
International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

DOI: 10.5121/ijsea.2020.11603 31

A DATA EXTRACTION ALGORITHM FROM OPEN

SOURCE SOFTWARE PROJECT REPOSITORIES FOR

BUILDING DURATION ESTIMATION MODELS: CASE

STUDY OF GITHUB

Donatien K. Moulla1, 2, Alain Abran3 and Kolyang4

1Faculty of Mines and Petroleum Industries, University of Maroua, Cameroon
2LaRI Lab, University of Maroua, Cameroon

3Department of Software Engineering and Information Technology, École de

Technologie Supérieure, 1100, rue Notre-Dame Ouest Montréal, Canada
4The Higher Teachers’ Training College, University of Maroua, Cameroon

ABSTRACT

Software project estimation is important for allocating resources and planning a reasonable work

schedule. Estimation models are typically built using data from completed projects. While organizations

have their historical data repositories, it is difficult to obtain their collaboration due to privacy and

competitive concerns. To overcome the issue of public access to private data repositories this study

proposes an algorithm to extract sufficient data from the GitHub repository for building duration
estimation models. More specifically, this study extracts and analyses historical data on WordPress

projects to estimate OSS project duration using commits as an independent variable as well as an

improved classification of contributors based on the number of active days for each contributor within a

release period. The results indicate that duration estimation models using data from OSS repositories

perform well and partially solves the problem of lack of data encountered in empirical research in software

engineering.

KEYWORDS

Effort and duration estimation, software project estimation, project data, data extraction algorithm,

GitHub repository

1. INTRODUCTION

Software project estimation has always been a challenge for software engineering communities
[1, 2]. One of the factors which influence the development of software project estimation is

project data, which is often incomplete and at times inconsistent. The performance of an

estimation model depends on the characteristics of the software project data such as size, missing

values and outliers, as well as the validation techniques used (leave-one-out cross validation,
holdout, n-fold cross validation) and evaluation criteria [1]. Some organizations such as the

International Software Benchmarking Standard Group (ISBSG) and PROMISE provide

worldwide repositories of software projects [3, 4]. These repositories provide data useful for
multiple purposes, including project productivity comparison and estimation of the effort

required to build productivity models [5]. However, different software projects have their own

characteristics, such as application domain, type of system, development platform, type of
language, etc. In addition, data collected may present quality problems due to noise, outliers,

http://www.airccse.org/journal/ijsea/vol11.html
https://doi.org/10.5121/ijsea.2020.11603

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

32

incompleteness, even in data collected by mature organizations [6, 7, 8, 9]. In addition, it is
considerably more difficult to get both large datasets and diverse datasets. The amount of data

available for building estimation models affects the performance of the generated models,

especially with small datasets where results may not be generalizable.

An OSS source code management repository is an online community platform that makes project

history data available to IT practitioners and researchers by enabling developers to host and

review code, manage projects, share knowledge and work together to build OSS. Such OSS code
repositories do not hold direct information on the total duration and effort of any specific project.

Due to the quantity and diversity of the raw data (such as commits, contributors, LOC, etc.),

extracting and processing the data for either duration or effort estimation is a challenge.These
OSS repositories usually contain the following information:

• Delivered software source code with corresponding dates.

• Activities of the contributors who submitted their codes to a project (commits).
• Meta-data (commit ID, date of commitment, release tag, etc.).

• Contributor performing the commit.

All of this information can be used directly as independent variables, or through derived

variables, to develop duration estimation models.

In this paper, we focus on the design of an algorithm to extract data from the GitHub source code

management repository to design duration estimation models. Three measures of activity are

explored as independent variables:

(1) The number of changes to source code (commits) per contributor in each release.

(2) The number of active days per contributor in each release, i.e., the days in which a

contributor performs at least one commit to the code base.
(3) The number of lines of code added per contributor in each release. We define LOC as the

total number of lines of code, not including blank spaces and comments.

(4) Type of contributors, where the type of contributors is an indirect variable defined within

our research methodology.

Data from the WordPress project, extracted from the source code management repository

GitHub, were used to test our algorithm and design the duration estimation models. The rationale
behind selecting the WordPress project is related to its OSS economic model, data availability

and its significance within the Open Source community: WordPress is one of the most used

content management system (CMS) open source software in the world and its economic model is
based on service and hosting.

The paper is structured as follows. Section 2 presents related work on duration and effort

estimation with a focus on project datasets. Section 3 describes the proposed algorithm. Section 4
details the test results. Section 5 concludes with a summary of the key findings, the study

limitations and directions for future work.

2. RELATED WORK

This section presents related work on empirical software engineering datasets and duration and

effort estimation with a focus on OSS projects.

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

33

Qi et al. [10] provided a method to collect sufficient data for solving the problem of lack of
training data when building an effort estimation model using GitHub data. Although their method

can be used to collect sufficient data for solving the problem of lack of training data when

building an effort estimation model, it is subject to certain threats to validity. They only used the

java open source projects of GitHub to calculate effort as a derived variable. To identify an active
contributor within their study, they adopted the following definitions:

• Active contributor: in a period of consecutive active days (with a of default 30 days), an
active contributor has an average of committing one record per active day, and whose total

contributions exceed the average contributions of the project;

• Inactive contributor: otherwise.

Badashian et al. [11] tracked a variety of metrics such as commits, Pull Reqs, Projects Watched,

Issue Comments, Followers, and others to study the activities of developers.

MacDonell et al. [12] provided a transparent and consistent means of collection and evaluation of

data that could lead to the use of higher quality data in software engineering experiments. They

assessed the quality of 13 empirical software engineering datasets with the aim of benchmarking
them against the data quality taxonomy proposed by Bosu and MacDonell [13] based on three

groups: accuracy, relevance and provenance.

According to Gencel et al. [14], inconsistent results are obtained when software effort estimation

models are built using benchmark repositories for two reasons:

- the lack of common standards and vocabulary;
- the differences in definitions and categories of attributes of the different repositories.

Cheikhi and Abran [15] surveyed the PROMISE and ISBSG repositories with the objective of
making them easier for researchers to understand the data in them and thus more readily use the

data.

Kocaguneli et al. [16] proposed a solution for importing relevant data from other organizations to
build effort estimation models. They explored cross versus within data “sources”, where the data

is divided by the values of any single feature. With in studies are localized to one subset while a

cross study trains from some subsets and tests on others. The datasets used for their research were
COCOMO81, nasa93, Desharnais, Finnish, Kemerer and Maxwell datasets. They found that the

cross performance results are no worse than within.

Shihab et al. [17] performed an empirical study on four OSS projects (namely JBoss, Spring,

Hibernate and Mule) and compared the use of LOC to other code variables (in particular code

complexity). To obtain code complexity, they required the source code of the changed files. They

used the list of file names to download the corresponding revisions of files from the JIRA
database. They used correlation tests and linear regression models to investigate the categories of

variables as a substitute for effort. Since effort was available in their dataset, they investigated the

used code complexity and LOC as a substitute measure of effort, a unique feature of this study.
However, in their dataset the effort data was at the “issues” level but the variables used for

statistical analysis were at another level (e.g., at the “files” level). A number of assumptions had

to be made to assign effort across levels (e.g., from issues to files). Doing so, of course,
introduces a number of unknown distortions without the ability quantify them and analyze their

impact on the reported findings. While the authors report that there are correlations between the

indirect effort measures with actual effort, these results are quite low and provide little support

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

34

for the relevance of the indirect measures of effort in other related works for OSS effort and
duration estimation purposes.

In summary, of the studies on empirical software engineering datasets and effort and duration

estimation very few are OSS projects. The size and choice of the datasets presents a challenge for
research on OSS project estimation. The keys findings of these specific studies show that there

are datasets that have been used extensively in research on software effort estimation but most of

them do not contain sufficient information to enable researchers to evaluate their accuracy
(outliers, inconsistency, incompleteness, etc.), relevance (amount of data, heterogeneity and

timeliness) and provenance (trustworthiness, accessibility and commercial sensitivity). In

addition, related OSS work suffers from a lack of data on effort itself and must be approximated
indirectly through other variables without knowing their variability and the impact of such

variability on the estimation models themselves. To date, OOS studies by researchers for

estimating effort are based on substitute variables that do not rely on reliable methodological

bases [17]. As long as reliable substitute of effort measures are not available, it is not wise to
build estimation models based on these very weak substitutes. However, for duration estimation,

this variable is directly calculable from direct data of project calendar dates and our research

relates exclusively to duration estimation models.

3. PROPOSED ALGORITHM

Data extraction selects, within a project, the number of changes made by each contributor within

a specific period. These changes are related to the total number of commits, LOC added, LOC
removed and active days. The algorithm to generate data from GitHub is presented next.

Algorithm: Extraction of data

Input: Project P

Outputs: Contributors, Commits, LOC added, LOC removed, Active days

Begin
{

 1. Write the range of date on which data extraction must be done

 2. Read (beginning date, end date)

3.For this range of date:
 4. List all contributors who made a change

 5.For each contributor:

6. { commit<- total number of changes to source code
 7.insert <- total number of LOC added

 8. delete <- total number of LOC removed

 9. day <- total number of active days
10. write in output (contributor \t commit \t LOC added \t LOC removed \t

active days \n)

11.}

12.End for

}

End

The input of the algorithm is the project P and the outputs are the total number of contributors per

release, their commits, LOC added, LOC removed and active days. The first step is to enter the

beginning date and end date of the release. The second step is to generate the list of contributors

for this release. A temporary file is created for this purpose. Finally, for each contributor, the
algorithm calculates the total number of LOC added, LOC removed, commits and active days.

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

35

The algorithm then writes the results to a file. The implemented script for this algorithm is
presented in Appendix A.

4. TEST RESULTS

4.1. Data Extraction

The proposed algorithm was implemented in C including GitHub commands.

Table 1 shows a statistical analysis of the historical data on 21 releases of the WordPress project,

from February 2015 to May 2019 based on data extracted on June 23, 2019 from the GitHub

repository using our algorithm. In Table 1, |LOC net| = |LOC added - LOC removed|.

Table 1.WordPress project: descriptive statistics of the 21 releases

Release # Commits # LOC added #LOC removed |LOC net|

4.2.4 227 7984 3384 4618

4.2.5 1319 28696 20281 8415

4.2.6 225 5435 3062 4409

4.2.7 589 12018 5835 8989

4.2.8 913 23886 6488 17398

4.3 876 12044 6446 5944

4.3.1 988 42575 35829 6746

4.3.2 1100 20861 8760 12825

4.3.3 1599 32842 6207 26635

4.3.4 559 29788 26392 3686

4.4.1 408 4100 2041 2257

4.4.2 518 16154 4823 11335

4.4.3 806 17548 5990 11558

4.5 487 5823 2995 3142

4.6 855 54932 37178 22192

4.7 1108 73845 35945 48848

4.8 718 42282 22272 41862

4.9 1001 126472 47171 126100

5.0 854 125568 105561 124716

5.1 586 921228 668282 920642

5.2 421 145968 81814 145547

4.2. Classification of OSS Contributors

We observed that contributions to OSS projects were not equally distributed across contributors.

Several contributors were responsible for the majority of the commits, while the majority
contributed only a few [18, 19]. In our study, instead of using a threshold [19], we propose an

improved approach using the total number of active days for each contributor in the release

duration for classifying the contributors as full-time, part-time and occasional.
For the purpose of estimating OSS project duration, we defined the following:

i) Active day for a contributor = a day in which the contributor performs at least one commit

to the code base.

ii) Release duration is calculated from the time required to develop each release, that is,

duration = (end date of the release) – (beginning date of the release).

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

36

iii) Approach for classifying contributors:

a) Occasional: any contributor who has been active at most one third (1/3) of the release

duration.

b) Part-time: any contributor who has been active more than one third (1/3) and at most two

thirds (2/3) of the release duration.
c) Full-time: any contributor who has been active more than two thirds (2/3) of the release

duration.

After identifying the different contributors per category in each release according to the above

definitions, the total number of commits per category of contributors per release is obtained by

adding all the commits of the different contributors for each category. For example, when a

category of full-time contributors consists of three contributors who made respectively, 10, 20
and 30 commits over respectively 8, 13 and 16 active days, the maximum duration release for this

category of contributors is 16 days and the total number of commits for this category of

contributors in this release is 60. In summary, the maximum duration by category of contributors
for this release corresponds to the largest number of active days.

4.3. Estimation Models with Commits by Categories of Contributors

We investigated the contribution of the number of commits in the estimation of the duration of

OSS releases using linear regression since linear regression models are widely used in the
software estimation literature [20, 21, 22, 23]. In addition, linear regression models are more

suitable for models that use one independent variable. Also, it is much easier to represent the

findings graphically and for management to understand.

Three linear regression models were constructed using the total number of commits by category

of contributors for each release as the independent variable. The three models correspond to the

duration estimation models for full-time, part-time and occasional contributors of the WordPress
project.

4.3.1. Data Preparation and Descriptive Statistics

Three major steps are recommended for building estimation models based on historical data: data

preparation, application of statistical tools and data analysis. Models built using simple

parametric regression techniques require [3]:

• A normal distribution of the input variables (for both the dependent variable (e.g., project

duration) and independent variable (e.g., number of commits));
• No outlier that may unduly influence the model;

• A large enough dataset (e.g., typically 20 to 30 data points for each independent variable

included in the model).

Here, we focus on the quality of the data, not on its quantity. In order to build good models, we

must have good input values: that is the rationale to remove outliers for all categories of

contributors to avoid potentially biasing the findings (see the discussion on outliers in chapter 5
of [3]). The total number of commits per category of contributors per release, excluding outliers

and the maximum duration per category of contributors per release, where duration is expressed

in calendar days (work days) are given in the appendix. There were full-time contributors in 10
releases, part-time contributors in 15 releases and occasional contributors in 21 releases.

According to the definitions in the research approach section, there were:

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

37

• No full-time contributors in releases 4.2.6, 4.2.8, 4.3.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1 and
5.2.

• No part-time contributor in releases 4.6, 4.8, 4.9, 5.0, 5.1 and 5.2.

To analyze for the presence of outliers by category of contributors in these new subsets (commits
per category of contributors and duration per category of contributors), we applied the Grubbs

test on both the independent variable ‘total commits per category of contributors per release’ and

the dependent variable ‘maximum duration per category of contributors per release’:

• There were no statistical outliers for total commits per category of full-time, part-time and

occasional contributors.
• There was one statistical outlier for maximum duration per category of occasional

contributors in the release 4.8.

4.3.2. Estimation Models

Table 2 from [24] presents the duration estimation models built on commits per category of
contributors for each release and the performance criteria for each model, respectively, for full-

time, part-time and occasional contributors:

• The MMRE for full-time, part-time and occasional contributors were 23%, 20% and 49%,
respectively.

• In terms of R², MMRE and PRED (25%), the duration estimation model for part-time

contributors was better compared to the models for full-time and occasional contributors.
For instance, the PRED value obtained for full-time contributors is excellent (PRED (25%)

= 93%), which means that the MRE was within ± 25% for 93% of the data points.

It is to be noted that the ‘x’ variable in the equations of Table 2 represents the number of

commits. When extrapolations are made from 1/3 and 2/3 of the estimated duration, respectively,

for the models for occasional and part-time contributors, the estimates are good compared to the

model for full-time contributors [24].

4.4. Discussion of the Estimation Models based on 'Commits' and Industrial

Datasets

Table 3 presents the industrial datasets used to compare the duration estimation models with
regression techniques. The rationale behind selecting these datasets is related to their significance

within the empirical software engineering research: the COCOMO81, Desharnais and Kemerer

datasets have been the most widely used in software effort estimation [25].

Table 3. Descriptive statistics of the WordPress and industrial datasets

Datasets
Number

of records

Size (measure unit)

(independent variable)

Measure

unit

Attribute measured

(dependent variable)

Desharnais 81 Function points (Adjusted) Month Duration

Kemerer 15 KSLOC Month Duration

COCOMO81 63 KLOC Month Duration

WordPress 21 Commits Workday Duration

To date, studies by researchers for estimating effort based on substitute variable do not rest on
reliable methodological bases [17] and, as long as reliable substitute of effort measures are not

available, it is not wise to build estimation models based on these very weak substitutes.

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

38

However, for duration estimation this variable is directly calculable from direct data of calendar
dates, and our research relates exclusively to duration estimation models.

Table 4 summarizes the performance criteria resulting from the duration estimation models with

Desharnais [26], Kemerer [27], COCOMO81 [28] datasets and the duration estimation model
with WordPress datasets. The performance criteria of duration estimation models using

Desharnais, Kemerer COCOMO81 and WordPress datasets are given in Table 4.

Table 4.Performance of duration estimation models based on WordPress and industrial datasets

Datasets
Number of

records

Equation of the

models

Performance criteria

MMRE

(%)

PRED

(25%)

R²

Desharnais 81 0.0293 2.8687y x 
 49 47 0.51

Kemerer 15 0.014 11.648y x 
 53 40 0.06

COCOMO81 63 0.0696 14.73y x 
 55 37 0.51

WordPress

10 (full-time) 0.0151 14y x 
 23 70 0.36

15 (Part-time) 0.0223 7y x 
 20 93 0.77

20 (Occasional) 0.0392 2y x 
 49 20 0.60

In Table 4 the highlighted numbers indicate the most accurate estimates among the four types of

datasets. The duration estimation models with the WordPress OSS datasets using ‘commits’ as

the independent variable gave better estimates than duration models built from Desharnais,
Kemerer and COCOMO81 datasets with lower MMRE, and highest PRED(25) and R2.

5. CONCLUSION

One of the factors which influence software project estimation is project data, which is often

incomplete and inconsistent. This paper proposes an algorithm to extract relevant data from the

GitHub repository for building duration estimation models. Our algorithm written in C includes

GitHub commands. Data from WordPress projects, extracted from the source code management
repository GitHub, were used to test our algorithm and design the duration estimation models.

Statistical regression techniques were used to construct duration estimation models using as the

independent variable the number of commits per categories of contributors. We proposed an
improved approach which uses the total number of active days for each contributor in the release

duration for classifying the contributors as full-time, part-time and occasional. The duration

estimation models with the WordPress OSS datasets using ‘commits’ as the independent variable
gave better estimates than duration estimation models built from Desharnais, Kemerer and

COCOMO81 datasets. The results show that the duration estimation models built from data

collected from Open Source repositories perform as well than those built with datasets most

widely used in software duration estimation. All our duration estimation models can be
considered white-box models since all the detailed data used to build them are documented and

available for independent replication studies.

All empirical studies, such as those reported here, are subject to certain threats to validity. The

recommended size of the dataset sample required for meaningful statistical regression results is

between 20 to 30 data points. In this study, the sample size used to construct the duration
estimation models per category of contributors, with commits as the independent variable, was

relatively small (21 data points). We proposed criteria for an objective classification to categorize

contributors as full-time, part-time or occasional. However, some assumptions have been made in

the design of our duration estimation models. For instance, we assumed that the time spent by

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

39

each contributor in a release corresponds to the number of days in which the contributor performs
at least one commit to the code base.

We plan to build duration estimation models using different statistical techniques and analyze

additional OSS projects. In future work, we plan to use some additional factors as criteria to
collect data, such as application domain, type of system, development platform, type of language,

etc. We also plan to take into account outliers for a more in-depth analysis. Subsequent research

could also explore other variables for the estimation of project duration such as algorithm
complexity, team experience and code quality, but all these variables together will only help to

predict the part of the duration not yet explained by the commits.

REFERENCES

[1] A. Idri, M. Hosni, A. Abran, “Systematic Literature Review of Ensemble Effort Estimation”, Journal

of Systems & Software, doi: 10.1016/j.jss.2016.05.016, 2016.

[2] S.K. Sehra, Y.S. Brar, N. Kaur, S.S. Sehra, “Research Patterns and Trends in Software Effort

Estimation”, Information and Software Technology, doi: 10.1016/j.infsof.2017.06.002, 2017.

[3] https://www.isbsg.org/
[4] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan, “The promise repository

of empirical software engineering data,” 2012. [Online]. Available:

http://promise.site.uottawa.ca/SERepository/

[5] A. Abran, Software Project Estimation: The Fundamentals for Providing High Quality Information to

Decision Makers. John Wiley & Sons Inc., Hoboken, New Jersey, 2015.

[6] M. Fernãndez-Diego, F.G.-L. De-Guevara, “Potential and limitations of the ISBSG dataset in

enhancing software engineering research: A mapping review”, Information and Software Technology

56 (6), 527– 544. doi:10.1016/j.infsof.2014.01.003, 2014.

[7] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Reflections on the NASA MDP data

sets”, IET Softw. 6 6, 549–558. DOI:10.1049/iet-sen.2011.0132, 2012.

[8] M.J. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some comments on the NASA software
defect datasets”, Software Engineering. IEEE Trans. Softw. Eng. 39, 9, 1208–1215.

DOI:10.1109/TSE.2013.11, 2013.

[9] K. Deng and S.G. MacDonell, “Maximising data retention from the isbsg repository”, 12th

International Conference on Evaluation and Assessment in Software Engineering. Italy. 2008.

[10] F. Qi, X Y. Jing, X. Zhu, et al., “Software effort estimation based on open source projects: Case

study of Github”, Information and Software Technology, 92: 145-157, 2017.

[11] A.S. Badashian, A. Esteki, A. Gholipour, A. Hindle, and E. Stroulia, “Involvement, contribution and

influence in github and stackoverflow”, 24th Annual International Conference on Computer Science

and Software Engineering. Markham, Ontario, 2014.

[12] M.F. Bosu and S. G. Macdonell, “Experience: Quality Benchmarking of Datasets Used in Software

Effort Estimation”, Journal of Data and Information Quality, vol. 11, n° 4, Article 19, 38 pages, 2019.
https://doi.org/10.1145/3328746

[13] M.F. Bosu and S.G. MacDonell, “A taxonomy of data quality challenges in empirical software

engineering”, 22nd Australian Conference on Software Engineering.97–106.2013a,

DOI:10.1109/ASWEC.2013.21.

[14] C. Gencel, L. Buglione, and A. Abran, “Improvement opportunities and suggestions for

benchmarking”, Software Process and Product Measurement.Springer, Berlin (Germany), 144–156,

2009.

[15] L. Cheikhi and A. Abran, “Promise and ISBSG software engineering data repositories: A survey”, In

Joint Conference of the 23nd International Workshop on Software Measurement and the 8th

International Conference on Software Process and Product Measurement, 17–24, 2013,

DOI:10.1109/IWSM-Mensura.2013.13

[16] E. Kocaguneli, T. Menzies, “How to find relevant data for effort estimation?”,International
Symposium on Empirical Software Engineering and Measurement, Banff, Canada, 2011, pp. 255–

264. doi:10.1109/ESEM. 2011.34.

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

40

[17] E. Shihab, Y. Kamei, B. Adams, et al., “Is lines of code a good measure ofeffort in effort-aware

models?”, Information and Software Technology, 55(11): 1981-1993, 2013.

[18] S. Koch, “Effort Modeling and Programmer Participation in Open Source Software

Projects”,Information Economics and Policy, 20(4), pp.345-355, 2008.

[19] G. Robles, J.M. González-Barahona, C. Cervigón, A. Capiluppi, D. Izquierdo-Cortázar, “Estimating
Development Effort in Free/Open Source Software Projects by Mining Software Repositories: A

Case Study of OpenStack”, 11th Working Conference on Mining Software Repositories, May 31 –

June 01 2014, pp.222-231.

[20] S. Chatterjee and A.S. Hadi, Regression analysis by example, John Wiley & Sons, 2015.

[21] J. Fernandez-Ramil, D. Izquierdo-Cortazar, and T. Mens, “What does it take to develop a million

lines of Open Source code?”, In: Boldyreff C., Crowston K., Lundell B., Wasserman A.I. (eds) Open

Source Ecosystems: Diverse Communities Interacting. OSS 2009. IFIP Advances in Information and

Communication Technology, Springer, Berlin, Heidelberg, vol 299, pp. 170-184, 2009.

[22] M. Jorgensen, “Regression models of software development effort estimation accuracy and bias”,

Empirical Software Engineering, vol. 9, pp. 297–314, 2004.

[23] D.C. Montgomery, E. A. Peck, G. G. Vining, Introduction to Linear Regression Analysis, 5th ed.

Wiley, Hoboken, NJ. 2012.
[24] D.K. Moulla, A. Abran and Kolyang, “Duration Estimation Models for Open Source Software

Projects”, International Journal of Information Technology and Computer Science (IJITCS), Vol.12,

No.5, In production.

[25] C. Mair, M.J. Shepperd and M. Jørgensen, “An analysis of data sets used to train and validate cost

prediction systems”, Workshop on Predictor Models in Software Engineering (PROMISE’05).1–6,

2005. DOI:10.1145/1083165.1083166.

[26] J.M. Desharnais, Analyse Statistique de la productivité des projets informatique partir de la technique

des Point des Fonction, Université de Montréal (Canada), Masters thesis, 1989.

[27] Chris F. Kemerer, “An empirical validation of software cost estimation models”,Communication of

the ACM, Vol.30, No.5, pp.416–429, 1987.

[28] J. SayyadShirabad, T.J. Menzies, “PROMISE Repository of Software Engineering Databases”,
School of Information Technology and Engineering, University of Ottawa, Canada, 2005. [Online].

Available: http://promise.site.uottawa.ca/SERepository.

AUTHORS

Dr.Donatien K. Moulla is currently a Lecturer in computer science at the Faculty of

Mines and Petroleum Industries, University of Maroua, Cameroon. He received his PhD

in Computer Science from the University of Ngaoundéré, Cameroon. He earned his

Master’s and Bachelor’s degrees from the Department of Mathematics and Computer

Science in the same University. He has more than eight years of teaching and research

experience in information systems development and Software Engineering. He is also

member of COSMIC International Advisory Council. His research interest includes

software estimation, software measurement, software quality, Automation of COSMIC functional size
measurement and Open Source Software projects.

Alain Abran, PhD, is a Professorat École de technologie supérieure, Université du

Québec, Canada. He is also Chairman of the Common Software Measurement

International Consortium. He was the international secretary for ISO/IEC JTC1 SC7. Dr.

Abran has over 20 years of industry experience in information systems development and

software engineering.

Prof. Dr.-Ing. habil. Kolyang is a Professor at the Higher Teachers’ Training College,

University of Maroua, Cameroon. His research area includes Software Engineering, E-

learning, and ICT for Development.

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

41

APPENDIX A

Code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define LG_LIGNE 512
int main(int argc, char* argv[]){
if(argc == 2){
printf("number of arguments not sufficient\n");
return 0;
}
char ligne [LG_LIGNE];
char* auteur=(char*)malloc(sizeof(char*)*50);
char* nb_commit=(char*)malloc(sizeof(char*)*50);
char* token=(char*)malloc(sizeof(char*)*50);
char cmd[LG_LIGNE];
if(argc >= 2)
snprintf(cmd, sizeof(cmd), "git shortlog -sn --since=%s --
before=%s | awk '{print $2, $3}' | sort -
d > tmp.txt", argv[1], argv[2]);
else
snprintf(cmd, sizeof(cmd), "git shortlog -
sn | awk '{print $2, $3}' | sort -d > tmp.txt");
FILE * f = popen(cmd, "r");
pclose(f);
FILE * fichier = fopen("tmp.txt", "r");
FILE * result = fopen("resultats.txt", "w+");
while (fgets (ligne, LG_LIGNE, fichier) != NULL) {
auteur = strtok_r(ligne, "\n", &token);
printf("%s\n", auteur);
fprintf(result, "%s\t", auteur);
char cmd[LG_LIGNE];
//number of commits
if(argc >= 2)
snprintf(cmd, sizeof(cmd), "git shortlog -sn --author=\"%s\" --
since=\"%s\" --
before=\"%s\" | awk '{print $1}' ", auteur, argv[1], argv[2]);
else
snprintf(cmd, sizeof(cmd), "git shortlog -sn --
author=\"%s\" | awk '{print $1}' ", auteur);

char commit[20];
FILE * ct = popen(cmd, "r");
fgets(commit, 20, ct);
fprintf(result, "%d\t", atoi(commit));
pclose(ct);

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

42

//number of insertion
 if(argc >= 2)
 snprintf(cmd, sizeof(cmd), "git log --stat --author=\"%s\" -
-since=\"%s\" --
before=\"%s\" | grep insertions | awk 'BEGIN{ som=0 } { som=som+$4} END{
 print som }' ", auteur, argv[1], argv[2]);
 else
 snprintf(cmd, sizeof(cmd), "git log --stat --
author=\"%s\" | grep insertions | awk 'BEGIN{ som=0 } { som=som+$4} END{
 print som }' ", auteur);
 char insert[20];
 FILE * fi = popen(cmd, "r");
 fgets(insert, 20, fi);
 fprintf(result, "%d\t", atoi(insert));
 pclose(fi);

 //number of deletions
 if(argc >= 2)
 snprintf(cmd, sizeof(cmd), "git log --stat --author=\"%s\" -
-since=\"%s\" --
before=\"%s\" | grep deletions | awk 'BEGIN{ som=0 } { som=som+$(NF-
1)} END{ print som }' ", auteur, argv[1], argv[2]);
 else
 snprintf(cmd, sizeof(cmd), "git log --stat --
author=\"%s\" | grep deletions | awk 'BEGIN{ som=0 } { som=som+$(NF-
1)} END{ print som }' ", auteur);
 char delete[20];
 FILE * fd = popen(cmd, "r");
 fgets(delete, 20, fd);
 fprintf(result, "%d\t", atoi(delete));
 pclose(fd);

 //number of active days
 if(argc >= 2)
 snprintf(cmd, sizeof(cmd), "git log --stat --author=\"%s\" -
-since=\"%s\" --before=\"%s\" --date=short | grep Date | sort -u | sed -
n '$=' ", auteur, argv[1], argv[2]);
 else
 snprintf(cmd, sizeof(cmd), "git log --stat --author=\"%s\" -
-date=short | grep Date | sort -u | sed -n '$=' ", auteur);

 char date[20];
 FILE * dt = popen(cmd, "r");
 fgets(date, 20, dt);
 fprintf(result, "%d\n", atoi(date));
 pclose(dt);
 }
 FILE * rm = popen("rm tmp.txt ", "r");
 pclose(rm);
 fclose(result);
 fclose(fichier);

 return EXIT_SUCCESS;}

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

43

APPENDIX B

WordPress datasets

Table 1．WordPress project: commits per category of contributors

N= 21 releases - excluding outliers

Release
Total number of commits per category of contributors

Full-time contributors Part-time contributors Occasional contributors

4.2.4 95 (2) 21 (2) 111 (7)

4.2.5 554 (2) 531 (6) 305 (7)

4.2.6 - 81 (3) 90 (9)

4.2.7 35 (1) 51 (1) 142 (16)

4.2.8 - 570 (8) 116 (7)

4.3 251 (2) 328 (4) 297 (11)

4.3.1 218 (3) 49 (1) 163 (11)

4.3.2 905 (5) 154 (5) 41 (5)

4.3.3 500 (4) 259 (5) 196 (7)

4.3.4 - 328 (7) 231 (22)

4.4.1 94 (2) 237 (6) 77 (13)

4.4.2 51 (1) 280 (6) 187 (13)

4.4.3 287 (2) 351 (5) 168 (14)

4.5 - 196 (3) 291 (21)

4.6 - - 275 (23)

4.7 - 431 (5) 677 (27)

4.8 - - 592(30)

4.9 - - 306(26)

5.0 - - 403(29)

5.1 - - 197(20)

5.2 - - 101(20)

Average 299 258 236

Standard

deviation
278 171 162

In Table 1, the number of contributors per release is in parenthesis.

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

44

Table 2．WordPress project: duration per category of contributors

N= 21 releases - excluding outliers

Release

Maximum duration per category of contributors

Total duration per

release (in work

days)

Full-time

contributors

(in work days)

Part-time

contributors

(in work days)

Occasional

contributors

(in work days)

4.2.4 8 3 2 8

4.2.5 33 20 9 33

4.2.6 - 10 5 14

4.2.7 13 8 6 19

4.2.8 - 16 5 24

4.3 21 17 10 31

4.3.1 17 8 6 20

4.3.2 19 9 5 19

4.3.3 26 12 6 26

4.3.4 - 14 8 24

4.4.1 17 12 6 21

4.4.2 14 11 5 19

4.4.3 19 14 5 23

4.5 - 14 8 27

4.6 - - 21 90

4.7 - 52 25 79

4.8 - - 41 132

4.9 - - 20 114

5.0 - - 27 280

5.1 - - 12 55

5.2 - - 13 53

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

45

Table 3．WordPress project: Actual and estimated total duration per release per occasional contributors

(with extrapolation)

Release

Total commits for all

occasional contributors

per release

Actual duration

(in work days)

Estimated duration

(in work days)
|RE|

4.2.4 111 8 19 1.38

4.2.5 305 33 42 0.27

4.2.6 90 14 17 0.18

4.2.7 142 19 23 0.19

4.2.8 116 24 20 0.18

4.3 297 31 41 0.32

4.3.1 163 20 25 0.26

4.3.2 41 19 11 0.43

4.3.3 196 26 29 0.12

4.3.4 231 24 33 0.38

4.4.1 77 21 15 0.28

4.4.2 187 19 28 0.47

4.4.3 168 23 26 0.12

4.5 291 27 40 0.49

4.6 275 90 38 0.57

4.7 677 79 86 0.08

4.8 592 132 76 0.43

4.9 306 114 42 0.63

5.0 403 280 53 0.81

5.1 197 55 29 0.47

5.2 101 53 18 0.66

The MMRE for the model = 42%

The median |RE| = 38%

International Journal of Software Engineering & Applications (IJSEA), Vol.11, No.6, November 2020

46

Table 4．WordPress project: Actual and estimated total duration per release per part-time contributors

(with extrapolation)

Release

Total commits for all

part-time contributors

per release

Actual duration (in

work days)

Estimated duration

(in work days)
|RE|

4.2.4 21 8 9 0.09

4.2.5 531 33 37 0.13

4.2.6 81 14 12 0.14

4.2.7 51 19 10 0.45

4.2.8 570 24 40 0.65

4.3 328 31 26 0.16

4.3.1 49 20 10 0.49

4.3.2 154 19 16 0.15

4.3.3 259 26 22 0.15

4.3.4 328 24 26 0.08

4.4.1 237 21 21 0.01

4.4.2 280 19 23 0.22

4.4.3 351 23 27 0.18

4.5 196 27 19 0.31

4.6 - 90 8 0.92

4.7 431 79 32 0.60

4.8 - 132 8 0.94

4.9 - 114 8 0.93

5.0 - 280 8 0.97

5.1 - 55 8 0.86

5.2 - 53 8 0.86

The MMRE for the model = 44%

The median |RE| = 31%

