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ABSTRACT 
 
Software project estimation is important for allocating resources and planning a reasonable work 

schedule. Estimation models are typically built using data from completed projects. While organizations 

have their historical data repositories, it is difficult to obtain their collaboration due to privacy and 

competitive concerns. To overcome the issue of public access to private data repositories this study 

proposes an algorithm to extract sufficient data from the GitHub repository for building duration 
estimation models. More specifically, this study extracts and analyses historical data on WordPress 

projects to estimate OSS project duration using commits as an independent variable as well as an 

improved classification of contributors based on the number of active days for each contributor within a 

release period. The results indicate that duration estimation models using data from OSS repositories 

perform well and partially solves the problem of lack of data encountered in empirical research in software 

engineering. 
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1. INTRODUCTION 
 

Software project estimation has always been a challenge for software engineering communities 
[1, 2]. One of the factors which influence the development of software project estimation is 

project data, which is often incomplete and at times inconsistent. The performance of an 

estimation model depends on the characteristics of the software project data such as size, missing 

values and outliers, as well as the validation techniques used (leave-one-out cross validation, 
holdout, n-fold cross validation) and evaluation criteria [1]. Some organizations such as the 

International Software Benchmarking Standard Group (ISBSG) and PROMISE provide 

worldwide repositories of software projects [3, 4]. These repositories provide data useful for 
multiple purposes, including project productivity comparison and estimation of the effort 

required to build productivity models [5]. However, different software projects have their own 

characteristics, such as application domain, type of system, development platform, type of 
language, etc. In addition, data collected may present quality problems due to noise, outliers, 
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incompleteness, even in data collected by mature organizations [6, 7, 8, 9]. In addition, it is 
considerably more difficult to get both large datasets and diverse datasets. The amount of data 

available for building estimation models affects the performance of the generated models, 

especially with small datasets where results may not be generalizable. 

 
An OSS source code management repository is an online community platform that makes project 

history data available to IT practitioners and researchers by enabling developers to host and 

review code, manage projects, share knowledge and work together to build OSS. Such OSS code 
repositories do not hold direct information on the total duration and effort of any specific project. 

Due to the quantity and diversity of the raw data (such as commits, contributors, LOC, etc.), 

extracting and processing the data for either duration or effort estimation is a challenge.These 
OSS repositories usually contain the following information: 

 

• Delivered software source code with corresponding dates. 

• Activities of the contributors who submitted their codes to a project (commits). 
• Meta-data (commit ID, date of commitment, release tag, etc.). 

• Contributor performing the commit. 

 
All of this information can be used directly as independent variables, or through derived 

variables, to develop duration estimation models.  

 
In this paper, we focus on the design of an algorithm to extract data from the GitHub source code 

management repository to design duration estimation models. Three measures of activity are 

explored as independent variables: 

 
(1) The number of changes to source code (commits) per contributor in each release. 

(2) The number of active days per contributor in each release, i.e., the days in which a 

contributor performs at least one commit to the code base. 
(3) The number of lines of code added per contributor in each release. We define LOC as the 

total number of lines of code, not including blank spaces and comments. 

(4) Type of contributors, where the type of contributors is an indirect variable defined within 

our research methodology. 
 

Data from the WordPress project, extracted from the source code management repository 

GitHub, were used to test our algorithm and design the duration estimation models. The rationale 
behind selecting the WordPress project is related to its OSS economic model, data availability 

and its significance within the Open Source community: WordPress is one of the most used 

content management system (CMS) open source software in the world and its economic model is 
based on service and hosting.  

 

The paper is structured as follows. Section 2 presents related work on duration and effort 

estimation with a focus on project datasets. Section 3 describes the proposed algorithm. Section 4 
details the test results. Section 5 concludes with a summary of the key findings, the study 

limitations and directions for future work. 

 

2. RELATED WORK 
 

This section presents related work on empirical software engineering datasets and duration and 

effort estimation with a focus on OSS projects. 
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Qi et al. [10] provided a method to collect sufficient data for solving the problem of lack of 
training data when building an effort estimation model using GitHub data. Although their method 

can be used to collect sufficient data for solving the problem of lack of training data when 

building an effort estimation model, it is subject to certain threats to validity. They only used the 

java open source projects of GitHub to calculate effort as a derived variable. To identify an active 
contributor within their study, they adopted the following definitions: 

 

• Active contributor: in a period of consecutive active days (with a of default 30 days), an 
active contributor has an average of committing one record per active day, and whose total 

contributions exceed the average contributions of the project; 

• Inactive contributor: otherwise.  
 

Badashian et al. [11] tracked a variety of metrics such as commits, Pull Reqs, Projects Watched, 

Issue Comments, Followers, and others to study the activities of developers.  

 
MacDonell et al. [12] provided a transparent and consistent means of collection and evaluation of 

data that could lead to the use of higher quality data in software engineering experiments. They 

assessed the quality of 13 empirical software engineering datasets with the aim of benchmarking 
them against the data quality taxonomy proposed by Bosu and MacDonell [13] based on three 

groups: accuracy, relevance and provenance.  

 
According to Gencel et al. [14], inconsistent results are obtained when software effort estimation 

models are built using benchmark repositories for two reasons: 

 

- the lack of common standards and vocabulary; 
- the differences in definitions and categories of attributes of the different repositories. 

  

Cheikhi and Abran [15] surveyed the PROMISE and ISBSG repositories with the objective of 
making them easier for researchers to understand the data in them and thus more readily use the 

data. 

 

Kocaguneli et al. [16] proposed a solution for importing relevant data from other organizations to 
build effort estimation models. They explored cross versus within data “sources”, where the data 

is divided by the values of any single feature. With in studies are localized to one subset while a 

cross study trains from some subsets and tests on others. The datasets used for their research were 
COCOMO81, nasa93, Desharnais, Finnish, Kemerer and Maxwell datasets. They found that the 

cross performance results are no worse than within.  

 
Shihab et al. [17] performed an empirical study on four OSS projects (namely JBoss, Spring, 

Hibernate and Mule) and compared the use of LOC to other code variables (in particular code 

complexity). To obtain code complexity, they required the source code of the changed files. They 

used the list of file names to download the corresponding revisions of files from the JIRA 
database. They used correlation tests and linear regression models to investigate the categories of 

variables as a substitute for effort. Since effort was available in their dataset, they investigated the 

used code complexity and LOC as a substitute measure of effort, a unique feature of this study. 
However, in their dataset the effort data was at the “issues” level but the variables used for 

statistical analysis were at another level (e.g., at the “files” level). A number of assumptions had 

to be made to assign effort across levels (e.g., from issues to files). Doing so, of course, 
introduces a number of unknown distortions without the ability quantify them and analyze their 

impact on the reported findings. While the authors report that there are correlations between the 

indirect effort measures with actual effort, these results are quite low and provide little support 
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for the relevance of the indirect measures of effort in other related works for OSS effort and 
duration estimation purposes. 

 

In summary, of the studies on empirical software engineering datasets and effort and duration 

estimation very few are OSS projects. The size and choice of the datasets presents a challenge for 
research on OSS project estimation. The keys findings of these specific studies show that there 

are datasets that have been used extensively in research on software effort estimation but most of 

them do not contain sufficient information to enable researchers to evaluate their accuracy 
(outliers, inconsistency, incompleteness, etc.), relevance (amount of data, heterogeneity and 

timeliness) and provenance (trustworthiness, accessibility and commercial sensitivity). In 

addition, related OSS work suffers from a lack of data on effort itself and must be approximated 
indirectly through other variables without knowing their variability and the impact of such 

variability on the estimation models themselves. To date, OOS studies by researchers for 

estimating effort are based on substitute variables that do not rely on reliable methodological 

bases [17]. As long as reliable substitute of effort measures are not available, it is not wise to 
build estimation models based on these very weak substitutes. However, for duration estimation, 

this variable is directly calculable from direct data of project calendar dates and our research 

relates exclusively to duration estimation models.     
 

3. PROPOSED ALGORITHM 
 

Data extraction selects, within a project, the number of changes made by each contributor within 

a specific period. These changes are related to the total number of commits, LOC added, LOC 
removed and active days. The algorithm to generate data from GitHub is presented next. 

 

Algorithm: Extraction of data 

Input: Project P 

Outputs: Contributors, Commits, LOC added, LOC removed, Active days 

Begin 
{ 

    1. Write the range of date on which data extraction must be done 

    2. Read (beginning date, end date) 

3.For this range of date: 
    4. List all contributors who made a change 

    5.For each contributor: 

6.          { commit<- total number of changes to source code 
  7.insert <- total number of LOC added  

  8.    delete <- total number of LOC removed 

  9.    day   <- total number of active days 
10. write in output (contributor \t commit \t LOC added \t LOC     removed \t 

active days \n) 

11.} 

12.End for 

} 

End 

 
The input of the algorithm is the project P and the outputs are the total number of contributors per 

release, their commits, LOC added, LOC removed and active days. The first step is to enter the 

beginning date and end date of the release. The second step is to generate the list of contributors 

for this release. A temporary file is created for this purpose. Finally, for each contributor, the 
algorithm calculates the total number of LOC added, LOC removed, commits and active days. 
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The algorithm then writes the results to a file. The implemented script for this algorithm is 
presented in Appendix A. 

 

4. TEST RESULTS  
  

4.1. Data Extraction 
 

The proposed algorithm was implemented in C including GitHub commands. 
  

Table 1 shows a statistical analysis of the historical data on 21 releases of the WordPress project, 

from February 2015 to May 2019 based on data extracted on June 23, 2019 from the GitHub 

repository using our algorithm. In Table 1, |LOC net| = |LOC added - LOC removed|. 
 

Table 1.WordPress project: descriptive statistics of the 21 releases 

 

Release # Commits  # LOC added  #LOC removed |LOC net| 

4.2.4 227 7984 3384 4618 

4.2.5 1319 28696 20281 8415 

4.2.6 225 5435 3062 4409 

4.2.7 589 12018 5835 8989 

4.2.8 913 23886 6488 17398 

4.3 876 12044 6446 5944 

4.3.1 988 42575 35829 6746 

4.3.2 1100 20861 8760 12825 

4.3.3 1599 32842 6207 26635 

4.3.4 559 29788 26392 3686 

4.4.1 408 4100 2041 2257 

4.4.2 518 16154 4823 11335 

4.4.3 806 17548 5990 11558 

4.5 487 5823 2995 3142 

4.6 855 54932 37178 22192 

4.7 1108 73845 35945 48848 

4.8 718 42282 22272 41862 

4.9 1001 126472 47171 126100 

5.0 854 125568 105561 124716 

5.1 586 921228 668282 920642 

5.2 421 145968 81814 145547 

 

4.2. Classification of OSS Contributors 
 

We observed that contributions to OSS projects were not equally distributed across contributors. 

Several contributors were responsible for the majority of the commits, while the majority 
contributed only a few [18, 19]. In our study, instead of using a threshold [19], we propose an 

improved approach using the total number of active days for each contributor in the release 

duration for classifying the contributors as full-time, part-time and occasional. 
For the purpose of estimating OSS project duration, we defined the following: 

 

i) Active day for a contributor = a day in which the contributor performs at least one commit 

to the code base. 
 

ii) Release duration is calculated from the time required to develop each release, that is, 

duration = (end date of the release) – (beginning date of the release). 
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iii) Approach for classifying contributors: 
 

a) Occasional: any contributor who has been active at most one third (1/3) of the release 

duration. 

b) Part-time: any contributor who has been active more than one third (1/3) and at most two 

thirds (2/3) of the release duration. 
c) Full-time: any contributor who has been active more than two thirds (2/3) of the release 

duration. 

 
After identifying the different contributors per category in each release according to the above 

definitions, the total number of commits per category of contributors per release is obtained by 

adding all the commits of the different contributors for each category. For example, when a 

category of full-time contributors consists of three contributors who made respectively, 10, 20 
and 30 commits over respectively 8, 13 and 16 active days, the maximum duration release for this 

category of contributors is 16 days and the total number of commits for this category of 

contributors in this release is 60. In summary, the maximum duration by category of contributors 
for this release corresponds to the largest number of active days. 

 

4.3. Estimation Models with Commits by Categories of Contributors 
 

We investigated the contribution of the number of commits in the estimation of the duration of 

OSS releases using linear regression since linear regression models are widely used in the 
software estimation literature [20, 21, 22, 23]. In addition, linear regression models are more 

suitable for models that use one independent variable. Also, it is much easier to represent the 

findings graphically and for management to understand. 
 

Three linear regression models were constructed using the total number of commits by category 

of contributors for each release as the independent variable. The three models correspond to the 

duration estimation models for full-time, part-time and occasional contributors of the WordPress 
project. 

 

4.3.1. Data Preparation and Descriptive Statistics 
 

Three major steps are recommended for building estimation models based on historical data: data 

preparation, application of statistical tools and data analysis. Models built using simple 

parametric regression techniques require [3]: 
 

• A normal distribution of the input variables (for both the dependent variable (e.g., project 

duration) and independent variable (e.g., number of commits)); 
• No outlier that may unduly influence the model; 

• A large enough dataset (e.g., typically 20 to 30 data points for each independent variable 

included in the model). 
 

Here, we focus on the quality of the data, not on its quantity. In order to build good models, we 

must have good input values: that is the rationale to remove outliers for all categories of 

contributors to avoid potentially biasing the findings (see the discussion on outliers in chapter 5 
of [3]). The total number of commits per category of contributors per release, excluding outliers 

and the maximum duration per category of contributors per release, where duration is expressed 

in calendar days (work days) are given in the appendix. There were full-time contributors in 10 
releases, part-time contributors in 15 releases and occasional contributors in 21 releases. 

According to the definitions in the research approach section, there were: 
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• No full-time contributors in releases 4.2.6, 4.2.8, 4.3.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1 and 
5.2. 

• No part-time contributor in releases 4.6, 4.8, 4.9, 5.0, 5.1 and 5.2. 

 

To analyze for the presence of outliers by category of contributors in these new subsets (commits 
per category of contributors and duration per category of contributors), we applied the Grubbs 

test on both the independent variable ‘total commits per category of contributors per release’ and 

the dependent variable ‘maximum duration per category of contributors per release’: 
 

• There were no statistical outliers for total commits per category of full-time, part-time and 

occasional contributors. 
• There was one statistical outlier for maximum duration per category of occasional 

contributors in the release 4.8. 

 

4.3.2. Estimation Models 
 

Table 2 from [24] presents the duration estimation models built on commits per category of 
contributors for each release and the performance criteria for each model, respectively, for full-

time, part-time and occasional contributors: 

 

• The MMRE for full-time, part-time and occasional contributors were 23%, 20% and 49%, 
respectively. 

• In terms of R², MMRE and PRED (25%), the duration estimation model for part-time 

contributors was better compared to the models for full-time and occasional contributors. 
For instance, the PRED value obtained for full-time contributors is excellent (PRED (25%) 

= 93%), which means that the MRE was within ± 25% for 93% of the data points. 

 
It is to be noted that the ‘x’ variable in the equations of Table 2 represents the number of 

commits. When extrapolations are made from 1/3 and 2/3 of the estimated duration, respectively, 

for the models for occasional and part-time contributors, the estimates are good compared to the 

model for full-time contributors [24]. 
 

4.4. Discussion of the Estimation Models based on 'Commits' and Industrial 

Datasets 
 

Table 3 presents the industrial datasets used to compare the duration estimation models with 
regression techniques. The rationale behind selecting these datasets is related to their significance 

within the empirical software engineering research: the COCOMO81, Desharnais and Kemerer 

datasets have been the most widely used in software effort estimation [25]. 

 
Table 3. Descriptive statistics of the WordPress and industrial datasets 

 

Datasets 
Number 

of records 

Size (measure unit) 

(independent variable) 

Measure 

unit 

Attribute measured 

(dependent variable) 

Desharnais 81 Function points (Adjusted) Month Duration  

Kemerer 15 KSLOC Month Duration   

COCOMO81 63 KLOC Month Duration  

WordPress 21 Commits Workday Duration  

 

To date, studies by researchers for estimating effort based on substitute variable do not rest on 
reliable methodological bases [17] and, as long as reliable substitute of effort measures are not 

available, it is not wise to build estimation models based on these very weak substitutes.  
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However, for duration estimation this variable is directly calculable from direct data of calendar 
dates, and our research relates exclusively to duration estimation models. 

 

Table 4 summarizes the performance criteria resulting from the duration estimation models with 

Desharnais [26], Kemerer [27], COCOMO81 [28] datasets and the duration estimation model 
with WordPress datasets. The performance criteria of duration estimation models using 

Desharnais, Kemerer COCOMO81 and WordPress datasets are given in Table 4. 

 
Table 4.Performance of duration estimation models based on WordPress and industrial datasets 

 

Datasets 
Number of 

records 

Equation of the 

models 

Performance criteria 

MMRE 

(%) 

PRED 

(25%) 

R² 

Desharnais 81 0.0293 2.8687y x 
 49 47 0.51 

Kemerer 15 0.014 11.648y x 
 53 40 0.06 

COCOMO81 63 0.0696   14.73y x 
 55 37 0.51 

WordPress 

10 (full-time) 0.0151 14y x 
 23 70 0.36 

15 (Part-time) 0.0223 7y x 
 20 93 0.77 

20 (Occasional) 0.0392 2y x 
 49  20 0.60 

 

In Table 4 the highlighted numbers indicate the most accurate estimates among the four types of 

datasets. The duration estimation models with the WordPress OSS datasets using ‘commits’ as 

the independent variable gave better estimates than duration models built from Desharnais, 
Kemerer and COCOMO81 datasets with lower MMRE, and highest PRED(25) and R2. 
 

5. CONCLUSION 
 

One of the factors which influence software project estimation is project data, which is often 

incomplete and inconsistent. This paper proposes an algorithm to extract relevant data from the 

GitHub repository for building duration estimation models. Our algorithm written in C includes 

GitHub commands. Data from WordPress projects, extracted from the source code management 
repository GitHub, were used to test our algorithm and design the duration estimation models. 

Statistical regression techniques were used to construct duration estimation models using as the 

independent variable the number of commits per categories of contributors. We proposed an 
improved approach which uses the total number of active days for each contributor in the release 

duration for classifying the contributors as full-time, part-time and occasional. The duration 

estimation models with the WordPress OSS datasets using ‘commits’ as the independent variable 
gave better estimates than duration estimation models built from Desharnais, Kemerer and 

COCOMO81 datasets. The results show that the duration estimation models built from data 

collected from Open Source repositories perform as well than those built with datasets most 

widely used in software duration estimation. All our duration estimation models can be 
considered white-box models since all the detailed data used to build them are documented and 

available for independent replication studies. 

 
All empirical studies, such as those reported here, are subject to certain threats to validity. The 

recommended size of the dataset sample required for meaningful statistical regression results is 

between 20 to 30 data points. In this study, the sample size used to construct the duration 
estimation models per category of contributors, with commits as the independent variable, was 

relatively small (21 data points). We proposed criteria for an objective classification to categorize 

contributors as full-time, part-time or occasional. However, some assumptions have been made in 

the design of our duration estimation models. For instance, we assumed that the time spent by 
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each contributor in a release corresponds to the number of days in which the contributor performs 
at least one commit to the code base.   

 

We plan to build duration estimation models using different statistical techniques and analyze 

additional OSS projects. In future work, we plan to use some additional factors as criteria to 
collect data, such as application domain, type of system, development platform, type of language, 

etc. We also plan to take into account outliers for a more in-depth analysis. Subsequent research 

could also explore other variables for the estimation of project duration such as algorithm 
complexity, team experience and code quality, but all these variables together will only help to 

predict the part of the duration not yet explained by the commits. 
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APPENDIX A 
 

Code 

 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#define LG_LIGNE     512 
int main(int argc, char* argv[]){ 
if(argc == 2){ 
printf("number of arguments not sufficient\n"); 
return 0; 
} 
char ligne [LG_LIGNE]; 
char* auteur=(char*)malloc(sizeof(char*)*50); 
char* nb_commit=(char*)malloc(sizeof(char*)*50); 
char* token=(char*)malloc(sizeof(char*)*50); 
char cmd[LG_LIGNE]; 
if(argc >= 2) 
snprintf(cmd, sizeof(cmd), "git shortlog -sn --since=%s --
before=%s | awk '{print $2, $3}' | sort -
d > tmp.txt", argv[1], argv[2]); 
else 
snprintf(cmd, sizeof(cmd), "git shortlog -
sn | awk '{print $2, $3}' | sort -d > tmp.txt"); 
FILE * f = popen(cmd, "r"); 
pclose(f); 
FILE * fichier = fopen("tmp.txt", "r"); 
FILE * result = fopen("resultats.txt", "w+"); 
while (fgets (ligne, LG_LIGNE, fichier) != NULL) { 
auteur = strtok_r(ligne, "\n", &token); 
printf("%s\n", auteur); 
fprintf(result, "%s\t", auteur); 
char cmd[LG_LIGNE]; 
//number of commits 
if(argc >= 2) 
snprintf(cmd, sizeof(cmd), "git shortlog -sn --author=\"%s\" --
since=\"%s\" --
before=\"%s\" | awk '{print $1}' ", auteur, argv[1], argv[2]); 
else 
snprintf(cmd, sizeof(cmd), "git shortlog -sn --
author=\"%s\" | awk '{print $1}' ", auteur); 
 
char commit[20]; 
FILE * ct = popen(cmd, "r"); 
fgets(commit, 20, ct); 
fprintf(result, "%d\t", atoi(commit)); 
pclose(ct); 
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//number of insertion 
        if(argc >= 2) 
            snprintf(cmd, sizeof(cmd), "git log --stat --author=\"%s\" -
-since=\"%s\" --
before=\"%s\" | grep insertions | awk 'BEGIN{ som=0 } { som=som+$4} END{
 print som }' ", auteur, argv[1], argv[2]); 
        else 
            snprintf(cmd, sizeof(cmd), "git log --stat --
author=\"%s\" | grep insertions | awk 'BEGIN{ som=0 } { som=som+$4} END{
 print som }' ", auteur); 
        char insert[20]; 
        FILE * fi = popen(cmd, "r"); 
        fgets(insert, 20, fi); 
        fprintf(result, "%d\t", atoi(insert)); 
        pclose(fi); 
 
        //number of deletions 
        if(argc >= 2) 
            snprintf(cmd, sizeof(cmd), "git log --stat --author=\"%s\" -
-since=\"%s\" --
before=\"%s\" | grep deletions | awk 'BEGIN{ som=0 } { som=som+$(NF-
1)} END{ print som }' ", auteur, argv[1], argv[2]); 
        else 
            snprintf(cmd, sizeof(cmd), "git log --stat --
author=\"%s\" | grep deletions | awk 'BEGIN{ som=0 } { som=som+$(NF-
1)} END{ print som }' ", auteur); 
        char delete[20]; 
        FILE * fd = popen(cmd, "r"); 
        fgets(delete, 20, fd); 
        fprintf(result, "%d\t", atoi(delete)); 
        pclose(fd); 
 
        //number of active days 
        if(argc >= 2) 
            snprintf(cmd, sizeof(cmd), "git log --stat --author=\"%s\" -
-since=\"%s\" --before=\"%s\" --date=short | grep Date | sort -u | sed -
n '$=' ", auteur, argv[1], argv[2]); 
        else 
            snprintf(cmd, sizeof(cmd), "git log --stat --author=\"%s\" -
-date=short | grep Date | sort -u | sed -n '$=' ", auteur); 
 
        char date[20]; 
        FILE * dt = popen(cmd, "r"); 
        fgets(date, 20, dt); 
        fprintf(result, "%d\n", atoi(date)); 
        pclose(dt); 
    } 
    FILE * rm = popen("rm  tmp.txt ", "r"); 
    pclose(rm); 
    fclose(result); 
    fclose(fichier); 
 
    return EXIT_SUCCESS;} 
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APPENDIX B 
 

WordPress datasets 

 

Table 1．WordPress project: commits per category of contributors  

N= 21 releases - excluding outliers 
 

Release 
Total number of commits per category of contributors 

Full-time contributors Part-time contributors Occasional contributors 

4.2.4 95 (2) 21 (2) 111 (7) 

4.2.5 554 (2) 531 (6) 305 (7) 

4.2.6 - 81 (3) 90 (9) 

4.2.7 35 (1) 51 (1) 142 (16) 

4.2.8 - 570 (8) 116 (7) 

4.3 251 (2) 328 (4) 297 (11) 

4.3.1 218 (3) 49 (1) 163 (11) 

4.3.2 905 (5) 154 (5) 41 (5) 

4.3.3 500 (4) 259 (5) 196 (7) 

4.3.4 - 328 (7) 231 (22) 

4.4.1 94 (2) 237 (6) 77 (13) 

4.4.2 51 (1) 280 (6) 187 (13) 

4.4.3 287 (2) 351 (5) 168 (14) 

4.5 - 196 (3) 291 (21) 

4.6 - - 275 (23) 

4.7 - 431 (5) 677 (27) 

4.8 - - 592(30) 

4.9 - - 306(26) 

5.0 - - 403(29) 

5.1 - - 197(20) 

5.2 - - 101(20) 

Average 299 258 236 

Standard 

deviation 
278 171 162 

 

In Table 1, the number of contributors per release is in parenthesis. 
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Table 2．WordPress project: duration per category of contributors  

N= 21 releases - excluding outliers 

 

Release 

Maximum duration per category of contributors  

Total duration per 

release (in work 

days) 

Full-time 

contributors 

(in work days) 

Part-time 

contributors 

(in work days) 

Occasional 

contributors 

(in work days) 

4.2.4 8 3 2 8 

4.2.5 33 20 9 33 

4.2.6 - 10 5 14 

4.2.7 13 8 6 19 

4.2.8 - 16 5 24 

4.3 21 17 10 31 

4.3.1 17 8 6 20 

4.3.2 19 9 5 19 

4.3.3 26 12 6 26 

4.3.4 - 14 8 24 

4.4.1 17 12 6 21 

4.4.2 14 11 5 19 

4.4.3 19 14 5 23 

4.5 - 14 8 27 

4.6 - - 21 90 

4.7 - 52 25 79 

4.8 - - 41 132 

4.9 - - 20 114 

5.0 - - 27 280 

5.1 - - 12 55 

5.2 - - 13 53 
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Table 3．WordPress project: Actual and estimated total duration per release per occasional contributors 

(with extrapolation) 

 

Release 

Total commits for all 

occasional contributors 

per release 

Actual duration  

(in work days) 

Estimated duration  

(in work days) 
|RE| 

4.2.4 111 8 19 1.38 

4.2.5 305 33 42 0.27 

4.2.6 90 14 17 0.18 

4.2.7 142 19 23 0.19 

4.2.8 116 24 20 0.18 

4.3 297 31 41 0.32 

4.3.1 163 20 25 0.26 

4.3.2 41 19 11 0.43 

4.3.3 196 26 29 0.12 

4.3.4 231 24 33 0.38 

4.4.1 77 21 15 0.28 

4.4.2 187 19 28 0.47 

4.4.3 168 23 26 0.12 

4.5 291 27 40 0.49 

4.6 275  90 38 0.57 

4.7 677 79 86 0.08 

4.8 592 132 76 0.43 

4.9 306 114 42 0.63 

5.0 403 280 53 0.81 

5.1 197 55 29 0.47 

5.2 101 53 18 0.66 

The MMRE for the model = 42% 

The median |RE| = 38% 
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Table 4．WordPress project: Actual and estimated total duration per release per part-time contributors 

(with extrapolation) 

 

Release 

Total commits for all 

part-time contributors 

per release 

Actual duration (in 

work days) 

Estimated duration 

(in work days) 
|RE| 

4.2.4 21 8 9 0.09 

4.2.5 531 33 37 0.13 

4.2.6 81 14 12 0.14 

4.2.7 51 19 10 0.45 

4.2.8 570 24 40 0.65 

4.3 328 31 26 0.16 

4.3.1 49 20 10 0.49 

4.3.2 154 19 16 0.15 

4.3.3 259 26 22 0.15 

4.3.4 328 24 26 0.08 

4.4.1 237 21 21 0.01 

4.4.2 280 19 23 0.22 

4.4.3 351 23 27 0.18 

4.5 196 27 19 0.31 

4.6 - 90 8 0.92 

4.7 431 79 32 0.60 

4.8 - 132 8 0.94 

4.9 - 114 8 0.93 

5.0 - 280 8 0.97 

5.1 - 55 8 0.86 

5.2 - 53 8 0.86 

The MMRE for the model = 44% 

The median |RE| = 31% 

 


