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ABSTRACT 
 
This paper is to introduce a novel semi-supervised methodology, the enhanced incremental principal 

component analysis (“IPCA”) based deep convolutional neural network autoencoder (“DCNN-AE) for 

Anomalous Sound Detection (“ASD”) with high accuracy and computing efficiency. This hybrid 

methodology is to adopt Enhanced IPCA to reduce the dimensionality and then to use DCNN-AE to extract 

the features of the sample sound and detect the anomality. In this project, 228 sets of normal sounds and 

100 sets of anomaly sounds of same machine are used for the experiments. And the sound files of machines 

(stepper motors) for the experiments are collected from a plant site. 50 random test cases are executed to 

evaluate the performance of the algorithm with AUC, PAUC, F measure and Accuracy Score. IPCA Based 

DCNN-AE shows high accuracy with the average AUC of 0.815793282, comparing with that of Kmeans++ 

of 0.499545351, of Incremental PCA based DBSCAN clustering of 0.636348073, of Incremental based 

PCA based One-class SVM of 0.506749433 and of DCGAN of 0.716528104. From the perspective of 

computing efficiency, because of the dimensions-reduction by the IPCA layer, the average execution time 

of the new methodology is 15 minutes in the CPU computing module of 2.3 GHz quad-core processors, 

comparing with that of DCGAN with 90 minutes in GPU computing module of 4 to 8 kernels. 
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1. INTRODUCTION 
 

1.1. Anomalous Sound Detection and Issues of Implementation to Industry 
 

Internet of things (“IoT”) and industry 4.0 are becoming more and more important in both 

research and industrial domains. Industry 4.0 is a paradigm within automation and data 

transformation in manufacturing technologies, which help to build up the intelligent networking 

of devices, machines, and processes in the enterprises. Industrial Internet of Things (“IoT”), as 

one of the key components of industry 4.0, is to adopt the devices, including sensors, actuators, 

computers or “smart” objects to collect the operation data in the manufacturing process, to 

monitor the operation status of the machines and to detect the anomalous behaviours of the 

machines. The machine learning/deep learning algorithms are adopted widely to deploy the 

artificial intelligent agents for IoT data analysis.  

 

Anomalous Sound Detection (“ASD”) is one prominent approach of IoT, which is to adopt 

unsupervised or semi-supervised ML/DL methodologies to extract the features of the sound data 

of the equipment, and then to observe and detect the anomalous sound emitted from the target 

machinery as the basis of the warning of the operation status of the targets and send it to the 

human operators. All machinery in factories is subject to breakdown, which causes potential risk 

of loss for the companies [1]. Experienced technicians are able to diagnose such failures and the 
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machines’ operational conditions by listening to the machinery[2].As a major type of Predictive 

Maintenance Technologies, acoustic monitoring sensor could detect the anomalous changes of 

the machine’s condition before the breakdown really happens. Based on the statistics result 

published by US Department of Energy in 2020, the functional predictive maintenance program 

reduces the maintenance costs of 25%-30%, eliminates the breakdown of 70%-75%, reduces the 

downtime of 35%-45% and increases the production of 20%-25%[5]. However, based on the 

studies in United States in the winter of 2020, only 12% maintenance resources and activities of 

average facilities are predictive [3]. Therefore, the need of the predictive maintenance is huge and 

on a high priority. especially when the machines work in an environment which is difficult for 

humans to enter or work continuously in (eg: the Deep Ocean Drifters), or there is lack of the 

labours in the companies which are quite normal in the developed countries or regions, the 

quality of the maintenance service will be impacted significantly due to the shortage of human-

friendly environment or skilled workers. To resolve this issue, the technology of “smart” 

anomalous sound detection with high precise and sensitivity on operating acoustic data is 

developed. 

 

Except for the lower cost of predictive maintenance, the reduced risk of deaths and severe 

injuries due to the equipment incidents is another important reason to implement the Anomalous 

Sound Detection technology in the maintenance practices. For example, incidents involving lifts, 

elevators and escalators each year kill 31 people and seriously injure about 17,000 people in the 

United States, according to the Centre to Protect Workers’ Rights (“CPWR”) analysis of data 

provided by the BLS (1992-2009) and the Consumer Product Safety Commission (“CPSC”) 

(1997-2010)[4]. In Hong Kong, the annually Reported Lift Incident Records are 366 on average 

(2011-2021)[5]. With Anomalous Sound Detection technology, the working conditions of the 

lifts or elevators are capable to be monitored and predicted in time before the incidents really 

happen and therefore reduce the loss of the peoples’ lives and weaken the harms to the safety of 

equipment located environments. 

 

However, there are quite a few challenges of the ASD, although the importance of its role is 

increasing with the development of industry 4.0 and IoT. And those challenges are mainly related 

to the limit of the data collections, which includes:  

 

Imbalanced Training Dataset. For most IoT applications, the anomaly events with a long time-

series data are rare. Generally, the IoT generates a large volume of normal data with 24*7, and 

the actual anomalous sounds rarely occur and are highly diverse[6] because of the changing and 

complex operating conditions[7][8]. The ratio of anomalous data files to normal ones depends on 

the different types of machines, maintenance conditions and external environments eg: changes 

of seasons etc. In practice, the range of such ratio varies from 5% or less to more than 20% when 

the machines’ conditions are getting damaged. Therefore, to identify the unknown anomalous 

sounds from the given exhaustive continuous normal data is a challenge for traditional ASD 

technology. 

 

Noise. In most occasions, the sound data is collected in the real manufacturing environments 

where multiple machines are placed together to emit different types of sounds, therefore, the 

environmental noise is a potential issue to impact the data quality significantly[9]. Especially, the 

sudden changes of the noise characteristics increase the difficulty of the detection of the 

anomalous sound in the noise contaminated environment, and lead to cognitive performance 

decline[10]. Therefore, a machine learning methodology with noise-tolerance is crucial for the 

application for the ASD. However, the traditional methodologies, including both classification 

and clustering, are not capable to handle this issue from the nature. 
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Hardcoded Architecture. Because most different local environments have their own unique 

acoustic signatures, therefore the localized models are required for each different environment or 

domain. Lack of automatic self-adaptability and hardcoded framing are the defects of most 

algorithms because of the requirement to set different parameters for the different characteristics 

of the original acoustic data and the external environments. And such settings impact the 

efficiency and accuracy of ASD. 

 

Computation Cost. To achieve the satisfactory performance of features extractions of audio 

files, the enormous size of the training data and the architecture of the machine learning or deep 

learning algorithms require high computation capability, and thus the computation cost keeps 

high. For example, for some generative adversarial network or autoencoder, the continuous 

computation capability of one or multiple GPUs are required when keeping successful batch-

running. The computing cost can reach thousands of dollars per machine per month. 

 

To resolve these four issues, different with the methodologies introduced in this chapter, as the 

semi-supervised algorithm, the Deep Convolutional Neural Network Autoencoder has the 

capability to train the labelled normal dataset and classify the unlabelled anomalous sound when 

lacking the known abnormal scenarios. To aware the noise robustness, a noise is collected in the 

environment for experiments purpose. Hence, the encoder inputs are the clean sample values plus 

the noise for training and prediction. 

 

And the audio segments in the pre-processing phrase are referred as one input parameters of the 

DCNN Auto Encoder, therefore the adaptability of the deep learning algorithm is relatively 

higher than other unsupervised or semi-supervised algorithms with high accuracy and computing 

efficiency. 

 

In the next chapter, several well-known unsupervised and supervised algorithms are introduced. 

The pros and cons of each algorithm are discussed. 

 

1.2. Limitation of Existing Solutions 
 

As one of the hottest topics in the research field of industry 4.0, Anomalous Sound Detection 

develops quite fast during the past decades. As defined by V. Chandola, A. Banerjee, and V. 

Kumar in 2009[11], anomalies refer to the behaviour patterns that do not conform to a well-

defined notion of normal behaviour. Based on the definition, the characteristics of the anomalies 

to differ them from the normal ones includes (1) the scarcity as the anomaly event occurs quite 

less frequently than normal ones; (2) the features which are able to be identified or extracted from 

the normal ones;(3) the meaning to be represented by the anomality[12]. Because of the 

characteristics of the anomalies, many algorithms, mainly unsupervised and semi-supervised, are 

created for the fault diagnose and anomaly prediction. Several of them are discussed here. 

 

Classification is one type of the earliest unsupervised machine learning (“ML”) methodology, in 

which Principal Component Analysis (“PCA”), and Linear Discriminant Analysis (“LDA”) are 

widely used to reduce the dimensions by looking for the linear combinations of variables[13]. 

The main challenge of such classification is that the characteristics of the data should be known 

in advance, eg: the count of the variables, the class should be Gaussian etc. Another disadvantage 

is the accuracy when deploying such algorithms in practice, especially when predicting the 

changes of the temporal shapes after the long-time training of the normal dataset. 

 

Clustering is another type of the unsupervised ML methodology in ASD. In clustering, K-means 

is the most popular unsupervised algorithm [14]. The advantage of K-means is the high efficiency 

because of its linear complexity. The disadvantages include that the count of clusters should be 



International Journal on Soft Computing (IJSC) Vol.13, No.3, August 2022 

4 

pre-set as an input and that the inconsistent clustering results due to its random starting point 

selection. Agglomerative Hierarchical Clustering is another widely-used clustering 

algorithm[15]. The advantage of the hierarchical algorithm is that it doesn’t require the count of 

clusters as an input. The disadvantages include the low efficiency and the low accuracy when 

processing a large volume of data because of its dendrogram [16]. 

 

Both classification and clustering algorithms are less noise-tolerant because of their architecture. 

That means, these two types of algorithms perform weak when deploying to noise contaminated 

environments. 

 

Support Vector Machine (“SVM”) and Convolutional Neural Network (“CNN”) are two well-

known supervised ML algorithms [17][18]. The accuracy of supervised ML algorithms can be 

much high. But such methodology cannot be deployed to imbalanced training datasets because of 

the lack of known anomalous samples.  

 

Except for the traditional algorithms discussed above, the latest developments in the ASD 

algorithms include the Variational Autoencoder (“VAE”)[19] and the Deep Convolutional 

Generative Adversarial Network (“DCGAN”)[20], and other generative adversarial networks for 

the unsupervised deep learning. With appropriate architecture design, such unsupervised DL 

algorithms can achieve quite high accuracy for with imbalanced training datasets. The 

disadvantage is that those algorithms require relatively higher computation capability and costs.  

In this paper, the incremental principal component analysis based deep convolutional neural 

network autoencoder is introduced. The details of the new DL algorithm will be described in the 

section B, C, D, E F and G. 

 

1.3. Methodology Overview 
 

The proposed autoencoder was designed in Tensorflow and Pytorch which are Google and 

Facebook open-source software for machine learning respectively. With the dimensionality 

reduction by Enhanced IPCA, the autoencoder has the capability to learn efficient feature 

representations of the input data with sole label, i.e. the training requires only one label for the 

normal sound datasets, and then reconstruct the input to generate the output based on the useful 

features learned by the autoencoder. It consists of two parts. One is an encoder 𝑔 = 𝑒𝑛𝑐(𝑥), 

which encodes the input x to a learned feature representation 𝑔. The encoder extracts meaningful 

features at the bottleneck layer, known as the code or latent space, which typically has a much 

lower dimensionality than the input data. This ensures that, instead of copying the input data, 

only the useful features are adopted in the calculation scope to reconstruct the output. The other is 

the decoder 𝑥 = 𝑑𝑒𝑐(𝑔) which attempts to recapture the original input by decoding the useful 

features stored in the bottleneck layer. For a deep convolutional AE model, the encoder 𝑒𝑛𝑐𝜃(𝑥) 

and decoder 𝑑𝑒𝑐𝛾(𝑔) are modelled as deep convolutional networks with parameters 𝜃 and 𝛾, 

respectively. Therefore, the training of the deep convolutional neural network autoencoder is 

described as the formula below: 

 

min
𝜃,𝛾

∑ 𝐸𝑟𝑟𝑜𝑟𝑟𝑒𝑐𝑛(𝑥, 𝑥

𝑥

), 

 

𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑑𝑒𝑐𝛾(𝑒𝑛𝑐𝜃(𝑥)) 

 

For 𝐸𝑟𝑟𝑜𝑟𝑟𝑒𝑐𝑛(𝑥, 𝑥),, we can use mean-squared error (“MSE”) as the evaluation of the 

reconstruction errors between the input x and the output 𝑥. 



International Journal on Soft Computing (IJSC) Vol.13, No.3, August 2022 

5 

This methodology is capable to achieve high performance without the requirement on high 

computing capability especially for the large volume and high dimensional machines’ sound files. 

The details of the encoder and decoder are described in the next section C. 

 

1.4. Imbalanced Dataset 
 

IPCA based DCNN-AE, as a semi-supervised machine learning algorithm, is capable to train the 

large-sized normal dataset and detect the anomality when a small-sized abnormous data enters. 

 

DCNN-AE utilizes the encoder-decoder architecture to train the input data to estimate the output 

data to be similar to the input. Therefore, when the input data is anormal, with the trained 

architecture, the output generated will be anormal, theoretically. 

 

Because of its ignorance of the normality of input dataset, unbalance is not an issue to impact the 

performance of the algorithm in nature. 

 

1.5. Noise Awareness and Tolerance 
 

Noise identification, noise removal and noise accommodation are the major topics to deal with 

the unwanted background noise when analyzing anomalous sound. The architecture of the new 

methodology adopts the noise accommodation which to immune the background noise from the 

anomalous sound observations [11][12]. Considering the complex environments to collect the 

sounds files, i.e. factories or construction sites, in an attempt to improve the robustness against 

noise of the algorithm, the noise awareness is included in the data pre-processing phase with a 

Gaussian white noise to be added in the original audio files and the signal to noise ratio(“SNR”) 

is 6.9897 (SNR=10*Log(1/0.2) while 0.2 is the ratio of noise to real sound, or the noise 

significancy factor). Hence, the encoder input actually is the clean sample values plus the noise: 

 
 �̃� = 𝑥 + 𝜖, 
 

𝑤ℎ𝑒𝑟𝑒 𝜖 ~ 𝒩(−1,1) ∗ 𝑛𝑜𝑖𝑠𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟. And the decoded output is redefined as 

𝑑𝑒𝑐𝛾(𝑒𝑛𝑐𝜃(�̃�)). 

 

This is to increase the noise awareness in the algorithm and was shown to results in better 

generalizing representations, which als0o appears to capture semantic information of the input. 

And based on the experiments, the maximum noise tolerance (measured by the noise significancy 

factor) of the IPCA based DCNN-AE is 0.5. 

 

1.6. Parameterized Framing Technology 
 

DCNN-AE in this paper adopts the parameterized architecture instead of hardcoded when 

defining the parameters of the Incremental PCA layer and the input data shapes of autoencoder 

layer. Different with the hardcoded input shapes, eg: 256*256 or 512*512, the temporal of input 

data is decided by the size of the audio data files. Each audio file is framed to the shape of 

Maximum Squared Root of the audio file data size (which is calculated to be 210) * Maximum 

Squared Root of the audio file data size (same as 210). The enhanced IPCA is capable to reduce 

the dimensionality to the calculated framing for DCNN-AE to proceed. When the environment 

changes and the raw sound data is changed, the algorithm will change the temporal of the input 

sound data automatically. 
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Such design, on some level, helps to build the auto-localized models to improve the self-

adaptability of the different environments. 

 

1.7. Less Requirement of Computing Capability and Computing Cost 
 

Enhanced IPCA based DCNN-AE includes the two layers of IPCA and DCNN-AE, which allows 

the dimensions of the audio data to be reduced to adapt to the optimized architecture of the 

Autoencoder, and thus requires less computing capability of GPU. 

 

The high-dimensional audio data files can be trained and predicted in normal CPU instead of 

GPU or TPU, after the technique of dimensions-reduction by enhanced IPCA, with minimum 

impacts on the performance. The computing cost because of the continuous GPU(s) 

consumptions can be reduced significantly as well. 

 

The details of the algorithm will be introduced in Chapter II. 

 

2. ENHANCED INCREMENTAL PRINCIPAL COMPONENT ANALYSIS BASED 

DEEP CONVOLUTIONAL NEURAL NETWORK- AUTOENCODER 
 

2.1. Dimensionality Reduction by Enhanced Incremental Principal Component 

Analysis 
 

Principal Component Analysis (“PCA”) is a classical statistical method to reduce the dimensions 

in a dataset with many interrelated variables. Since being raised by Pearson as early as in 1901 

and Hotelling in 1930’s, PCA has been widely used in science and business domains as an 

unsupervised method[21]. The principal of PCA is to seek the subspace of largest variance in 

dataset. For data given as a set of n vectors in Rd, 𝑥1, 𝑥2, … 𝑥𝑛, denote by 𝑋 which is the 

normalized matrix: 𝑋 =
1

𝑛
∑ 𝑥𝑖𝑥𝑖

𝑇𝑛
𝑖=1  [22]. The PCA is to find the k-dimensional subspace so that 

the projected data on the subspace has largest variance. Assume 𝑊 ∈ 𝑅𝑑 ∗ 𝑘 , PCA could be 

formulated as the following optimization problem[23]: 

 
max

𝑊∈𝑅𝑑∗𝑘,𝑊𝑇𝑊=𝐼
||𝑋𝑊||𝐹

2  

 

Where ∥⋅∥𝐹 is the Frobenius norm. The above optimization is an inherently non-convex 

optimization problem even for k=1. However, in the classical PCA algorithm, when finding the 

leading principal component, there are two methods: one is the singular value decomposition 

(SVD), which requires super-linear time and potential 𝑂(𝑑2) space so that it is prohibitive for 

large scale machine learning problems. The other is Power method which is to estimate the 

matrix X. The approximation method requires the data to be well-conditioned, and the spectral 

gap, i.e. the distance between the largest and second largest eigenvalues of X, to be bounded 

away from zero. This method can improve the computing efficiency but might loss the useful 

data as the pass-over from the leading components. 

 

In 2002 a new PCA algorithm for incremental computation of PCA is introduced by Arta�̃� et al., 

2002[23]. This method is to make the simultaneous learning and recognition possible. This 

algorithm is to update the original eigenspace and mean continuously with the learning rate, and 

store only the data projected onto it. It releases the restriction of the classical PCA that all the 

sample data are required to be available as a priority, and therefore more adaptive for the demand 

online learning. 
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In this paper, an enhanced incremental PCA is adopted for dimension reduction. The summary of 

the new algorithm is:  

 

1. Locate the target object in the first frame, and initialize the eigen basis U to be empty, and the 

mean μ to be the appearance of the target in the first frame. The effective number of 

observations so far is n=1. 

2. Then advance to the next frame. Draw particles from the particle filter, according to the 

dynamical model. And the dynamics between states in this space is modeled by Brownian 

motion. Each parameter in the affine transformation of 𝑋 is modeled independently by a 

Gaussian distribution around its counterpart in  𝑋𝑡−1, and therefore the motion between frames 

is itself and an affine transformation. Specifically, 𝑝(𝑋𝑡 |𝑋𝑡−1) = 𝒩(𝑋𝑡 ;  𝑋𝑡−1, 𝜓), where 𝜓 is 

a diagonal covariance matrix whose elements are the corresponding variances of affirm 

parameters. 

3. For each particle, extract the corresponding window from the current frame and calculate its 

weight, which is its likelihood under the observation model. 

4. Perform an incremental update (with a forgetting factor) of the eigen basis, mean, and effective 

number of observations. 

5. Go to step 3. 

 

The enhanced incremental algorithm is based on the Sequential Karhunen-Loeve (“SKL”) 

algorithm of Levy and Lindenbaum (2000)[24], which takes QR decomposition and computes the 

SVD of basis vectors. The computational advantage of SKL algorithm is that it has space and 

time complexity constant in n. The space complexity is reduced to 𝑂(𝑑(𝑘 + 𝑚)), and the 

computational requirements are reduced to 𝑂(𝑑𝑚2) for recomputing the entire SVD[25]. 

However, this algorithm does not account for the sample mean of the training data, which 

changes over time as a new data arrive. The enhanced incremental PCA is to augment the new 

training data with an additional vector carefully chosen to correct for the time-varying mean. The 

principal computation process is: 

 

Given U and ∑ from the SVD of (A – 𝐼�̅� ), as well as 𝐼�̅�, n, and B, compute 𝐼�̅� as well as U’ and 

∑’ from the SVD of (C-𝐼�̅�): 

 

1. Compute the mean vector 
1

𝑚
Σ𝑖=𝑛+1

𝑛+𝑚 𝐼𝑖, and 𝐼�̅� =
𝑛

𝑛+𝑚
𝐼�̅� +

𝑚

𝑛+𝑚
𝐼�̅�. 

2. Form the matrix �̂� = [(𝐼𝑚+1 − 𝐼�̅�)…( 𝐼𝑛+𝑚 − 𝐼�̅� )√
𝑛𝑚

𝑛+𝑚
(𝐼�̅� − 𝐼�̅�)]. 

3. Compute �̃� = 𝑜𝑟𝑡ℎ(�̂� − 𝑈𝑈⊺�̂�) and 𝑅 = [
∑ 𝑈⊺�̂�

0 �̃�(�̂� − 𝑈𝑈⊺�̂� )
] , and �̂� will be one 

column larger than in the SKL algorithm. 

 

4. Compute the SVD of R: R =  �̃�∑̃𝑉 ⊺̃ 

 

5. Finally 𝑈′ = [𝑈, �̃�]�̃� and ∑ =  ∑̃′ . 

 

In this algorithm, an important consideration is the effect of the forgetting factor on the mean of 

eigen basis when reducing the contribution of each block of data to the overall covariance 

modelled by an additional factor of f2 at each SVD update. And the forgetting factor are 

multiplied with the incremental update of the eigen basis, mean and effective number of 

observations to generate the new frame. 

 

SVD 
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Another enhancement is in the Sequential Inference Model. When calculating the affine motion 

parameters (and thereby the location) of the target at time t, the Condensation algorithm 

(proposed by Isard and Blake in 1996)[26], based on factor sampling, is adopted to approximate 

an arbitrary distribution of observations with a stochastically generated set of weighted samples, 

as it evolves over time. 

 

The new PCA algorithm above is adopted to improve the accuracy with computing efficiency. By 

Enhanced IPCA, the components for DCNN-AE to extract features can be reduced to fit for the 

optimized architecture designs of DCNN-AE based on the parameterized framing shapes. 

 

2.2. Deep Convolutional Neural Network Autoencoder 
 

An autoencoder is a feed-forward neural network and is an unsupervised or semi-supervised 

algorithm that applies backpropagation, setting the target value to be equal to the input [27]. 

Generally speaking, it is trained to approximate the identification so that the output 𝑥 is similar to 

the input 𝑥. 

 

The autoencoder is consisted of encoder which obtains a compressed encoder from the input and 

of decoder which reconstructs the data from encoding. The encoder maps the input information to 

the compressed nodes and creates the bottleneck which forces the network to extract the 

compressed low-dimensional representations from high-dimensional data [28]. And based on the 

extracted information in the bottleneck, or, hidden layer, the decoder reconstructs the input data, 

with the backpropagation to minimize the reconstruction error which is defined as Mean Squared 

Error (“MSE”). The structure can be described as the two formulas below [29][30]. 

 

Encoder: ℎ = 𝜎(𝑊𝑥ℎ𝑥 + 𝑏𝑥ℎ). 

 

Here ℎ is the hidden layer, or bottleneck, 𝜎 is the non-linear mapping relationship between the 

compressed nodes in the hidden layer and the original inputs. 𝑊𝑥ℎ are the weights when mapping 

the original inputs to the nodes of the hidden layers. 𝑏𝑥ℎ are the biases from the original inputs to 

the nodes of the hidden layers. 

 

Decoder: 𝑥 = �̂�(𝑊ℎ𝑥ℎ + 𝑏ℎ𝑥). 

 

Here 𝑥 is the output of the decoder, and �̂� is the non-linear mapping relationship between the 

compressed nodes in hidden layers and the final output. 𝑊ℎ𝑥are the weights to map the 

compressed nodes in the hidden layers to the outputs. And 𝑏ℎ𝑥are the biases from the compressed 

data in the hidden layers to the output[31][32][33]. 

 

The architecture of standard autoencoder is shown in Fig 1. 
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Fig. 1. Standard Autoencoder 

 

Deep Convolutional Neural Network Autoencoder (“DCNN-AE”) is the autoencoder composed 

of multiple convolutional layers in encoder and inverse convolutional layers in decoder [19]. In 

this paper, there are four convolutional layers in encoder part, each with batch-normalization, 

Leaky ReLU and Max-pooling to construct a one typical compressed pattern. In decoder, there 

are four convolutional transpose layers respectively, each with batch-normalization, Leaky ReLU 

and Up-sampling to set up the reconstruction pattern. The architecture of the DCNN-AE is shown 

as Fig 2. 

 

 
 

Fig. 2. Architecture of Deep Convolutional Neural Network Autoencoder 
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The details of the DCNN-AE algorithm include[34]: 

 

Convolutional and Inverse Convolutional Layers  

 

Convolutional Layers are applied to extract the features based on the patches randomly sampled 

from the input, being learned with the weighted matrices known as the filtering masks and 

kernels, and then being processed by non-linear operations to generate the feature vector as the 

output[35].The principle of the conventional layer of CNN is: 

 

ℎ𝑖,𝑗,𝑘
𝑙 = 𝑤𝑘

𝑙 𝑇
𝑥𝑖,𝑗

𝑙 + 𝑏𝑘
𝑙  

 

Where ℎ𝑖,𝑗,𝑘
𝑙  is the feature value at location (𝑖, 𝑗) in the kth feature map of lth layer, 𝑤𝑘

𝑙 𝑇
and 𝑏𝑘

𝑙  

are the weight vector and bias of the kth filter of the lth layer respectively, and 𝑥𝑖,𝑗
𝑙  is the input 

patch centered at location (𝑖, 𝑗) of the lth layer. 

 

In this paper, 2-dimensional convolutional layers are deployed in the encoder part, and 2-

dimensional transpose convolutional layers are deployed in decoder part to reconstruct the 

information transformed and compressed from the original inputs [36].  

 

Batch Normalization Layers are added after the convolutional and inverse convolutional layers to 

normalize the activations of the previous layers each batch [37]. Assume in the 𝑛 + 1𝑡ℎ hiden 

layer and ℎ𝑖
(𝑛)

, i=1,2,…,m be the values of the inputs from the previous layer for the a batch ℬ, 

the principal of the batch normalization is described as the formulas shown as below: 

 

ℎ𝑖
(𝑛+1)

= 𝐵𝑁𝛾,𝜀 (ℎ𝑖
(𝑛)

) = 𝛾ℎ̇𝑖
(𝑛)

+ 𝜀 

Where: 

 

1. ℎ̇(𝑛) =
ℎ(𝑛)−𝜇ℬ

√𝜎ℬ
2+𝜖

 

2. 𝜇ℬ =
1

𝑚
∑ ℎ𝑖

(𝑛)𝑚
𝑖=1  

3. 𝜎ℬ
2 =

1

𝑚
∑ (ℎ𝑖

(𝑛)
− 𝜇ℬ)2𝑚

𝑖=1  

 

Here 𝐵𝑁𝛾,𝜑 refers to the Batch Normalization function to the two learning parameters of 

𝛾 , 𝜀. ℎ𝑖
(𝑛)

 is the ith compressed node in the nth hidden layer. 1 describes the calculation of ℎ̇(𝑛) 

which is the covariance of ℎ(𝑛). 

 

From the principal formulas above, we can understand that Batch Normalization applies a 

transformation that maintains the mean activation of every unit close to zero, then applies scaling 

and shifting, parameterized by two learnable parameters 𝛾, 𝜀. By this, batch normalization 

whitens the data which is well known for speeding up learning in neural networks and reduces 

internal covariance shift, which is used for the change of a layer’s activations distribution over 

time. 

 
Pooling 

 

Pooling layer is adopted to reduce the features extracted by convolutional layers. Four 2-

dimesional Max Pooling layers are applied among four convolutional layers to use maximum 

values of each cluster of neurons of the prior layer. This is to reduce the dimensionality and the 
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overfitting by introducing the abstracted form of the low-level features generated by the first 

convolutional layer. This pooling method is typically effective in this research because the 

original input data are pre-processed and transformed to the categories with data type as of 

integer. 

 

Tab 1 shows the details of all the layers in this DCNN-AE algorithm. 

 

Full Connected Layer and Classifier 

 

The fully connected layer is utilized to associate neurons within outputs in the last inverse 

convolutional layer, which are connected to the Softmax classifier. 

 

Softmax classifier layer, which is used for classification according to the features, is after 

multiple convolutional autoencoder layers, max pooling layers, Leaky ReLU layers and full 

connected layers. In this paper, the anomalous sound detection results are divided into two 

classes, therefore the classifier result can be written by the formula as below: 

 

𝑝�̂� =
𝑒(�̂�𝑖)

∑ 𝑒(�̂�𝑘)2
𝑘=1

, i = 0, 1 

 

Here 𝑝�̂� is the classifier represents the probability of nodules and no nodules. 𝑥𝑖 =
�̂� ∑ (𝑊ℎ𝑥ℎ + 𝑏ℎ𝑥)𝑇

𝑡=1  represents the T output features generated through the full connected layer 

where 𝑊ℎ𝑥 and 𝑏ℎ𝑥 represent the weight and error in decoder part respectively, �̂� represents the 

nonlinear function in decoder, in this paper it refers to ReLU and Leaky ReLU. 

 

ReLU and Leaky ReLU 

 

“Rectified Linear Unit” (“ReLU”) is one of the most notable non-saturated non-linear activation 

functions. The principle of ReLU is shown as below: 

 

a. With default values, it returns element-wise max(x, 0).  Otherwise, it follows:  

b. f(x) = max_value for x >= max_value,  

f(x) = x for threshold <= x < max_value, 

 f(x) = alpha * (x – threshold) for otherwise. 

 

The pro of ReLU is to prune the negative input to reduce the sparsity in the neural network, and 

the con of ReLU is that such pruning might impact the accuracy of the computation because the 

possible useful features contained in the negative inputs to build the discriminative high-level 

features. 

 

Leaky ReLU is a variant of ReLU by assigning none zero output for negative input. Instead of 

mapping negative input to zero, the Leaky ReLU uses a predefined linear function to compress 

negative input and therefore enables the features of negative parts contained[38]. Therefore 

Leaky ReLU achieves the better trade-off between the network sparsity and its input information. 

Both ReLU and Leaky ReLU are unbounded functions and solves the gradient vanishing. 
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Table 1. Layers of the DCNN-AE Algorithm 

 
Seq Layer Type Kernel 

Size 

Feature 

Maps 

Output Size Padding 

1 Input - - None,210,210,1 - 

2 Cov 1 2*2 32 None,210,210,32 Same 

3 Batch 

Normalization 

    

4 Leaky ReLU     

5 Max Pool 1 (2,2)  None,105,105,32 Same 

6 Drop Out 0.1    

7 Cov 2 3*3 64 None,105,105,64 Same 

8 Batch 

Normalization 

    

9 Leaky ReLU     

10 Max Pool 2 (3,3)  None,35,35,64 Same 

11 Drop Out 0.1    

12 Cov 2 5*5 128 None,35,35,128 Same 

13 Batch 

Normalization 

    

14 Leaky ReLU     

15 Max Pool 2 (5,5)  None,7,7,128 Same 

16 Drop Out 0.1    

17 Cov 2 7*7 256 None,7,7,256 Same 

18 Batch 

Normalization 

    

19 Leaky ReLU     

20 Max Pool 2 (7,7)  None,1,1,256 Same 

21 Drop Out 0.1    

22 Sequential     

23 Cov Transpose 1 1*1 128 None, 1,1,128 Same 

24 Batch 

Normalization 

    

25 Leaky ReLU     

26 Up-sample 1 7  None,7,7,128 Same 

27 Drop Out  0.1    

28 Cov Transpose 2 7*7 64 None,7,7,64 Same 

29 Batch 

Normalization 

    

30 Leaky ReLU     

31 Up-sample 2 5  None,35,35,64 Same 

32 Drop Out  0.1    

33 Cov Transpose 2 35*35 32 None,35,35,32 Same 

34 Batch 

Normalization 

    

35 Leaky ReLU     

36 Up-sample 2 3  None,105,105,32 Same 

37 Drop Out  0.1    

38 Cov Transpose 2 105*105 1 None,105,105,1 Same 

39 Batch 

Normalization 

    

40 Leaky ReLU     

41 Up-sample 2 2  None,210,210,1 Same 

42 Drop Out  0.1    

43 FC1 (Linear) 210*210  None,210,20  
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44 FC1 (ReLU)   None,20  

45 FC1 (Drop Out) 0.2    

46 FC2 (Softmax)  2 None,2  

47 Output   None,2 Same 

 

Regulatory and Other Hyperparameters 

 

Gaussian Dropout. Gaussian noise is injected to hidden layers of neural networks to act as a 

powerful regularity, and it is only active during training of the network. 

 

Optimizer[39][40]. AdaMax is a method for stochastic optimization. It is to compute individual 

adaptive learning rates for different parameters from estimates of first and second moments of the 

gradients. Different with Adam which updates exponential moving average of the gradients and 

the squared gradient based on the unlimited variants, AdaMax updates the gradients with a 

simpler bound of maximum value of the calculated second momentum. 

 

In this paper, the learning rate of AdaMax is set as 1e-4, beta1 is set as 0.5 and decay rate is set as 

1e-9. “Mean Squared Error” and “Mean Absolute Error” are adopted as the parameters for the 

cost evaluations. 

 

The details of the hyperparameters are listed in Tab 2. 

 
Table 2. Hyperparameters of the DCNN-AE Algorithm 

 
Hyperparameter Setting 

optimizer Admax (lr=1e-4, beta1=0.5) 

dropout rate 0.1  

batch normalization Momentum=0.8 

Leaky ReLU Alpha=0.2 

batch size 16 

noise initializer Random Uniform (-1,1) 

noise significancy factor 0.2 

loss mse 

monitor mae 

epoch 400 

 

3. EXPERIMENT SETUP 
 

3.1. Dataset and Pre-processing 
 

The data is collected from the stepper motors in a plant site in Changzhou City of Jiangsu 

Province in China. The data consists of the normal/anomalous operating sounds of the real 

machines. Each recording is a single-channel 2-sec length audio that includes both a target 

machine's operating sound and added noise. The sample rate is standard as of 44,100. 

 

In the experiment, the train dataset only includes the normal data from one machine type, and we 

randomly pick up 100 normal wave files in the total 228 sample normal for consecutive 50 times. 

The test dataset includes 10 anormal audio files, randomly selected from the total 120 sample 

anormal data files. The prediction focuses on the turning point from consecutive 100 normal 

audio files to 10 anomalous audio files. 

 

The steps of data pre-processing include: 
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Random selection. 100 normal audio files and 10 anormal audio files are selected randomly 

from the 228 respective sample normal and 120 anormal audio files. 

 

Conversion. Convert the audio files to the arrays of readable digits. 

 

Framing. Calculate the frame rates and reframe the files with adjusted frame rates. 

 

Adding label. Add the label as of “0” as a column in train dataset only to indicate that the status 

of all the data in the data frame are “normal”. 

 

Scalarization and Normalization. Scale and normalize both the train and the test datasets. 

For the experiments, the train data size is 88,200,000, and the prediction data size is 8,820,000. 

The experiments run for consecutive 50 times for each algorithm with the datasets picked up 

randomly in the total dataset. The null values of any attributes are filtered out during the pre-

processing. 

 

3.2. Benchmark System and Result 
 

A simple Deep Convolutional Neural Network (“DCGAN”) is adopted as the benchmark 

performance of unsupervised anomaly detection for the experimental dataset. Generative 

Adversarial Network is a deep neural net architecture comprised of a pair of “adversarial” models 

called the generator and the discriminator respectively[41][42]. The generator is to capture a 

noise vector to map to the data distribution as the fake input of the discriminator. The 

discriminator is to discriminate or identify the two inputs, one from the real data distribution and 

the other from the fake data distribution generated by the generator, with some policies.  Fig 1 is 

the architecture of the general adversarial network. 

 

 
 

Fig. 3. Architecture of Standard GAN 

 

DCGAN is one type of GAN to apply several convolutional layers in the architecture of GAN. 

The details are listed in the table 3. 
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Table 3. Parameters of the DCGAN 

 
Hyperparameter Setting 

optimizer Admax of Discriminator (lr=1e-5, beta1=0.5), 

Admax of Generator (lr=1e-5, beta1=0.5), 

Admax of Compiled (lr=2e-5, beta1=0.5). 

dropout rate 0.1  

batch normalization Momentum=0.8 

Leaky ReLU Alpha=0.2 

batch size 16 

noise initializer Random Uniform (-1,1) 

loss Mean Squared Error 

monitor Mean Absolute Error 

epoch 2000 

 

With the same audio data, the experimental result is shown as table 4. From the experiments’ 

result, it can be seen that DCGAN is capable to achieve the accuracy of 0.716528104 which is 

relatively satisfying. Besides, the average execution time of DCGAN is 90 minutes in the GPU 

computing module. The computation cost of DCGAN is relatively high. 

 
Table 4. Experimental Result of the DCGAN 

 
AUC PAUC F Accuracy 

Score 

MSE Average 

Execution 

Time 

0.716528104 0.706213763 0.51664777 0.483352227 90 mins 

 

3.3. Noise Tolerance Test 

 

Another series of experiments are conducted to test the maximum noise tolerance of the enhanced 

IPCA based DCNN-AE. Based on the experiments results, the performance of the algorithm is 

impacted when the SNR is 3.0103 (SNR=10*Log(1/0.5)), in which 0.5 is the noise significancy 

factor. 

 

3.4. Comparison of Hardcoded Architecture and Parameterized Architecture 

 

The third series of experiments are to compare the prediction performance between the hardcoded 

architecture and parameterized architecture. The experiments’ results show that the parameterized 

architecture achieves higher accuracy within less training time. For example, when the shape of 

framing is set as 256*256, the average AUC of the hardcoded architecture is around 0.7 with 

average execution time of 35 minutes, and the average AUC of the parameterized architecture is 

more than 0.8 with the average execution time of 15 minutes. 

 

From the experiment result of one sample shown in Table 5, it can be observed that although the 

AUC of hardcoded architecture is 0.8875, the MSE is much higher than that of parameterized 

architecture. Therefore, the simulation result is not so satisfying comparing with parameterized 

architecture. 
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Table 5. Single Example: Comparison Between Hardcoded Architecture and Parameterized Architecture 

 
Evaluation Item Hardcoded 

Architecture 

Parameterized 

Architecture 

AUC 0.8875 1.0 

pAUC 0.8026315789473684 1.0 

MSE 0.46381313 0.31623548 

Graph of the 

comparison between 

actual and predicted 

values   
 

3.5. Computer Module and OS Parameters 

 

All computations except basement system (“DCGAN”) were executed on 2.3 GHz quad-core 

processors (Turbo Boost up to achieve 3.8 GHz) PC computer with 8 Gb RAM iOS. 

DCGAN was executed in Google Cloud Platform with 1 NVIDIA P100 GPU. 

 

4. RESULTS AND ANALYSIS 
 

The experiment is to pick up 110 datasets with 100 normal audio files from total 228 normal files 

as training dataset and 10 anormal audio files from total 100 anomalous files as test dataset to test 

the IPCA Based DCNN-AE algorithm. Tab 6 shows the summary of the test results. 

 
Table 6. Summary of Performance Evaluation 

 
Number of 

Test Cases 

AUC PAUC MSE Average 

Execution 

Time 

50 0.815793282 0.713118455 0.27791114 15 mins 

 

From Table 6, it can be seen that IPCA based DCNN-AE shows high accuracy with the average 

AUC and PAUC between 0.815793282 and 0.713118455. And the average execution time is 

about 15 mins for total data size of 97,020,000 (normal audio dataset for training:88,200,000, 

anomalous audio dataset for prediction: 8,820,000). 

 

Fig 4 shows a sample of the prediction results when predicting the turning point changing from 

normal status to anomalous status. The results show that the IPCA based DCNN-AE predicts the 

turning point with high accuracy, and the AUC of the prediction reaches 1.0. 

 

 
 

Fig. 4. ROC Curve of IPCA Based DCNN-AE Algorithms 
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Fig 5 shows the error rate and the loss rate of the sample training process of the IPCA based 

DCNN-AE. These two graphs show that the validation error and loss error decreases significantly 

in the first 50 batches and then keeps stable in the left batches. 

 

 
 

Fig. 5. Error Rate and Loss Rate of One Sample of DCNN-AE 

 

Table 7 shows the AUC and PAUC comparisons among 4 semi-supervised and unsupervised 

machine learning algorithms: Kmeans++, one-class SVM[16], density-based spatial clustering of 

applications with noise (“DBSCAN”)[43][44] and IPCA Based DCNN-AE. 

 

From the experiments’ results in Table 7, it can be observed that Incremental PCA based DCNN-

AE shows the highest accuracy with the average AUC of 0.815793282, comparing with that of 

Kmeans++ of 0.499545351, of Incremental PCA based DBSCAN clustering of 0.636348073, of 

Incremental PCA based One-class SVM of 0.506749433 and of DCGAN of 0.716528104. From 

the four measures, Incremental PCA based DCNN-AE performs best among the unsupervised or 

semi-supervised algorithms. 

 
Table 7. AUC Comparison Between Unsupervised and Semi-Supervised ML Algorithms 

 
Machine 

Learning  

AUC PAUC F Accuracy 

Score 

MSE 

Kmeans ++ 0.499545351 0.499960161 0.499545351 0.500454647 

IPCA+DBSCAN 0.636348073 0.636325593 0.636348073 0.363651927 

IPCA+One-class 

SVM 

0.506749433 0.500204267 0.497853267 0.493250568 

DCGAN 0.716528104 0.706213763 0.51664777 0.483352227 

IPCA+DCNN-AE 0.815793282 0.713118455 0.557364341 0.27791114 

 

To compare the efficiency and computing cost of each unsupervised and semi-supervised 

algorithms, we adopt the average execution time and the GPU/CPU usage as the measurements. 

From Table 8, it can be observed that the IPCA based DBSCAN Clustering and the IPCA based 

One-class SVM consumes least execution time and computing cost. Considering the 

performance, the IPCA based DCNN-AE, although consumes more time as of 15 minutes, but 

reaches the highest accuracy comparing with other algorithms. And because the DCNN-AE 

doesn’t require the computing resource of GPU(s), its computing cost is higher than clustering 

algorithms, and yet much lower than that of DCGAN. 
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Table 8. Efficiency and Computing Capability Requirement Comparison Between Unsupervised and Semi-

Supervised ML Algorithms 

 
ML/DL Algorithms 

 

Average 

Execution Time 

Per Round 

(unit: minute) 

CPU / GPU 

(unit: core) 

Computing Cost 

Per Machine Per 

Month (unit: 

USD) 

Kmeans ++ 5 CPU N. A 

IPCA+DBSCANClustering 2 CPU N. A 

IPCA+One-class SVM 20 CPU N. A 

DCGAN 90 GPU (8 to 64) 1000 to 8000 

IPCA+DCNN-AE 15 CPU N. A 

 

Fig 6 shows the ROC curves of those four semi-supervised and unsupervised machine learning 

algorithms. From the graph, it can be observed that DCNN-AE reaches the highest AUC value as 

of 0.815793282, one-class SVM and PCA+DBSCAN got the similar AUC of 0.65 and 0.54 

respectively. The performances of Kmeans++ is the worst as of 0.5 respectively. 

 

 
 

Fig. 6. ROC Curve of Unsupervised and Semi-supervised ML/DL Algorithms 

 

5. CONCLUSION AND FUTURE WORK 
 

The enhanced IPCA Based DCNN-AE for Anomalous Sound Detection, when analyzing and 

detecting the machines’ sounds of high-dimensional and significant density distributions between 

normal and anomaly, is proved to achieve high accuracy with lower computing cost because of 

the dimensions-reduction before DCNN-AE layers. However, the stability of the algorithm to 

keep the continuant high accuracy in each execution starting from a random point still needs large 

quantities of trainings to improve. Therefore, how to find the optimized parameters to keep 

balance among accuracy, efficiency and stability is important when considering deploying the 

algorithm in the industry wide. 

 

In the experiment, 100 from total 228 normal files are adopted for training and 10 from total 120 

anomalous files as test dataset. The train data size is 88,200,000, and the prediction data size is 

8,820,000. With the increase of the data size to 1000 audio files for training and 100 files for test,  

the execution time is increased from 15 minutes to 120 minutes. However, the algorithm is still 

capable to be executed in CPU computing model with the unimpacted accuracy. 
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Furthermore, the application of the IPCA based DCNN-AE could be extended from Industry 4.0 

to the intrusion detection of acoustic data. For example, the detection of voiceprint for smart 

appliances could adopt the new methodology with high computing efficiency and accuracy to 

reduce the risk of intrusion. 
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