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ABSTRACT 
 
The combination of symbolic and sub-symbolic Artificial Intelligence (AI) provides an excellent 

opportunity for innovations that merge the interpretability of the former with the learning capabilities of 
the latter. This paper presents Fuzzy Cognitive Maps (FCMs) as a hybrid and flexible model that combines 

the strengths of both paradigms and proposes them as a feasible solution to the challenges of explainability 

and interpretability in AI systems without losing working feasibility. FCMs have emerged as a robust 

framework for representing causal knowledge and facilitating intuitive and justifiable decision-making 

processes, but there is much more to explore. FCMs can handle the inherent uncertainty and vagueness 

present in real-world scenarios, allowing for a more natural approach to problem-solving in combination 

with the learning and adaptation capabilities of sub-symbolic AI. FCMs are an ideal choice for 

applications requiring high levels of explainability and interpretability. 

 

KEYWORDS 
 
Fuzzy Cognitive Maps, Symbolic AI, Sub-symbolic AI, Explainable AI, and Interpretable AI. 

 

1. INTRODUCTION 
 

In the rapidly changing world of AI, two distinct paradigms have emerged, each with its unique 
approach to modeling intelligence and solving problems. On one side of the spectrum lies 

symbolic AI, an approach grounded in representing knowledge through explicit symbols and 

rules, mirroring the logical structures of human thought. Conversely, subsymbolic AI eschews 
these clear-cut representations for a more opaque yet powerful method of learning directly from 

data, embodying the patterns and statistical correlations that underpin intelligence in a way that’s 

often incomprehensible to human observers. These paradigms, seemingly at odds, represent the 

dual paths through which AI has sought to replicate or surpass human cognitive capabilities. Yet, 
as we delve deeper into the strengths and limitations inherent in each approach, a compelling 

narrative emerges—one that suggests the future of AI may not rest on the supremacy of one 

paradigm over the other but on the synergy of both. Symbolic AI relies on the manipulation of 
symbols and execution of logical operations to perform tasks, solve problems, and make 

decisions. This approach, foundational to early AI research, excels in domains where rules are 

well-defined and outcomes are predictable. Its transparency and interpretability, where every 

decision can be traced through a logical chain of reasoning, offer clear advantages in applications 
demanding explainability and compliance with regulatory standards. 

 

However, symbolic AI’s rigidity, reliance on exhaustive rule sets, and difficulty encoding 
commonsense knowledge have limited its applicability to complex, real-world problems where 
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ambiguity and uncertainty are the norms. Symbolic AI is a reasoning-oriented field that relies on 
classical logic (usually monotonic) and assumes that logic makes machines intelligent. For 

instance, if you ask yourself, with this paradigm in mind, ”What is an apple?” the answer will be 

that an apple is ”a fruit,” ”has red, yellow, or green color,” or ”has a roundish shape.” These 

descriptions are symbolic because we utilize symbols (color, shape, and kind) to describe an 
apple. Between the 50s and the 80s, it was the dominant AI paradigm. Regarding the 

implementation of symbolic AI, one of the oldest yet still the most popular logic programming 

languages is Prolog (its roots are in first-order logic) [1]. 
 

On the other hand, sub-symbolic AI, which includes neural networks and deep learning, takes a 

different approach. By learning directly from large amounts of data, sub-symbolic AI models 
develop an internal understanding of the world that is useful for tasks such as pattern recognition, 

language processing, and predictive modeling, often outperforming humans. However, this 

capability comes at the expense of transparency, leading to the ”black box” problem where the 

rationale behind a model’s decision is not easily understandable or explainable. The central idea 
of the sub-symbolic approach is that the ability to produce a good model with limited experience 

leads to a model’s success. Instead of clearly defined, human-readable relationships, we create 

less explainable mathematical equations to solve problems. Neural networks, ensemble models, 
regression models, decision trees, and support vector machines are some of the most popular sub-

symbolic AI models, especially in developing machine learning models. During the 80s, the sub-

symbolic AI paradigm took over symbolic AI’s position as the leading subfield [2]. 

 
The dichotomy between symbolic and sub-symbolic AI has led to a vibrant discourse on the 

future direction of AI research and application. Within this discourse, Fuzzy Cognitive Maps 

(FCMs) emerge as a fascinating hybrid technique, combining the explicit knowledge 

representation of symbolic AI with the adaptability and learning capabilities of sub-symbolic AI 
[3]. FCMs use fuzzy logic to handle uncertainty and model complex systems through networks of 

concepts and causal relationships. This connects the deterministic world of symbols with the 

probabilistic nature of sub-symbolic learning. Combining symbolic and sub-symbolic approaches 
can unleash unprecedented capabilities as we enter a new era in AI. Symbolic AI’s 

interpretability, structured knowledge representation, and the learning efficiency and adaptability 

of sub-symbolic AI can pave the way for more advanced, flexible, and reliable AI systems. This 
article explores the contrasting strengths and weaknesses of symbolic versus sub-symbolic AI, 

highlights FCMs as a prime example of hybrid AI techniques, and speculates on a future where 

AI’s full potential is realized through the harmonious integration of both paradigms [4]. In doing 

so, we may find that the future of AI is not a question of either/or but a confluence of both, 
harnessing the best of what each approach has to offer. 

 
The rest of this paper is organized as follows. Sec. 2 presents the origins and notable cases of this 

classical approach to AI. Sec. 3 refers to theoretical conceptions in Machine Learning. Sec. 4 
presents the idea of the need for suitable explanations offered by these systems. Sec. 5 digs deep 

into why AI’s future should contain more traceable and interpretable models. Sec. 6 holds the 

idea of merging both symbolic and subsymbolic approaches. Sec. 7 highlights the well-known 
Artificial Neural Networks’ relevance in connectionist computing. Sec. 8 introduces a paradigm 

aiming to benefit from symbolic and subsymbolic AI. Last, Sec. 9 serves as a reflection and to 

understand the need for new and more AI models that are solid computationally and transparent 

to human understanding. 
 

 



International Journal on Soft Computing (IJSC) Vol.15, No.3, August 2024 

19 

2. SYMBOLIC AI 
 
Symbolic AI, or ”Good Old-Fashioned Artificial Intelligence,” refers to a branch of AI research 

and development emphasizing symbolic representations of problems, logic, and search. This 

approach to AI relies on manipulating symbols and expressions to perform tasks, solve problems, 

and model the world. The following report delves into symbolic AI’s origins, notable case 
studies, advantages, and disadvantages. 

 

2.1. Discovering the Roots of Symbolic AI 
 

The roots of Symbolic AI can be traced back to the mid-20th century, with foundational work by 

influential figures such as Alan Turing, John McCarthy, and Marvin Minsky. Alan Turing’s 
conceptualization of the Turing machine and the Turing test laid the groundwork for thinking 

about machines that could simulate human intelligence. In the 1950s and 1960s, John McCarthy, 

often considered one of the fathers of AI, coined the term ”artificial intelligence” and introduced 
the concept of using symbolic logic to represent and solve problems. Marvin Minsky’s work on 

frames and knowledge representation further advanced the development of symbolic AI. The 

period from the 1950s to the late 1980s is often considered the golden age of symbolic AI, during 

which researchers focused on developing systems that could reason about the world using 
symbolic logic. This era saw the creation of expert systems, among the first commercial 

applications of AI. These systems used rules and databases of knowledge to make inferences and 

provide advice in specialized domains such as medicine and engineering. 
 

2.2. Relevant Case Studies 
 

– MYCIN: Developed in the early 1970s at Stanford University, MYCIN was an expert system 

designed to diagnose bacterial infections and recommend antibiotics. It was one of the first 

successful demonstrations of symbolic AI in medicine, using a rule-based system to make 
decisions.  

– SHRDLU: Created by Terry Winograd in the 1970s, SHRDLU was a natural language 
understanding system that could interact with a user in English to move blocks around a virtual 

world. It demonstrated the potential of symbolic AI for understanding and manipulating 

language and objects in a constrained environment.  

– Deep Blue: Although primarily known for its chess-playing ability, IBM’s Deep Blue 

represents a blend of symbolic AI (in terms of chess strategy and positions represented 

symbolically) and brute-force computation. In 1997, Deep Blue famously defeated world chess 

champion Garry Kasparov, showcasing the potential of AI in complex decision-making. 
 

2.3. Advantages 

 
– Explainability: One of the primary advantages of symbolic AI is its inherent explainability. 

Because decisions are made through explicit logical rules, it is easier to understand and trace 

symbolic AI systems’ reasoning processes than more opaque models like deep neural 

networks. – Efficiency in Domain-Specific Knowledge: Symbolic AI systems excel in 
domains where knowledge can be clearly defined and encoded in rules. This makes them 

particularly useful for expert medicine, law, and engineering systems.  

– Handling Logical Reasoning and Complex Problems: Symbolic AI is well-suited for tasks that 
involve complex problem-solving and logical reasoning, where clear rules and relationships 

can be established. 
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2.4. Limitations 
 

– Knowledge Acquisition Bottleneck: One of the major challenges of symbolic AI is the 
knowledge acquisition bottleneck. Encoding expert knowledge into rules and symbols is time-

consuming and requires significant expertise. This makes scaling symbolic AI systems 

difficult.  

– Lack of Flexibility: Symbolic AI systems are often criticized for lacking flexibility and 

adaptability. They struggle with handling uncertainty, learning from new data, and performing 

in unstructured environments.  

– Limited Perception and Learning: Unlike their machine learning counterparts, symbolic AI 

systems have limited abilities to learn from data or perceive complex patterns without 

explicitly programmed knowledge. This limits their applicability in tasks that require 
significant generalization or data-driven learning. 

 

2.5. Summary 
 

Symbolic AI has been a critical player in the development of AI. Its focus on logic, explicit 

knowledge representation, and symbolic reasoning has led to significant progress in 

understanding and imitating human intelligence. However, the limitations of symbolic AI, 
especially in terms of scalability, flexibility, and learning, have given rise to alternative 

approaches such as machine learning and neural networks. Despite these challenges, the 

advantages of symbolic AI, particularly its explainability and effectiveness in specific domains, 
remain essential for study and practical application. Hybrid approaches that combine the 

strengths of symbolic AI with machine learning are emerging as a promising way to address the 

limitations of both paradigms. As AI progresses, the principles of symbolic AI are likely to 
continue shaping the development of intelligent systems, contributing to our understanding and 

implementation of AI. 

 

3. SUB-SYMBOLIC AI 
 
Sub-symbolic AI is a paradigm in AI research different from the traditional symbolic approach. 

Unlike symbolic AI, which relies on clearly defined symbols and rules to process and convey 

knowledge, sub-symbolic AI focuses on the underlying intelligence mechanisms. This approach 
aims to model the processes and patterns of thought that occur below the level of conscious, 

symbolic thought, drawing inspiration from the functioning of the human brain and biological 

systems. This report delves into the origins, notable case studies, and the advantages and 

disadvantages of sub-symbolic AI. 
 

3.1. Discovering the Roots of Sub-symbolic AI 
 

Sub-symbolic AI has its roots in the early days of AI research, but it gained significant 

momentum in the 1980s with the resurgence of neural networks and the development of 

algorithms that could learn from data. The limitations of symbolic AI, such as its inability to 
handle ambiguous or incomplete information and to learn from raw data, inspired researchers to 

investigate alternative models that could imitate the brain’s ability to understand and generalize 

from experiences. The rise of connectionism, which focuses on the role of neural networks and 
parallel distributed processing in cognitive functions, marked a crucial shift towards sub-

symbolic AI. 
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3.2. Relevant Case Studies 

 
– Deep Learning for Image Recognition: Convolutional Neural Networks (CNNs), a class of 

deep neural networks, have revolutionized image recognition. A landmark moment was 

when AlexNet, a CNN designed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 

won the ImageNet Large Scale Visual Recognition Challenge in 2012, significantly 
outperforming traditional image recognition methods.  

– Natural Language Processing (NLP): Sub-symbolic AI has dramatically improved the ability 

of machines to understand and generate human language. Google’s BERT (Bidirectional 
Encoder Representations from Transformers) and OpenAI’s GPT (Generative Pre-trained 

Transformer) series are prime examples of how deep learning models can grasp complex 

language patterns, enabling breakthroughs in translation, summarization, and question-
answering systems.  

– AlphaGo: Developed by DeepMind, AlphaGo is a program that defeated the world 

champion Go player in 2016. It used deep neural networks and reinforcement learning to 
master a game known for its complexity and strategic depth, a feat previously thought to be 

decades away [5]. 

 

3.3.  Advantages 

 

– Learning from Data: One of the most significant advantages of sub-symbolic AI is its ability 
to learn directly from data without explicit programming. This makes it incredibly powerful 

in handling complex, high-dimensional data such as images, speech, and text. 

– Generalization: Sub-symbolic AI models, particularly deep learning networks, can 
generalize, meaning they can perform well on unseen data after training on a sufficiently 

large and representative dataset. This ability to generalize from examples is closer to human 

learning and is a key strength of sub-symbolic AI.  

– Handling Ambiguity and Uncertainty: Unlike symbolic AI, sub-symbolic AI is adept at 

dealing with ambiguity and incomplete information. Neural networks, for instance, can 

make probabilistic predictions and decisions even in uncertain or incomplete data [6]. 
 

3.4. Limitations 
 

– Opacity (Black-Box Problem): A significant drawback of sub-symbolic AI, especially deep 

neural networks, is its lack of transparency. These models are often described as ”black 
boxes” because it is difficult to understand how they arrive at specific decisions or 

predictions, complicating efforts to debug or explain their behavior [7]. 

– Data and Computational Requirements: Training sub-symbolic AI models, particularly deep 
learning networks, requires vast data and significant computational resources. This can 

make cutting-edge AI research and applications inaccessible to organizations with limited 

resources [8]. 

– Overfitting and Generalization Issues: While sub-symbolic AI models are good at 

generalizing from data, they can also be prone to overfitting, where they perform well on 

training data but poorly on new, unseen data. To mitigate this risk, careful design, 
regularization techniques, and validation strategies are required [9]. 

 

3.5. Summary 
 

Sub-symbolic AI has become a powerful approach, offering capabilities surpassing traditional 

symbolic methods in many areas, such as incredibly complex pattern recognition, learning from 

data, and generalization. The success of deep learning and neural networks has highlighted the 
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potential of sub-symbolic AI to solve previously unsolvable problems. However, challenges 
related to interpretability, data, resource requirements, and the risk of overfitting emphasize the 

need for ongoing research and development. The future of AI is likely to involve a hybrid 

approach that combines the strengths of symbolic and sub-symbolic AI, utilizing the transparency 

and structured knowledge representation of symbolic systems along with the learning capabilities 
and adaptability of sub-symbolic models. 

 

4. Explainable AI 
 
Explainable AI (XAI) refers to methods and techniques that make the output of AI systems 

transparent and understandable to humans. XAI aims to create a suite of machine learning 

techniques that produce more explainable models while maintaining high learning performance 

(accuracy), enabling human users to understand, trust, and effectively manage the emerging 
generation of artificially intelligent partners. This report covers the origins, notable case studies, 

advantages and disadvantages of explainable AI. As mentioned, the symbolic AI paradigm 

provides quickly interpretable models with satisfactory reasoning capabilities, allowing us to 
trace the reasoning for a particular outcome easily. Yet, expressing the entire relation structure, 

even in a specific domain, is difficult [10]. Symbolic AI models are not able to capture all 

possibilities without significant effort. In contrast, sub-symbolic AI models are highly successful 
and can be designed and trained with less effort while delivering impressive accuracy. However, 

one of the significant drawbacks of sub-symbolic models is the lack of explainability in the 

decision-making process. This becomes particularly important in sensitive domains such as court 

rulings, military actions, and loan applications, where understanding the reasoning behind the 
outcome is crucial. Therefore, high-performing but opaque models cannot be relied upon in these 

contexts. 

 

4.1. The need for Explainable AI 
 

The idea of explainable AI is not new and has been around since the early days of AI research. 
However, the focus on explainability has grown in recent years due to the increasing use of 

complex machine learning models, like deep learning, which are often perceived as ”black 

boxes” because of their opaque decision-making processes. The need for explainability stems 
from concerns about accountability, fairness, transparency, and compliance with regulatory 

requirements, such as the European Union’s General Data Protection Regulation, which includes 

a right to explanation. In the past, AI systems were more understandable as they heavily relied on 

symbolic AI approaches, like rule-based systems, where the reasoning behind decisions could be 
easily traced and understood. As the field shifted towards more powerful but less interpretable 

models, the demand for techniques to make these models explainable grew [11]. 

 

4.2. Relevant Case Studies 
 

1. Healthcare Diagnosis: AI models are increasingly used to diagnose diseases from medical 
imaging. Researchers have developed XAI systems that can identify specific features in 

imaging data that lead to their diagnosis, providing doctors with insights into why the AI 

system made a particular diagnosis. This not only aids in validating the AI’s conclusions but 
also enhances the doctor’s understanding and trust in the tool. 2. Financial Services for Loan 

Approval: AI models evaluate loan applications in the financial sector. XAI can be crucial in 

explaining why a loan was approved or denied, ensuring compliance with regulations 
against discriminatory practices, and helping applicants understand what factors influenced 

the decision. 3. Criminal Justice Risk Assessment Tools: Tools like COMPAS (Correctional 

Offender Management Profiling for Alternative Sanctions) have been used to assess the 
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likelihood of reoffending. XAI methods can help uncover, explain, and correct biases in 
such predictive models, ensuring fair and transparent decision-making. 

 

4.3. Advantages 
 

– Increased Trust and Confidence: Explainability builds trust among users and stakeholders by 

transparentizing decision-making. When users understand how an AI system arrives at its 
conclusions, they are more likely to trust it. 

– Improved Model Debugging and Validation: XAI techniques enable developers to 

identify and correct errors or biases in AI models. Developers can make targeted 
adjustments to improve performance and fairness by understanding the factors 

influencing model decisions. 

– Regulatory Compliance: Many industries are subject to regulations that require decisions 

made by automated systems to be explainable. XAI facilitates compliance with such 

regulations, enabling AI solutions deployed in highly regulated sectors like finance and 

healthcare. 

– Ethical and Fair Decision-Making: Explainable AI can help identify and mitigate biases in 

AI models, promoting more ethical and fair decision-making processes. This is particularly 

important in applications with significant social implications, such as criminal justice and 
employment. 

 

4.4. Limitations 
 

– Potential Reduction in Model Performance: In some cases, making a model more ex- 

plainable may require simplifying its architecture or using less complex algorithms, 
which can reduce accuracy or performance [12]. 

– Complexity and Resource Requirements: Developing explainable AI models can be 
more complex and resource-intensive than traditional models. It requires additional 

effortsindesign,implementation,andvalidationtoensurethatexplanationsaremean- ingful 

and accurate. 

– Risk of Oversimplification: There is a risk that the explanations provided by XAI 

systems might oversimplify the underlying processes, potentially leading to misunder- 

standings or misplaced trust in the AI system’s capabilities. 

– Security and Privacy Concerns: Explaining how AI systems work might inadvertently 

reveal sensitive information about the data or the model itself, posing security and 

privacy risks. 

 

4.5. Summary 

 

Explainable AI is a critical advancement addressing AI systems’ need for transparency, trust, and 
understanding. As AI becomes increasingly integrated into essential sectors of society, the 

importance of explainability will only grow. The challenge lies in balancing the demand for 

complex, high-performing AI models with the need for transparency and comprehensibility. 
Symbolic AI models are explainable by design, while sub-symbolic AI models are usually not. 

Two fields deal with creating high-performing AI models with reasoning capabilities, usually 

requiring combining components from symbolic and subsymbolic paradigms. While XAI aims to 
ensure model explainability by developing models that are easier to understand for their users, 

NSC focuses on finding ways to combine subsymbolic learning algorithms with symbolic 

reasoning techniques. Future developments in XAI will likely focus on innovative approaches to 

maintaining or enhancing model performance while providing clear, accurate, and helpful 
explanations [13]. As the field evolves, it will also be essential to develop standardized metrics 
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for explainability and ensure that explanations are accessible and understandable to all users, 
regardless of their technical background. Ultimately, the success of explainable AI will depend 

on its ability to foster trust and collaboration between humans and machines, enable more 

informed decision making, and ensure that AI systems align with societal values and ethical 

principles [14]. 
 

5. INTERPRETABLE AI 
 

Interpretable AI focuses on developing models and algorithms that are easy for humans to 
understand. This means that users can comprehend and trace back the decisions, predictions, or 

classifications an AI system makes. Interpretable AI is crucial for applications in sensitive and 

critical domains where understanding the reasoning behind AI decisions is essential for trust, 

compliance, and improvement. This report delves into the origins, notable case studies, 
advantages, and disadvantages of interpretable AI. 

 

5.1. What is Interpretable AI 
 

The concept of interpretable AI can be traced back to the early days of AI when rule-based 

systems were more common. These systems were inherently interpretable, allowing users to 
follow the logical steps of AI to reach a decision. However, as AI research progressed, especially 

with the development of complex models like deep neural networks, the focus shifted towards 

improving performance, often at the expense of interpretability. The increasing use of AI systems 
in crucial areas such as healthcare, finance, and criminal justice has revitalized the importance of 

interpretability. Stakeholders in these fields require AI systems to make decisions and provide 

explanations that humans can understand. This need has led to developing new techniques and 
research to make even the most complex models interpretable. 

 

5.2. Relevant Case Studies 
 

– Healthcare Diagnosis and Treatment: AI systems are increasingly used to diagnose 

diseases and recommend treatments. For instance, models that predict cardiovascular 
diseases based on patient data must be interpretable so that health care providers can 

understand the reasoning behind the predictions. This ensures trust and allows 

healthcare professionals to make informed decisions. 

– Financial Services Compliance and Decision-Making: In finance, AI models are 

used for credit scoring, fraud detection, and automated trading. Interpretability in 

these models helps users understand the factors influencing decisions, ensuring compliance 
with regulatory standards and building customer trust. 

– Criminal Justice and Bail Decisions: AI is used to assess the risk of recidivism and 

inform bail and sentencing decisions. Using interpretable AI models in this context is 
crucial for fairness, transparency, and accountability, allowing for scrutinizing decisions 

that significantly impact individuals’ lives. 

 

5.3. Advantages 
 

– Trust and Transparency: Interpretable AI fosters trust from users by making the decision-
making process transparent. When stakeholders understand how decisions are made, they 

are more likely to trust and accept AI solutions.  

– Improved Decision-Making: Interpretability allows users to verify the correctness of the 

AI’s reasoning, leading to more informed and better decision-making. This is especially 

important in domains where decisions have significant consequences.  
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– Regulatory Compliance: Many industries are subject to regulations that require decisions to 
be explainable. Interpretable AI facilitates compliance with such regulations, avoiding 

potential legal and financial penalties. 

– Error Detection and Model Improvement: By understanding how an AI system makes 
decisions, developers and users can identify errors or biases in the model, leading to 

continuous improvement of AI systems. 

– Ethical Considerations: Interpretable AI can help identify and mitigate biases in AI 

systems, promoting fairness and ethical decision-making. 

 

5.4. Limitations 
 

– Potential Trade-off Between Interpretability and Performance: Sometimes, making a model 
more interpretable may require simplifying its architecture or using less complex algorithms, 

potentially leading to decreased accuracy or performance.  

– Complexity in Interpretation: Achieving true interpretability can be challenging for complex 
models. Even when interpretations are provided, they may be difficult for non-experts to 

understand, limiting their usefulness. 

– Risk of Misinterpretation: There’s a risk that interpretations provided by AI systems might 
be misunderstood by users, leading to incorrect conclusions or decisions based on those 

interpretations. 

– Time and Resource Intensive: Developing interpretable AI models can require additional 
time and resources. Designing models that balance interpretability and performance involves 

extra effort in model selection, development, and validation [15]. 

 

5.5. Summary 
 

Interpretable AI is essential for the responsible deployment of AI, particularly in sensitive and 
high-stakes areas. It ensures transparency, trust, and ethical considerations in AI systems. As AI 

becomes more prevalent in society, the demand for interpretable models will likely grow, driving 

further research and development. Future advancements in interpretable AI will strive to balance 
performance and interpretability, establish standardized measures for interpretability, and provide 

more user-friendly explanations. This will help ensure that AI systems are robust, effective, and 

aligned with societal values and ethical standards, leading to greater acceptance and integration of 
AI technologies across different sectors. 

 

6. THE CONVERGENCE IS POSSIBLE 
 

The intersection between symbolic and sub-symbolic AI represents a fascinating and promising 
area of research within AI. This interests both worlds: symbolic AI’s explicit reasoning and 

interpretability with the learning capabilities and adaptability of sub-symbolic AI, particularly 

neural networks. This hybrid approach aims to overcome the limitations inherent in each 
approach when used in isolation, enabling the development of AI systems that are both powerful 

and understandable. This report explores the origins, notable case studies, advantages, and 

disadvantages of the intersection between symbolic and subsymbolic AI. 
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6.1. Origins 
 

The division between symbolic and sub-symbolic AI dates back to the early days of AI research. 

Symbolic AI, predominant in the initial stages of AI development, focuses on logic and rule-
based systems. On the other hand, sub-symbolic AI, which gained prominence with the 

emergence of machine learning and neural networks, emphasizes learning from data and pattern 

recognition. Combining these two approaches stemmed from recognizing their complementary 
strengths and weaknesses. Symbolic AI excels in handling complex reasoning and explicit 

knowledge representation, while sub-symbolic AI is adept at working with raw data and learning 

from experience. This presented a strong case for integrating the two approaches. 

 

6.2. Notable Case Studies 
 

– Neuro-Symbolic AI for Visual Question Answering (VQA): Research projects have 

combined neural networks with symbolic reasoning to improve VQA systems, 

which answer questions about images. These hybrid systems use neural networks to 
interpret visual data and symbolic systems to reason about the content, enabling more 

accurate and interpretable answers. 

– Commonsense Reasoning: Projects like OpenAI’s GPT-3 have integrated symbolic 
reasoning to enhance the model’s ability to perform commonsense reasoning tasks. These 

systems can better understand and generate human-like responses by embedding symbolic 

representations within a neural frame work. 

– Robotics and Planning: Combining symbolic AI for high-level planning and 

decision making with sub-symbolic AI for perception and motion control has led to more 

versatile and efficient robots. This approach allows robots to navigate and interact with their 
environment in a more human-like manner, adapting to new tasks and environments 

through learning. 

 

6.3. Advantages 

 

– Enhanced Reasoning and Generalization: Integrating symbolic and sub-symbolic AI can 
lead to systems that learn from data and apply logical reasoning to generalize beyond their 

training data. This results in more flexible and capable AI systems [16]. 

– Improved Interpretability and Transparency: Symbolic components can provide clear 
explanations for the decisions made by sub-symbolic models, addressing one of the major 

drawbacks of purely sub-symbolic AI systems.  

– Efficient Learning and Knowledge Representation: Symbolic AI can encode domain 
knowledge that guides the learning process of sub-symbolic models, making them more 

efficient and effective in learning from data. Conversely, sub-symbolic models can discover 

patterns and relationships that can be formalized into symbolic knowledge. 

– Flexibility and Adaptability: Hybrid systems can adapt to new tasks and environments more 

readily by leveraging the learning capabilities of sub-symbolic AI with the structured 

knowledge representation of symbolic AI. 
 

6.4. Limitations 
 

– Complexity in Integration: Combining symbolic and sub-symbolic AI involves 

significant challenges, including integrating disparate representations and reasoning 
mechanisms. This complexity can make the development of hybrid systems more 

challenging and resource-intensive. 

– Scalability Issues: The scalability of hybrid AI systems can be limited by the symbolic 



International Journal on Soft Computing (IJSC) Vol.15, No.3, August 2024 

27 

component, which may not easily handle the vast amounts of data that sub-symbolic 
models can process [17]. 

– Limited Understanding of Integration Mechanisms: The field is still exploring the most 

effectivewaystointegratesymbolicandsub-symbolicAI.Thisincludeschallenges in 
combining learning and reasoning, representing knowledge, and ensuring that the 

systems are robust and reliable. 

 

6.5. Summary 
 

The combination of symbolic and sub-symbolic AI shows great promise for the future of AI. By 
merging the strengths of both approaches, researchers and practitioners aim to create robust AI 

systems capable of learning from large amounts of data while also being able to reason, 

generalize, and explain their decisions in a way that is understandable to humans. This hybrid 
approach represents a step towards more sophisticated, versatile, and trustworthy AI systems that 

can be effectively applied in various domains, from healthcare and finance to autonomous 

systems [6]. Realizing the full potential of this intersection requires overcoming significant 

challenges. These challenges include integrating different AI paradigms, ensuring scalability, and 
developing effective mechanisms for combining learning and reasoning. Continued research and 

experimentation in this area are crucial for advancing the state of the art and for achieving the 

goal of creating AI systems that are both intelligent and interpretable. As the field evolves, it is 
expected that the integration of symbolic and sub-symbolic AI will play a key role in developing 

next-generation AI systems capable of addressing complex problems with unprecedented 

efficiency and effectiveness. 

 

7. FROM ARTIFICIAL NEURAL NETWORKS (SUB-SYMBOLIC) 

TO RULES (SYMBOLIC) 
 

Extracting rules from Artificial Neural Networks (ANNs) is crucial in demystifying these 

models’ ”black-box” nature, allowing their decisions to become understandable and inter- 

pretabletohumans.Thisprocessinvolvestranslatingtheintricate,non-linearrelationships learned 
by the network into a set of rules that humans can easily understand. To illustrate this 

process, we’ll explore a detailed example of how rules can be extracted from an ANN 

trained on a simplified dataset for predicting loan approval based on applicant features.  
 

7.1. Background 
 
Let us use the example of a fictional financial institution that has created an ANN to evaluate 

loan applications. The ANN considers various applicant features such as Age, Income, 

Credit Score, and Employment Status and provides a binary decision: Approve or Deny. 
Despite the ANN’s high accuracy, the decision-making process is not transparent. This 

makes it challenging for loan officers to explain decisions to applicants or to ensure 

compliance with regulations. The institution aims to derive understandable rules from the 
ANN to address this. 

 

7.2. ANN Architecture 
 

The ANN in this example is a simple feedforward network with one hidden layer. 

Theinputlayerhasfourneuronscorrespondingtotheapplicantfeatures.Thehiddenlayerhas a few 

neurons (say five for simplicity) using ReLU (Rectified Linear Unit) as the activation 
function [10]. The output layer has one neuron and uses a sigmoid activation funct ion to 

output a probability of loan approval. 
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7.3. Rule Extraction Process 
 

The rule extraction process involves several steps designed to translate the ANN’s learned 

weights and biases into a set of if-then rules that replicate the network’s decision-making process 
as closely as possible:  

– Simplification: The first step involves simplifying the ANN to make the rule extraction 

more manageable. This could include pruning insignificant weights (shallows values) and 
neurons that have little impact on the output based on sensitivity analysis.  

– Discretization: Since ANNs deal with continuous inputs and hidden layer activations, a 

discretization process is applied to convert these continuous values into categorical ranges. 
For instance, age might be categorized into ’Young’, ’Middle-aged’, and ’Old’; Income into 

’Low’, ’Medium’, and ’High’; Credit Score into ’Poor’, ’Fair’, ’Good’, and ’Excellent’; and 

Employment Status into ’Unemployed’ and ’Employed’.  

– Activation Pattern Analysis: Next, the activation patterns of the neurons in the hidden layer 

are analyzed for each input pattern. This involves feeding various combinations of the 

discretized input variables into the simplified network and observing which neurons in the 
hidden layer are activated for each combination. An activation threshold is defined to 

determine whether a neuron is considered activated.  

– Rule Generation: Based on the activation patterns observed, rules are generated to replicate 
the ANN’s decision process. Each rule corresponds to a path from the input layer through 

the activated hidden neurons to the output decision. For example:  

• If (Age is Young) and (Income is High) and (Credit Score is Good) and (Employment Status is 
Employed), then Approve Loan.  

• If (Age is Middle-aged) and (Credit Score is Poor), then Deny Loan. This step involves 

identifying which combinations of input features and hidden neuron activations lead to loan 

approval or denial, effectively translating the ANN’s complex decision boundaries into more 
interpretable formats.  

– Rule Refinement and Validation: The initial set of rules may be too complex or too 

numerous for practical use. Rule refinement techniques simplify and consolidate the rules 
without significantly reducing their accuracy in replicating the ANN’s decisions. The 

refined rules are then validated against a test dataset to reflect the ANN’s behavior 

accurately. This may involve adjusting the rules based on misclassifications or applying 
techniques to handle exceptions and edge cases.  

After applying the rule extraction process to our hypothetical ANN, we might end up with a set 

of simplified, human-readable rules such as:  

– Rule 1: If (Income is High) and (Credit Score is Excellent), then Approve Loan.  

– Rule 2: If (Employment Status is Unemployed) and (Credit Score is Poor or Fair), then 

Deny Loan.  

– Rule 3: If (Age is Old) and (Income is Low) and (Employment Status is Employed), then 

Deny Loan. These rules provide clear criteria derived from the ANN’s learned patterns, 

making the decision-making process transparent and justifiable. 
 

7.4. Advantages and Challenges 
 

Some advantages include: 

 

– Transparency: The extracted rules make the ANN’s decisions transparent and 

understandable to humans. 

– Compliance: Clear rules can help ensure compliance with regulatory requirements for 
explainable AI.  

– Trust: Understanding how decisions are made can increase user trust in the AI system. Some 
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challenges are: 

– Complexity: The rule extraction process can be complex, especially for deep or highly non-

linear networks [18]. 

– Approximation: The extracted rules approximate the ANN’s decision process and may not 
capture all nuances. 

– Scalability: Extracting rules from large, deep neural networks with many inputs and hidden 
layers can be challenging and may result in many complex rules [19]. 

 

7.5. Summary 
 

Extracting rules from ANNs allows AI decision-making to be transparent, understandable, and 

justifiable. Although there are challenges, especially with complex networks, this process is 
crucial for responsible and ethical AI use. By making AI systems more interpretable, we can 

establish trust with users, ensure compliance with regulations, and gain valuable insights into 

decision-making. 

 

8. FUZZY COGNITIVE MAPS 
 

The pendulum in AI is swinging back from purely statistical approaches toward integrating 

structured knowledge. FCMs are powerful cognitive tools for modeling and simulating complex 
systems. They blend elements from artificial neural networks, graph theory, and semantic nets to 

offer a unique approach to understanding and predicting system behavior. FCMs incorporate the 

concept of fuzziness from fuzzy logic, enabling them to handle ambiguity and uncertainty 

inherent in real-world scenarios. This extensive report delves into the origins of FCMs, provides 
illustrative case studies, and discusses their advantages and disadvantages, with references to 

their similarities to artificial neural networks, graphs, and semantic nets [20]. 

 

8.1. Origins 
 

Bart Kosko introduced the concept of FCMs in the 1980s as an extension of cognitive maps. 
Cognitive maps, developed by Axelrod, were diagrams that represented beliefs and their 

interconnections. Kosko’s introduction of fuzziness to these maps allowed for the representation 

of causal reasoning with degrees of truth rather than binary true/false values, thus capturing the 
uncertain and imprecise nature of human knowledge and decision-making processes. FCMs 

combine elements from fuzzy logic, introduced by Lotfi A. Zadeh, with the structure of cognitive 

maps to model complex systems. 

 

8.2. Structure and Functionality 
 
FCMs are graph-based representations where nodes represent concepts or entities within a 

system, and directed edges depict the causal relationships between these concepts. Each edge is 

assigned a weight that indicates the relationship’s strength and direction (positive or negative). 

This structure closely mirrors that of artificial neural networks, particularly in how information 
flows through the network and how activation levels of concepts are updated based on the input 

they receive, akin to the weighted connections between neurons in neural networks [21]. 

 
However, unlike typical neural networks that learn from data through back propagation or other 
learning algorithms, the weights in FCMs are often determined by experts or derived from data 

using specific algorithms designed for FCMs. The concepts in FCMs can be activated like 

neurons, with their states updated based on fuzzy causal relations, allowing for dynamic 
modeling of system behavior over time. Integrating structured knowledge graphs with distributed 
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neural network representations offers a promising path to augmented intelligence. We get the 
flexible statistical power of neural networks that predict, classify, and generate based on 

patterns—combined with the formalized curated knowledge encoding facts, logic, and semantics 

via knowledge graphs [22]. 

 
 

8.3. The Inherent Reasoning Mechanism 

 
The primary function of the reasoning rule in FCM models is to update the activation values of 

concepts iteratively, starting from initial conditions and continuing until a stopping criterion is 

satisfied. During each iteration, the reasoning rule utilizes three primary components to conduct 
these calculations: the weight matrix, which signifies the connections between concepts; the 

activation values of concepts from the previous iteration; and the activation function.  

 

Eq.(1)shows a general rule commonly found in FCMs-related papers: 
 

 
 

Recently, N´apoles et al. [23] proposed an updated quasi-nonlinear reasoning rule de-picted 

in Eq. (2): 
 

 
 

such that 0 ≤ ϕ ≤ 1 is the nonlinearity coefficient. When ϕ = 1, the concept’s activation value 
depends on the activation values of connected concepts in the previous iteration. When 0 < ϕ < 1, 

we add a linear component to the reasoning rule devoted to preserving the initial activation values 

of concepts. When ϕ = 0, the model narrows down to a linear regression where the initial 

activation values of concepts act as regressors. In their paper, N´apoles et al. [23] used the quasi-
nonlinear reasoning rule to quantify implicit bias in pattern classification datasets. In contrast, the 

authors in [10] resorted to this rule to develop a recurrence-aware FCM-based classifier. 

 

8.4. How Activation Functions Work 
 

The activation function f : R → I is an essential component in the reasoning rule of FCMbased 
models. This monotonically non-decreasing function keeps the activation value of each concept 

within the desired image set I, which can be discrete (a finite set) or continuous (a numeric-

valued interval). It should be mentioned that I must be bounded; otherwise, the reasoning rule 
could explode due to the successive additions and multiplications when updating concepts’ 

activation values during reasoning. Table 1 portrays relevant activation functions found in the 

literature. 
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Table 1. Some popular activation functions (both discrete and continuous). 

 

 
 

8.5. Relevant Case Studies 
 

For illustration purposes, Figure 1 shows an example of an FCM created to model a case of 
autism [24]. FCMs have been applied across various domains, demonstrating their versatility and 

effectiveness as a hybrid AI tool: 

 

– Decision Support Systems: FCMs model complex decision-making processes, integrating 

expert knowledge and data-driven insights to support decisions in healthcare, environmental 

management, and business strategy. 

– Predictive Modeling: In healthcare, FCMs model the progression of diseases or the impact 

of treatments, incorporating medical expertise and patient data to predict outcomes and 

support personalized medicine [25]. 

– System Analysis and Design: FCMs help analyze and design complex systems, such as 

socio-economic systems or ecosystems, by modeling the interactions between various 

factors and predicting the impact of changes or interventions. 

– Healthcare Management: FCMs have been employed to model and predict patient outcomes 

in healthcare settings. For example, an FCM can be developed to understand the complex 

interplay between patient symptoms, treatment options, and possible outcomes, aiding 
medical professionals in decision-making [26]. 

– Environmental and Ecological Systems: In environmental studies, FCMs have been used to 

model the impact of human activities on ecosystems, allowing for the simulation of various 
scenarios based on different policies or interventions. This application showcases the 

strength of FCMs in handling systems where data may be scarce or imprecise [27]. 

– Business and Strategic Planning: FCMs assist in strategic planning and decision making 

within business contexts by modeling the relationships between market forces, company 

policies, and financial outcomes, offering a tool for scenario analysis and strategy 

development [28]. 
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Fig. 1. Real example created with FCM Tool. 

 

8.6. Advantages 
 

The hybrid nature of FCMs offers several advantages: 

 

– Interpretability and Transparency: The symbolic representation of concepts and causal 

relationships in FCMs provides clarity and understandability, facilitating communication 

with experts and stakeholders and supporting explainable AI. 

– Flexibility and Adaptability: FCMs can be easily updated with new knowledge or data, 

allowing them to adapt to changing conditions or insights. This makes them particularly 

valuable in fields where knowledge evolves rapidly. – Handling of Uncertainty: Using 
fuzzy values to represent causal strengths enables FCMs to deal effectively with 

uncertainty and ambiguity, providing more nuanced and realistic modeling of complex 

systems [29]. 

– Integration of Expert Knowledge and Data-Driven Insights: FCMs uniquely combine 

expert domain knowledge with learning from data, bridging the gap between purely 

knowledge-driven and purely data-driven approaches. 

– Interpretability: The graphical representation of FCMs, similar to semantic nets, allows 

for straightforward interpretation and understanding of the modeled system, making it 

accessible to experts and stakeholders without deep technical knowledge of AI. 

– Flexibility: FCMs can incorporate quantitative and qualitative data, effectively handling 

uncertainty and imprecision through fuzzy logic. This flexibility makes them suitable for 

a wide range of applications. 

– Dynamic Modeling Capability: FCMs can simulate the dynamic behavior of systems 

over time, providing valuable insights into potential future states based on different 

inputs or changes in the system [30]. 
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8.7. Limitations 
 

Despite their advantages, FCMs also face several challenges: 

 

– Complexity with Large Maps: As the number of concepts and relationships in an FCM 

increases, the map can become complex and challenging to manage, analyze, and 

interpret [15]. 

– Learning and Optimization: While FCMs can learn from data, adjusting the fuzzy values 

of causal relationships can be computationally intensive and require sophisticated 

optimization techniques, especially for large and complex maps [31]. 

– Quantification of Expert Knowledge: Translating expert knowledge into precise fuzzy 

values for causal relationships can be challenging and may introduce subjectivity, 
requiring careful validation and sensitivity analysis [32]. 

– Subjectivity in Model Construction: The reliance on expert knowledge for constructing 

FCMs can introduce subjectivity, especially in determining the strength and direction of 
causal relationships between concepts. 

– Complexity with Large Maps: As the number of concepts increases, the FCM can 

become complex and challenging to manage and interpret, potentially requiring 
sophisticated computational tools for simulation and analysis. 

– Limited Learning Capability: While FCMs can be adjusted or trained based on data to 

some extent, they lack the deep learning capabilities of more advanced neural networks, 
which can autonomously learn complex patterns from large datasets [33]. 

 

8.8. References to ANNs, Graphs, and Semantic Nets 
 

FCMs share several similarities with artificial neural networks, graphs, and semantic nets: 

 

– Artificial Neural Networks: Like neural networks, FCMs consist of nodes 

(concepts)and weighted edges (causal relationships), where the state of each concept 

is updated basedontheinputsitreceives,akintotheactivationofneurons.However,FCMs 
use fuzzy logic to handle the degrees of truth, whereas neural networks typically use 

continuous activation functions. 

– Graphs: FCMs are directed graphs with weighted edges, employing graph theory 
concepts to represent and analyze the causal relationships between concepts. This 

graphical structure facilitates the visualization and analysis of complex systems [34]. 

– Semantic Nets: FCMs resemble semantic nets using nodes representing entities or 
concepts and edges representing relationships. However, FCMs focus on causal 

relationships and use fuzzy logic to capture the uncertainty and vagueness inherent in 

realworld systems [35]. 
 

8.9. FCMs as the Needed Hybrid Approach 
 
There is momentum toward hybridizing connectionism and symbolic approaches to AI to unlock 

potential opportunities for an intelligent system to make decisions. This hybrid approach is 

gaining ground; FCMs embody a hybrid AI approach through their integration of symbolic and 
sub-symbolic elements: 

 

– Symbolic Components: The concepts and causal connections in FCMs are symbolic, 
explicitly representing entities and their interrelations. This aligns with the symbolic AI 

paradigm, where knowledge is structured and interpretable, allowing for reasoning and 

inference based on explicit rules and relationships [36]. 
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– Sub-symbolic Components: The strengths of the causal relationships in FCMs are 
represented by fuzzy values, which are learned and adjusted based on data or expert input, 

much like the weights in neural networks. This learning capability and the use of fuzzy logic 

to handle uncertainty and ambiguity mirror the characteristics of sub-symbolic AI, which 
learns from patterns in data without requiring explicit programming.  

 

FCMs offer a compelling hybrid approach to AI, combining the symbolic representation of 
knowledge with sub-symbolic learning and reasoning; they bridge a crucial gap between 

symbolic AI’s interpretability and structured knowledge representation and the adaptability 

and data-driven learning of sub-symbolic AI. Their applications across diverse domains 

underscore their versatility and potential to address complex problems by integrating human-
like reasoning with machine learning [37]. The challenges FCMs face, including complexity 

management and the quantification of expert knowledge, highlight areas for further research 

and development. As AI continues to evolve towards more integrated and versatile models, 
FCMs stand as a testament to the potential of hybrid approaches to combine the strengths of 

symbolic and sub-symbolic AI, offering a pathway to more intelligent, understandable, and 

adaptable AI systems [38]. 

 

8.10. Summary 
 
FCMs offer a robust framework for modeling and analyzing complex systems, blending the best 
symbolic and sub-symbolic AI by integrating fuzzy logic, graph theory, and neural network-like 

dynamics. While FCMs provide a powerful tool for understanding system behaviors and 

decision-making processes, their effectiveness is contingent upon accurately representing causal 
relationships and managing map complexity. Future developments in FCMs aim to enhance their 

learning capabilities, reduce subjectivity in their construction, and improve scalability, further 

solidifying their role as a valuable tool in complex system analysis and decision support across 

various domains [39]. 
 

9. CONCLUSIONS AND FUTURE WORK 
 

Both symbolic AI and sub-symbolic AI are effective in solving complex problems. Symbolic AI 
best suits expert/knowledge systems that require human input and domain-specific knowledge. At 

the same time, sub-symbolic AI is ideal for applications requiring continuous learning, such as 

natural language processing, speech recognition, and image recognition tasks. Therefore, it is 

essential to consider the problem requirements and constraints before deciding which approach to 
use. The success of an AI application ultimately depends on selecting the appropriate strategy 

that best suits the requirements of the problem. The debate between symbolic AI and sub-

symbolic AI is ongoing, with proponents on both sides. Symbolic AI proponents argue it is the 
only way to achieve accurate intelligence and understanding, as it relies on human-like cognitive 

processes such as reasoning and logic. They view sub-symbolic AI as limited in its ability to 

produce truly intelligent behavior, as it is primarily based on statistical algorithms and cannot 

reason abstractly. On the other hand, sub-symbolic AI enthusiasts argue that it offers a more 
flexible and powerful means of achieving intelligence. By mimicking how the brain processes 

information, it can better handle the complexity and variability of real-world situations. 

Moreover, it is less dependent on hand-coding and can learn from experience, achieving greater 
accuracy and adaptability over time. Ultimately, the debate between symbolic and sub-symbolic 

AI cannot be quickly resolved. Both approaches have their strengths and weaknesses, and the 

relative importance of each will depend on the specific application at hand. Nevertheless, 
understanding the debate and the merits of each approach can help drive progress toward the 

development of more advanced and effective AI systems. 
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It’s essential to consider both symbolic and sub-symbolic approaches in AI development. 
Symbolic AI is helpful for logical reasoning and problem-solving, which can be expressed using 

rules and symbols. On the other hand, sub-symbolic AI excels in areas such as pattern recognition 

and learning from experience, like speech recognition, image recognition, and natural language 

processing. Combining both approaches can create hybrid models that are more effective in 
solving complex problems. For example, sub-symbolic AI can be used for feature extraction in 

image recognition, while symbolic AI can be used for classification. Understanding the strengths 

and limitations of each approach and applying them complementarily can lead to more 
comprehensive and intelligent AI systems that overcome the challenges and limitations of 

individual approaches. Both symbolic AI and sub-symbolic AI have their strengths and 

weaknesses, and they have different applications. Symbolic AI, with its rule-based system, works 
well when the problem-solving process requires many rules and is well-defined. On the other 

hand, sub-symbolic AI, which focuses on learning, is better suited for dealing with situations 

where the problem is not well-defined, and data can be used to generate new insights. Symbolic 

AI requires expert knowledge to create well-defined rules, while sub-symbolic AI only needs raw 
data to learn from. However, symbolic AI has a more deterministic and transparent approach, 

allowing developers to understand how the AI model reaches its conclusions. In comparison, 

subsymbolic AI is more of a black box, making it difficult to know how the model generates its 
results. Ultimately, the choice between symbolic AI and sub-symbolic AI depends on the specific 

application and the project’s goals. 
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