confidence 

Adversarial training, 

robust optimization, 

input sanitization 

Real-time 
Processing 

Latency constraints, 
throughput 

requirements 

Delayed detection, 
incomplete analysis 

Edge computing, 
lightweight models, 

hierarchical processing 

 

Sources: Kumari & Jain (2023); Noor & Hassan (2019); Comprehensive Study (2025) 
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4. FEATURE ENGINEERING, ADVERSARIAL RISKS, AND OPERATIONAL 

CHALLENGES 
 

Feature engineering in critical infrastructure networks is challenging due to diverse industrial 
protocols and complex operational behaviors that generate high-dimensional feature spaces. 

Unlike traditional IT environments, these systems embed semantic information tied to physical 

processes, requiring domain expertise to extract security-relevant features. At the same time, 
models must balance feature richness with computational efficiency, as overly complex 

representations increase latency and hinder real-time detection.Hybrid ML/DL pipelines that 

combine ensemble learners with deep architectures have recently shown strong performance 
while explicitly managing class imbalance and feature reduction to keep inference latency 

acceptable [27]. Such designs illustrate a practical path to reconcile feature richness with 

real-time requirements in modern NIDS [27]. 

 
Adversarial machine learning further complicates intrusion detection. Attackers can poison 

training data, craft evasive traffic, or exploit model weaknesses, turning ML-based detectors into 

targets themselves. Robust training, adversarial defenses, and continuous validation are essential 
but often add computational overhead that conflicts with strict real-time constraints in critical 

infrastructure. 

 

Operational deployment introduces additional barriers. Infrastructure systems require 
near-continuous availability, leaving little flexibility for model retraining or system downtime. 

Insufficiently validated model updates risk false negatives that enable attacks or false positives 

that burden security teams. Effective integration therefore demands structured alert prioritization, 
workflow alignment, and human-centered oversight, supported by explainable models that allow 

analysts to interpret detection outputs. 

 
Regulatory and workforce limitations also hinder adoption. Frameworks such as NERC CIP and 

the America’s Water Infrastructure Act provide limited guidance for validating ML-based 

security systems, creating uncertainty around compliance. Simultaneously, a shortage of 

professionals with combined expertise in cybersecurity, machine learning, and operational 
technology constrains many organizations—particularly smaller operators—from deploying and 

sustaining advanced intrusion detection capabilities. 

 

 
 

Figure 2. Integration Framework for ML-Based Intrusion Detection in Infrastructure Operations 
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4.1. Smart Grid and Power Infrastructure Security 
 

The electric power grid remains a core critical infrastructure where machine-learning-based 

intrusion detection can significantly strengthen security, yet it also highlights the operational 
challenges of protecting industrial control environments. Smart grid modernization has 

introduced extensive digital communication and control capabilities across generation, 

transmission, and distribution systems. While these advances improve efficiency and reliability, 
they also expand the cyber attack surface. Research identifies multiple attack vectors—including 

threats to SCADA systems, advanced metering infrastructure, distributed energy resources, and 

grid communication networks—each capable of causing disruptions ranging from localized 

outages to large-scale cascading failures [9]. ML-driven anomaly detection offers promising 
early-warning capabilities, but deployment must account for the grid’s strict real-time and 

safety-critical requirements. 

 
Modern smart grids operate through layered communication networks spanning high-voltage 

transmission systems, distribution networks, and customer-level infrastructure. Each tier exhibits 

unique protocols, data flows, and timing behavior, making it difficult for a single intrusion 
detection model to generalize across the entire grid. Studies emphasize that effective protection 

requires domain-specific ML models tuned to each architectural layer, though this specialization 

increases operational complexity and resource demands [9]. 

 
False positives pose particularly high risks in the power sector. Unlike IT networks, where 

isolating suspicious activity typically has limited physical consequences, automated responses in 

grid environments can trigger protective relays, disconnect generation assets, or unintentionally 
interrupt service. This creates an inherent tension between rapid automated mitigation and the 

need for human oversight in safety-critical scenarios. Accordingly, response architectures must 

differentiate between low-risk automated actions (e.g., increased logging, deeper traffic 
inspection) and high-risk control actions that require operator approval. ML systems must 

therefore deliver interpretable outputs, providing clear confidence indicators and contextual 

information that enable operators to make informed, safe decisions during anomalous events. 

 
Table 3. Machine Learning Applications in Smart Grid Security 

 
Grid Domain Security 

Challenges 

ML Application Expected 

Benefits 

Implementation 

Challenges 

SCADA Systems Unauthorized 

control commands, 

data manipulation 

Supervised 

learning for 

command 

validation 

Detection of 

anomalous 

control sequences 

Limited attack 

training data, real-

time requirements 

Advanced 

Metering 

Infrastructure 

Meter tampering, 

data privacy, 

communication 

attacks 

Anomaly 

detection on 

meter data 

patterns 

Identification of 

compromised 

meters 

Massive data 

volumes, legitimate 

variability 

Distributed 

Energy 
Resources 

Inverter 

manipulation, 
coordinated 

attacks 

Time-series 

analysis of 
resource 

behavior 

Detection of 

coordinated 
anomalies 

Weather-driven 

variations, 
heterogeneous 

devices 

Grid 

Communication 

Networks 

Protocol attacks, 

eavesdropping, 

replay attacks 

Deep learning 

on network 

traffic 

Protocol anomaly 

detection 

Specialized OT 

protocols, latency 

constraints 
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Substation 

Automation 

IEC 61850 

protocol attacks, 

device 

compromise 

Ensemble 

methods 

combining 

multiple 

detection 

approaches 

Comprehensive 

threat detection 

Integration with 

legacy systems 

 

5. MUNICIPAL SYSTEMS AND SMART CITY SECURITY 
 

Municipal smart city implementations present a particularly complex challenge for machine 

learning-based intrusion detection due to the diversity of systems involved and the public safety 
implications of security failures. Smart cities integrate numerous infrastructure domains including 

traffic management, public safety communications, environmental monitoring, waste 

management, and municipal services into interconnected digital ecosystems. Research examining 
smart city security has documented the wide-ranging cyber threats facing these systems, from 

attacks targeting individual IoT sensors to sophisticated campaigns aiming to disrupt critical 

municipal services [10]. The interconnected nature of smart city systems means that a 
compromise in one domain can potentially cascade to affect other municipal services, creating 

compound effects that could significantly impact public safety and quality of life. Machine 

learning-based intrusion detection deployed across smart city infrastructure must therefore 

account for the possibility of cross-domain attacks and lateral movement between different 
municipal systems. 

 

The privacy implications of security monitoring in smart city environments warrant careful 
consideration, as the data collected for intrusion detection purposes may contain information 

about citizen behavior and activities. Traffic monitoring systems designed to detect anomalies 

that could indicate cyber-attacks will necessarily collect information about vehicle movements 

throughout the city. Environmental sensors deployed for pollution monitoring could reveal 
patterns of human activity. Research has emphasized that smart city implementations must 

carefully balance security monitoring requirements against citizen privacy rights, implementing 

appropriate data minimization, anonymization, and retention policies [11]. Machine learning 
systems must be designed to extract security-relevant features from municipal network traffic 

while avoiding unnecessary collection or retention of personally identifiable information. This 

requires thoughtful feature engineering that focuses on network-level characteristics rather than 
content, and implementation of data governance frameworks that specify clear policies for how 

security monitoring data will be handled. 

 

 
 

Figure 3. Smart City Multi-Domain Intrusion Detection Architecture 
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The heterogeneity of devices and systems deployed in smart city environments creates significant 
challenges for developing comprehensive intrusion detection capabilities. A single municipal 

network may encompass thousands of different device types from dozens of vendors, operating 

various protocols and exhibiting diverse behavioral characteristics. Research examining IoT 

vulnerabilities and countermeasures has highlighted how this heterogeneity complicates efforts to 
establish baseline normal behavior and detect anomalies [12]. Machine learning approaches must 

either develop device-specific models tailored to each class of equipment, requiring extensive 

training data and ongoing maintenance for each device type, or develop more general models that 
can accommodate diverse device behaviors while still maintaining adequate detection sensitivity. 

Neither approach is entirely satisfactory; device-specific models impose substantial operational 

overhead, while general models may sacrifice detection accuracy in pursuit of broader 
applicability. Hybrid approaches that group devices into behavioral clusters and develops 

specialized models for each cluster represent a promising middle ground but require sophisticated 

clustering algorithms and ongoing model management. 

 

5.1. Data Management and Privacy Considerations 
 
The effectiveness of machine-learning-based intrusion detection in critical infrastructure depends 

heavily on high-quality training data, yet such data is difficult to obtain. Unlike conventional IT 

environments with abundant public intrusion datasets, infrastructure-specific data is scarce due to 

the sensitivity of operational technology networks and concerns that sharing traffic captures or 
logs could expose vulnerabilities. Studies highlight that limited access to representative datasets 

remains a major barrier to developing tailored ML-based security solutions for IoT and OT 

environments [4]. As a result, researchers and operators face persistent data scarcity that restricts 
robust model development and evaluation. 

 

Synthetic data generation—using simulations or generative models—offers a potential 
workaround by producing artificial traffic resembling real operational behavior. While useful for 

prototyping, synthetic datasets often struggle to reproduce the full complexity, edge-case 

interactions, and unexpected anomalies found in real systems. Consequently, questions remain 

about whether models trained solely on synthetic traffic can generalize reliably in production 
environments, where validation itself may require access to sensitive operational data. 

 

Data retention and governance add further complexity. Effective ML models benefit from 
long-term historical datasets capturing seasonal variations and diverse operating conditions. 

However, retaining large volumes of network traffic and security logs increases the risk of 

exposing sensitive infrastructure information in the event of a breach. Prior research emphasizes 

that strong data governance—defining what data is collected, how it is protected, retention 
periods, and permitted sharing conditions—is essential to balancing security, regulatory, and 

privacy requirements [13]. Developing these policies requires coordination with legal, privacy, 

and regulatory stakeholders to ensure compliance while maintaining the data pipeline necessary 
for reliable machine learning–based intrusion detection. 

 
Table 4. Data Challenges and Solutions for Infrastructure ML Security 

 
Data 

Challenge 

Security Impact Potential Solutions Trade-offs 

Training 
Data Scarcity 

Limited model 
effectiveness, poor 

generalization 

Synthetic data generation, 
simulation environments, 

data sharing consortia 

Synthetic data may not capture 
real-world complexity, sharing 

faces confidentiality concerns 

Dataset 

Imbalance 

Biased models, poor 

attack detection 

Oversampling techniques, 

cost-sensitive learning, 

Risk of overfitting, 

computational overhead 
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transfer learning 

Privacy 

Constraints 

Limited data sharing, 

reduced collaborative 

learning 

Federated learning, 

differential privacy, 

secure multi-party 

computation 

Performance penalties, 

implementation complexity 

Data Quality 

Issues 

Inaccurate labels, 

incomplete captures, 

noise 

Automated quality 

checking, human 

validation, robust learning 

algorithms 

Resource intensive validation, 

cannot eliminate all errors 

Temporal 
Coverage 

Models trained on 
limited time periods 

Long-term data 
collection, seasonal 

dataset augmentation 

Storage costs, evolving attack 
landscape may date historical 

data 

 

6. OPPORTUNITIES AND EMERGING DIRECTIONS 
 

Despite the challenges of applying machine learning to critical infrastructure intrusion detection, 
several promising opportunities can meaningfully advance security capabilities. One key 

direction is the development of ensemble-based intrusion detection systems that combine 

supervised, unsupervised, and deep learning methods. Such ensembles leverage the 
complementary strengths of multiple approaches, reducing false positives while improving 

detection sensitivity compared to single-model solutions [3]. The primary challenge is designing 

robust fusion mechanisms that appropriately weight model outputs and resolve conflicts when 

classifications diverge.Recent empirical results show that hybrid ensembles that pair tree-based 
feature selection (e.g., XGBoost) with CNN/LSTM temporal learners can reduce false alarms 

while improving detection across CICIDS2017, UNSW-NB15, and NSL-KDD datasets, 

strengthening the practical case for fusion architectures [28] 
 

Explainable artificial intelligence (XAI) presents another important opportunity. Recent 

advances—such as attention mechanisms that highlight influential features and counterfactual 
explanations that show how inputs must change to alter outcomes—offer potential for increasing 

transparency and operator trust [15], [16]. For intrusion detection, XAI can help analysts 

understand why traffic was flagged as malicious and support more effective investigation. The 

remaining challenge lies in tailoring explanations to operational security workflows so they are 
actionable and not overly complex. 

 

Transfer learning and domain adaptation also hold promise for addressing training data scarcity. 
Rather than requiring every operator to build models from scratch, transfer learning enables 

models trained in one infrastructure domain to be adapted to another with limited fine-tuning [8], 

[17]. The key research question is determining which model components generalize across 

domains and which must be customized for infrastructure-specific protocols and operational 
patterns. 

 

Physics-informed machine learning represents another promising direction. By incorporating 
domain knowledge about physical system behavior into learning processes—such as hydraulic 

relationships in water systems or power flow dynamics in electrical grids—models can better 

distinguish between benign operational anomalies and true cyber threats. This approach enables 
detection that aligns more closely with real-world system behavior, reducing false positives and 

improving operator confidence [18]. Achieving this requires sustained collaboration between ML 

researchers, cybersecurity experts, and domain specialists. 
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Testbed environments offer additional opportunities for advancing ML-based intrusion detection. 
Platforms such as OpenCyberCity provide realistic, controlled environments for evaluating 

algorithms, validating robustness, and enabling adversarial testing prior to deployment [19]. 

These environments also support synthetic dataset generation under realistic conditions, helping 

mitigate data scarcity. However, testbeds must evolve to reflect the complexity and 
unpredictability of real infrastructure; strong performance in a laboratory environment does not 

guarantee operational effectiveness. 

 

 
 

Figure 4. Evolution Pathway for ML-Based Infrastructure Security 

 

7. CROSS-SECTOR COLLABORATION AND INFORMATION SHARING 
 

The development of effective machine learning-based intrusion detection for critical 

infrastructure cannot succeed as isolated efforts by individual organizations, but rather requires 
coordinated collaboration across sectors, sharing of threat intelligence, and collective 

advancement of security capabilities. The challenges facing different infrastructure sectors share 

common characteristics, and lessons learned in one domain can inform security approaches in 
others. Research has emphasized the importance of collaborative approaches to smart city 

cybersecurity, noting that municipalities can benefit substantially from sharing security 

intelligence and coordinating defensive strategies [20]. However, establishing effective 
information sharing mechanisms faces obstacles including competitive concerns, liability 

questions, and the technical challenges of sharing actionable security information while 

protecting sensitive operational details. 

 
The establishment of Information Sharing and Analysis Centers specific to various infrastructure 

sectors has created formal mechanisms for coordinating security efforts, but these organizations 

face ongoing challenges in facilitating effective information exchange about emerging threats and 
effective countermeasures. Machine learning-based intrusion detection introduces new 

dimensions to information sharing, as organizations could potentially benefit from sharing not 

just threat indicators but also detection models, feature engineering approaches, and training 
datasets. Research examining cybersecurity in industrial IoT has explored how blockchain 

technologies could potentially facilitate trusted information sharing while maintaining 

auditability and attribution [21]. The development of privacy-preserving mechanisms for sharing 
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machine learning models and training data could enable infrastructure operators to collectively 
develop improved security capabilities without exposing proprietary operational information 

[22]. 

 
Table 5. Stakeholder Roles in ML-Based Infrastructure Security Development 

 
Stakeholder 

Category 

Primary 

Responsibilities 

Contribution to ML 

Security 

Critical Success 

Factors 

Infrastructure 

Operators 

Deploy and operate 

security systems, 

respond to incidents 

Provide operational 

context, validate 

solutions, share 

anonymized data 

Executive commitment, 

adequate resources, 

workforce development 

Technology 

Vendors 

Develop security 

products, provide 

technical support 

Integrate ML 

capabilities, leverage 

cross-customer insights 

Balance proprietary 

concerns with 

collaboration, long-

term support 

commitment 

Government 

Agencies 

Set standards, provide 

guidance, facilitate 

information sharing 

Develop regulatory 

frameworks, fund 

research, coordinate 
sector collaboration 

Clear policy direction, 

adequate funding, 

cross-agency 
coordination 

Academic 

Researchers 

Conduct fundamental 

research, develop 

novel approaches 

Advance ML 

techniques, evaluate 

approaches, train 

workforce 

Access to 

representative data, 

engagement with 

practitioners, research 

funding 

Industry 

Associations 

Facilitate information 

sharing, develop best 

practices 

Coordinate 

collaborative security 

initiatives, aggregate 

sector knowledge 

Member engagement, 

trusted neutral 

platform, technical 

expertise 

Security 

Service 

Providers 

Deliver managed 

security services, 

incident response 

Scale expertise across 

multiple operators, 

provide specialized 

capabilities 

Access to threat 

intelligence, trained 

analysts, technology 

integration 

 

The role of equipment vendors and technology providers in supporting machine learning-based 

security deserves particular attention, as these organizations have visibility across multiple 
customer deployments and could potentially identify security patterns that individual operators 

cannot observe. Vendors of industrial control systems, IoT devices, and infrastructure 

management platforms accumulate experience from numerous installations and could leverage 

this collective experience to develop security capabilities that benefit all customers. Research has 
explored how vendor-provided security services could incorporate machine learning capabilities 

that are continuously improved based on anonymized telemetry from customer deployments 

(Research on IPv6 Address State Detection and Management Technology, 2024). However, this 
model raises questions about data ownership, privacy protection, and the potential for vendor 

lock-in, requiring careful contractual and technical safeguards to protect customer interests while 

enabling beneficial security collaboration. 

 
Academic research institutions have important roles to play in advancing the state of practice for 

infrastructure security, conducting fundamental research on machine learning techniques, 

evaluating proposed approaches, and training the next generation of security professionals. The 
translation of academic research into operational practice faces well-documented challenges, as 

research environments typically do not capture the full complexity and operational constraints of 

production infrastructure. Strengthening partnerships between academic researchers and 
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infrastructure operators can help ensure that research addresses practically relevant problems and 
that promising research results are effectively transitioned to operational deployment. Research 

examining security vulnerability assessments has noted the importance of diverse research 

communities bringing different perspectives to cybersecurity challenges [23]. Supporting 

collaborative research that brings together computer scientists, infrastructure engineers, and 
security practitioners can produce solutions that are both technically sophisticated and 

operationally viable. 

 

8. STANDARDIZATION AND EVALUATION FRAMEWORKS 
 

Advancing machine-learning-based intrusion detection for critical infrastructure requires 

standardized evaluation frameworks that allow objective comparison of techniques and give 

operators confidence in security performance. Although numerous ML approaches report high 
accuracy, these results often rely on different datasets, metrics, and threat models, making 

cross-study comparison difficult. Prior research emphasizes that the absence of uniform 

evaluation methodologies significantly hinders assessment of competing IoT and OT security 
solutions (A review of the security vulnerabilities and countermeasures in the Internet of Things 

solutions, 2023). Establishing shared benchmarks, metrics, and testing procedures would 

accelerate adoption by enabling operators to make evidence-based technology decisions. 
 

A key requirement is the development of benchmark datasets that accurately represent 

operational technology environments. Existing public datasets focus on conventional IT networks 

and do not capture the protocols, traffic patterns, or attack vectors seen in industrial systems. 
Although emerging research has begun creating infrastructure-specific datasets, comprehensive 

multi-domain benchmarks remain limited. Synthetic datasets—generated through simulations or 

sanitized real traffic—offer partial solutions but must be rigorously validated to ensure they 
reflect the complexity and behavioral nuances essential for evaluating intrusion detection 

performance. 

 
Standardizing performance metrics is equally important. Infrastructure environments impose 

constraints that conventional measures such as precision, recall, and F-score do not fully capture. 

The asymmetric costs of errors—where a single false positive may trigger an unnecessary 

shutdown or misoperation—demand metrics that incorporate safety impact, operational 
disruption, and latency requirements. High detection accuracy is insufficient if achieved at the 

expense of real-time responsiveness or explainability. Recent studies highlight the need for 

holistic evaluation frameworks that integrate detection performance with operational impact, 
resource demands, and implementation complexity [21]. 

 

 
 

Figure 5. Comprehensive Evaluation Framework for Infrastructure ML Security Systems 
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The certification and validation of machine learning-based security systems for use in safety-
critical infrastructure applications presents significant challenges that the security community has 

only begun to address. Traditional software assurance approaches based on code review, formal 

verification, and exhaustive testing do not translate straightforwardly to machine learning 

systems whose behavior is determined by training data rather than explicit programming. How 
can an infrastructure operator gain confidence that a machine learning intrusion detection system 

will perform reliably across the full range of operational conditions it might encounter? What 

testing and validation procedures provide adequate assurance that the system will not produce 
dangerous false positives or miss critical attacks? Research examining AI assurance has explored 

various approaches including adversarial testing, model interpretability analysis, and formal 

verification of neural network properties, but significant work remains to translate these research 
concepts into practical validation procedures appropriate for infrastructure security applications. 

The development of industry consensus around appropriate validation approaches could help 

accelerate the adoption of machine learning security technologies by providing operators with 

confidence that deployed systems meet appropriate assurance standards.Recent IDS surveys 
further emphasize that progress depends on reproducible pipelines using modern datasets such as 

CIC-IDS2017, CICDDoS2019, and UNSW-NB15, along with metrics that go beyond accuracy 

(e.g., precision/recall balance, false-positive rate, and detection latency), to support meaningful 
cross-study comparison [25] 

 

9. FUTURE RESEARCH DIRECTIONS AND RECOMMENDATIONS 
 

Advancing machine-learning-based intrusion detection for critical infrastructure requires 
coordinated progress across research, technology development, and operational practice. Several 

priority directions emerge from current challenges. First, new machine learning methods must be 

designed specifically for the characteristics of operational technology networks. Many existing 
approaches rely on general-purpose algorithms not built for constraints such as extreme data 

imbalance, concept drift, adversarial manipulation, and explainability requirements. Research that 

integrates these needs into unified algorithmic frameworks could produce models far better 
aligned with real-world infrastructure environments. 

 

Second, the intersection of machine learning and formal methods represents an important but 

underdeveloped research frontier. Formal verification offers mathematically grounded assurances 
about system behavior—critical for safety-sensitive environments—but current progress remains 

limited to relatively small neural network architectures. Extending verification techniques to 

larger, more complex models and validating properties such as adversarial robustness or bounded 
false-positive rates would help address assurance concerns that currently hinder adoption. 

 

Third, human-AI collaboration frameworks tailored to infrastructure security operations warrant 

focused attention. Optimal security practice will likely blend automated detection with human 
expertise rather than rely exclusively on either. Research is needed to design interfaces, 

workflows, and decision-support tools that empower analysts to interpret model outputs, 

understand uncertainty, and intervene appropriately under real-world operational constraints. 
Insights from human–computer interaction, cognitive psychology, and security operations 

research will be crucial for building effective collaboration models. 

 
From a policy and governance perspective, government agencies can accelerate progress by 

funding initiatives dedicated to developing and validating ML-based security tools for critical 

infrastructure. Such programs could support benchmark datasets, reference implementations, and 

standardized validation frameworks. Regulatory bodies should also update compliance guidelines 
to address machine-learning-based detection systems explicitly, reducing uncertainty for 

operators evaluating deployment. 
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Infrastructure operators, in turn, should prepare for increased reliance on ML-driven security by 
investing in data collection infrastructure, workforce upskilling, and operational processes that 

enable effective model deployment. Proactive engagement with researchers and technology 

vendors—such as participation in pilot deployments and field trials—can help organizations 

adopt emerging solutions safely and gain strategic advantages. 
 

Finally, the academic research community must balance scientific innovation with practical 

relevance. Sustained collaboration with infrastructure operators is essential to ensure models 
address genuine operational constraints and produce solutions that remain usable outside 

laboratory conditions. Research should both advance generalizable knowledge and deliver 

approaches that can be realistically integrated into production environments. The most impactful 
work will bridge theory and practice, addressing immediate operational needs while contributing 

to long-term advancements in securing critical infrastructure. 

 

10. CONCLUSION 
 
Machine learning offers significant potential to enhance intrusion detection across critical 

infrastructure by identifying sophisticated attacks, detecting previously unseen threats, and 

adapting to evolving adversary behaviors. However, translating this potential into operational 
reality remains challenging due to limitations in algorithm design, data availability, system 

integration, regulatory uncertainty, and workforce preparedness. Although recent research has 

advanced understanding and proposed promising solutions, considerable work is still required to 

achieve reliable, scalable deployment in real-world infrastructure environments. 
 

Realizing the benefits of machine learning will require coordinated action across stakeholder 

groups—including infrastructure operators, technology vendors, government agencies, academic 
researchers, and industry associations. No single sector can address the multifaceted technical 

and organizational barriers alone. Progress depends on sustained information sharing, 

collaborative research, and the development of standardized evaluation frameworks, benchmark 
datasets, and validation procedures tailored to safety-critical systems. Workforce development 

will also be essential to ensure organizations can effectively deploy, manage, and oversee 

advanced ML-based security technologies. 

 
As critical infrastructure becomes more interconnected and dependent on digital controls, 

traditional security approaches such as network segmentation and signature-based detection alone 

are increasingly insufficient. Machine learning provides a pathway to scalable, adaptive, and 
real-time security capabilities capable of handling the complexity and volume of modern 

IoT-enabled environments. Achieving this vision requires long-term commitment to overcoming 

the technical and operational challenges outlined throughout this work. The research community 

has laid a strong foundation, and continued innovation will drive progress toward mature and 
trustworthy machine-learning-based security solutions over the coming decade. 

 

Moving forward, stakeholders must balance optimism with practical considerations. Operators 
should avoid both premature adoption of immature technologies and excessive caution that 

delays meaningful improvements. Vendors must prioritize solutions aligned with operational 

constraints rather than focusing solely on laboratory performance. Researchers must stay 
grounded in real deployment needs, while policymakers must develop regulatory frameworks that 

encourage innovation while ensuring safety and accountability. Through coordinated and 

sustained effort, machine-learning-enhanced security for U.S. critical infrastructure can evolve 

from aspiration to reality, providing the protection necessary for an increasingly digital society. 
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