
International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

 DOI: 10.5121/ijsea.2021.12501 1

PRODUCT QUALITY EVALUATION METHOD

(PQEM): TO UNDERSTAND THE EVOLUTION OF

QUALITY THROUGH THE ITERATIONS OF A

SOFTWARE PRODUCT

Mariana Falco and Gabriela Robiolo

LIDTUA/CONICET, Engineering School, Universidad Austral, Pilar,

Buenos Aires, Argentina

ABSTRACT

Promoting quality within the context of agile software development, it is extremely important as well as

useful to improve not only the knowledge and decision-making of project managers, product owners, and

quality assurance leaders but also to support the communication between teams. In this context, quality

needs to be visible in a synthetic and intuitive way in order to facilitate the decision of accepting or

rejecting each iteration within the software life cycle. This article introduces a novel solution called

Product Quality Evaluation Method (PQEM) which can be used to evaluate a set of quality characteristics

for each iteration within a software product life cycle. PQEM is based on the Goal-Question-Metric

approach, the standard ISO/IEC 25010, and the extension made of testing coverage in order to obtain the

quality coverage of each quality characteristic. The outcome of PQEM is a unique multidimensional value,

that represents the quality level reached by each iteration of a product, as an aggregated measure. Even

though a value it is not the regular idea of measuring quality, we believe that it can be useful to use this
value to easily understand the quality level of each iteration. An illustrative example of the PQEM method

was carried out with two iterations from a web and mobile application, within the healthcare environment.

A single measure makes it possible to observe the evolution of the level of quality reached in the evolution

of the product through the iterations.

KEYWORDS

Quality Characteristics, Product Quality Measurement, Coverage, Quality Attributes, PQEM

1. INTRODUCTION

Quality is key when evaluating the properties of a software product, and software metrics became

an essential part to understanding whether the quality of the software corresponds to what the

stakeholders needs [1]. The standard ISO/IEC 25010 characterized those needs with a set of
quality characteristics: Functional Suitability, Performance Efficiency, Compatibility, Usability,

Reliability, Security, Maintainability, and Portability, as well as the subset of sub-characteristics

per each characteristic [2]. Considering the diverse stakeholders participating in software projects
such as developers, managers, and end users, quality needs to be evaluated at different levels of

detail.

Based on the above, several quality measures have been proposed to achieve the evaluation and
measurement, but the practical application of these metrics is challenged, on the one hand, by the

need to combine different metrics as recommended by distinct quality-model methods such as

Goal-Question-Metric [3] and Factor-Criteria-Metric [4]; and on the other hand, by the need to
reach insights in the quality of the entire software product, based on the metric values obtained

for software elements such as methods and classes.

http://www.airccse.org/journal/ijsea/vol12.html
https://doi.org/10.5121/ijsea.2021.12501

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

2

Consequently, a meaningful quality assessment needs to blend the results of various methods to
answer specific questions, combining for example cyclomatic complexity with test coverage [1].

As such, project managers and practitioners have different complications when they need to

understand the product quality level, in a way that is easy, synthetic and intuitive to identify and

extract the status related to each iteration within the software product. For example, when the
project manager must make the decision to accept or reject the issues done within an iteration,

evaluate the work of the developers, decide on a payment or negotiate a budget extension.

Based on these challenges, our first work was to define a method architecture evaluation method

in order to analyse and measure the quality characteristics of a product architecture and its

implementation [5]. Based on a deep analysis and feedback from colleagues, we developed a
newer version of this method and we called it: Product Quality Evaluation Method (PQEM),

which is a five-step method per iteration, whose main goal is to analyse, study, measure and

assess the quality level of the different software iterations. PQEM produces a single value

between 0 and 1 as the final outcome that represents the product quality level, which is basically
the degree to which the software product covers/fulfils its quality attribute requirements [6].

The first step within PQEM is what we called the product setup, where the stakeholder defines
the amount of expected iterations that constitutes the development process of the product, as well

as the acceptance criteria for the expected quality level per iteration.

As mentioned earlier, PQEM is based on the Goal-Question-Metric approach [3] which is a main

part of the method baseline, and through this approach is possible to define a set of goals (related

to the quality characteristics), questions (our quality attribute requirements or QARs [6], and a set

of quality measures or metrics, which allow to measure their fulfilment, are elicited for later
aggregation. It is worth mentioning that the ISO/IEC 25010 [2] provided the set of quality

characteristics and sub-characteristics as the main foundation to select what to measure according

to the product domain and objectives.

The elicitation process is followed by: a) the measurement itself, b) the collection and

synthesizing of the results that include the implementation of the extension of the testing

coverage [7] as a quality coverage, and c) the final assessment of the product quality level
obtained. Likewise, this process is repeated for each iteration within the product life-cycle; and

this method can be applied to every development method that defines iterations, like agile

methods; within academia and industry.

The present article is based on a previous work from the authors [32], whose main goal was to

present PQEM as well as the results of its application to the second iteration of an application.
This extension will introduce and summarize the results of the application of PQEM to two

iterations of a web and mobile app embedded in the healthcare domain.

This article is structured as follows: in Section II the related work will be addressed, while
Section III will provide the description of the research method used. Section IV will describe and

characterize each of the steps within the Product Quality Evaluation Method (PQEM). Section V

will contain an illustrative application of the method with the results of two iterations from a web
and mobile apps, while Section VI will address the discussion and threats to validity. Finally,

Section VII will describe the conclusions and future work.

2. RELATED WORK

Both the definition of the architecture of a product and the specification of quality characteristics

and QARs are decisions that should not be taken lightly because they have a high impact on the

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

3

state of the final product. Even though scenario-based architectural assessment techniques [8] are
a well-established approach for performing structured evaluations of architectural designs, these

techniques are not widely used in industry. A complete analysis was made in [5] with respect to

the first iteration of the application presented here, and its comparison with other architecture-

based methods.

E. Woods [9] created an architectural review method called Tiny Architectural Review Approach

(TARA), which focuses on how well a particular architecture supports a set of key requirements,
opposite of what most scenario-based methods like ATAM [8] do. TARA allows for the situation

where the system has already been implemented, but PQEM can be applied while the software is

in development. PQEM includes five steps per iteration, while TARA is defined with seven steps.
Considering the seven steps in a TARA session, one of the main differences with PQEM is that it

does not include metrics to analyse the quality characteristics, but in Step 3 they analyse system's

production metrics.

TARA approaches only test coverage after running all automated test available, while PQEM

extends this concept to analyse the coverage of all quality characteristics per iteration of a

product, defining several equations to compute these values. Unlike TARA, PQEM reach to
findings and conclusions per each iteration through the TOC quality level, which is a number

between 0 and 1; and this number is able to show how close the implementation was to the

defined acceptance criteria.

Later on, some authors agreed that managing the cost-effective evolution of industrial software

systems represents a challenge based on their complexity and long lifetimes. As such, Koziolek et

al. [10] applied several state-of-the-art approaches, to combine them into a holistic lightweight
method called MORPHOSIS, which facilitates sustainable software architectures. Consequently,

their main focus is sustainability, while our main target is to achieve a proper level of quality that

will have impact not only in the sustainability but in the set of quality characteristics included.
This method includes three phases: evolution scenario analysis, architecture enforcement and

architecture-level metrics tracking.

In the first phase, the authors conducted an evolution scenario analysis according to an extended
version of the ALMA method [11], from which they were able to perform a combined top-down,

bottom-up scenario elicitation. This is a difference with our work, because apart from not being

scenario-based, the elicitation process is not based on ALMA instead the Goal-Question-Metric
approach is implemented. The second phase allows to treat the dependencies between module

layers, and finally, within the third phase they have found several architecture-level code metrics

that measured different aspect of sustainability. The set of metrics measure the quality of
modularization of a non-object-oriented software system, and the authors employ the notion of

API as the basis for the metrics [12].

They have used Goal Structuring Notation to break down maintainability according to ISO/IEC
25010. As such, they have not focused on the entire set of quality characteristics defined by the

ISO/IEC, like PQEM does in the elicitation process. Several authors mentioned that it is

important to comprehend the consequences of the decisions on the various software engineering
artefacts, like code, test cases, deployments, among others; when analysing the impact of a

change request.

As a summary, within PQEM the elicitation is based on the GQM method, to specify the needs of

stakeholders in the form of goals, questions, metrics and acceptance criteria for each question.

None of the studies proposed any form of synthesis of the analysis, as such, we introduce the

definition and calculation of coverage values for each selected quality characteristics, and for the

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

4

entire product, which leads to the achievement of a multidimensional number as a summary value
of the achieved quality level as final output. Finally, the focus of this method is oriented to the

measurement of quality characteristics.

3. RESEARCH METHOD

Our research method is embedded within the design-science paradigm, which advocates the

problem-solving perspective seeking to create innovations that define ideas, practices,

capabilities, and products through analysis, design, implementation, and management; in order to
achieve efficiency and effectiveness [13].

These authors defined a set of guidelines to assist the community to understand the requirements

and necessities for effective design-science research. Considering that the paradigm comprises
problem conceptualization, solution design, and validation, Runeson et al. [14] stated that it fits

as a frame for empirical software engineering research with the goal of providing theoretical

knowledge for practical solutions related to real-world software engineering challenges.

3.1. Problem Relevance

Quality plays a major role for end-users, because it is a confirmation of all requirements were

designed and developed according to their needs [15,16]. A meaningful quality assessment needs

to combine the results of various methods to answer specific questions, joining for example
cyclomatic complexity with test coverage [1]; and also, the assessment needs to be able to define

a model, broken down into different quality characteristics and sub-characteristics.

Project managers and practitioners have different difficulties when they need to understand the

product quality level from every iteration and from the full product, and this understanding can

occur when the project manager must make the decision to accept or reject the issues or tasks

done as a part of an iteration or even the entire release [17], evaluate the work of the developers,
decide on a payment or negotiate a budget extension. PQEM allows to monitor the evolution of

the quality level within the product life cycle.

3.2. Design as an Artifact

Based on the previous challenges, the present paper introduces Product Quality Evaluation

Method (PQEM) which is a five-step method per iteration, which concedes the managers and

practitioners study, measure and understand the quality level of a software product. The final
output is a numerical unique single value between 0 and 1, which represents the product quality

level. This quality value can be thought as an aggregated measured because is obtained through

the quality coverage of each quality characteristic measured, as well as a multidimensional value

due to the fact that the quality level synthesize the quality level achieved by each quality
characteristic or sub-characteristic.

The multidimensional component of the PQEM method can be understood as the degree to which
the software product covers the set of quality attributes requirements [6]. It is worth mentioning

that this process is repeated after each iteration, and even though is currently being performed

with a spreadsheet, a tool that facilitates the application and use of PQEM is being developed.

Consequently, what is lacking in systematization as far as the method is concerned, it is being put
together on to achieve automation from the tool.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

5

3.3. Design Evaluation

The evaluation of the method is carried out through an illustrative example within the academia,

by applying it to a mobile application. We will conduct a case study within an industrial setting,
in order to obtain information on measuring the acceptance and usefulness of the PQEM method

by practitioners and companies.

3.4. Research Contributions

The main contributions of PQEM is six-fold:

i) we have built a product evaluation method that includes quality characteristics as defined

by ISO/IEC 25010 [2];
ii) we have extended the use of testing coverage to define quality characteristics coverage,

and product coverage;

iii) we have defined an aggregated measure that allows a fine-grained analysis of the results

per quality characteristic;
iv) we have extended the acceptance criteria for functional and non-functional requirements;

v) we have synthesized the functional and non-functional requirements on a number that

represents the quality level of a product;
vi) we defined a method that let the practitioners compared the obtained quality level per

each iteration within the software life cycle.

3.5. Research Rigor

The method connects software quality evaluation and non-functional requirements, two areas of
research that have a long history in contributing to each other’s development. Also, the method is

grounded on solid achievements from two disciplines, on the one hand, Goal-Question-Metric

[3,17] has been empirically validated in many case studies, and demonstrated its worth in studies
on requirements. On the other hand, the PQEM method has foundations on the standard ISO/IEC

25010 [2] which set the baseline of quality measurements and quality characteristics.

3.5. Design as a Search Process

We have defined the PQEM method, the validation has been done with small mobile and web

applications, the design and development process of an automated tool based on PQEM has been
started, we will seek to validate this tool with a case study on an industrial setting, and finally, we

are defining an automated framework that will allow the practical implementation of PQEM, and

it might also be used for the implementation of product quality measurement or quality model
processes not restrictive to software.

Each of these steps generates useful feedback to improve and optimize what has been proposed.
Considering that source code metrics are essential and they allow us to set grounds about the

quality characteristics measured by the metrics, the automated tool will be able to integrate

different automated tools that measure quality attributes in order to obtain a full quality analysis

of each software product analysed; for example: SonarQube [18].

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

6

3.6. Communication of Research

Technology-oriented audiences are provided with sufficient detail to enable them to be able to

replicate each step of the PQEM method. Also, the management-oriented audiences are able to
understand whether the organizational resources should be committed to using the method within

their specific organizational context. Our main goal is to promote the free software project as

well as case studies in the industry.

4. PRODUCT QUALITY EVALUATION METHOD (PQEM)

This section describes the PQEM steps which are the following: S1) Product Setup, S2)

Elicitation of QARs, S3) Measurement, S4) Collect Results, and S5) Assessment, as shown in
Figure 1. It is worth mentioning that the first step (called product setup) should be performed

only once, but steps 2 to 5 should be repeated per each iteration for any software product. The

latter would lead to a fully functional software product or application to be deployed to
customers.

Figure 1. Describing PQEM through an activity diagram.

4.1. Step 1: Product Setup

The first step of PQEM includes the definition of the amount of iterations that the software

product is expected to achieved, as well as the characterization and rationale of the acceptance

criteria for the expected quality level per iteration EQLi (as shown in Figure 1), which can be

different and incremental from the first one to the last one [19]. The latter is a key point because
the acceptance criteria advocates understanding how well the quality for each goal is achieved,

allowing a glimpse of the entire product quality, within each iteration.

In this way, the acceptance criteria is defined by the stakeholders, and it is a positive number that

can take any value between 0 and 1. For example, if you consider three iterations for a software

product, then it can be defined an acceptance criteria of 0.70, 0.80, and 0.90, respectively per

each of the three iterations. Based on the previous values, it is possible to see that in this example

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

7

it is expected to achieve an improvement in quality as the product grows in functionality. Later
on, it is feasible to comprehend that 1 is the best and strictest value of the acceptance criteria,

which means that all quality attributes requirements have passed the measurement; while 0

equates to all QARs did not pass. Another point in consideration is that PQEM is a five-step

method, but per iteration only four steps are repeated (from Step 2 to Step 5).

4.2. Step 2: Elicitation of Quality Attributes Requirements (QARs)

Nowadays, system engineering is crucial in the industry, and requirements engineering is an

important stage of that overall process, where a proper process can generate not only efficiently

but rapidly new products [20]. We have conducted this elicitation process through the Goal-
Question-Metric approach [3], and so Step 2.1 will approach the conceptual level with the

definition of goals (considering the structure defined in [17], composed of purpose, issue, object,

and viewpoint); Step 2.2 will include the operational level with the specification of the questions
by goal, and finally, Step 2.3 will specify the quantitative level, defining the metrics by question.

Note that Step 2 should be validated by the stakeholders.

4.2.1. Step 2.1: Select quality characteristics and sub-characteristics

ISO/IEC 25010:2011 [2] describes the quality model as the cornerstone of a product quality

evaluation system, and this standard determines which quality characteristics will be taken into
account when evaluating a software product. The product quality model comprises the following

quality characteristics: Functional Suitability, Performance Efficiency, Compatibility, Usability,

Reliability, Security, Maintainability, and Portability. As explained by Estdale & Georgiadou
[21], the standard ISO/IEC 25010 provides a huge contribution to establish the delivery

performance of different software processes. Regarding PQEM, all of the quality characteristics

and their sub-characteristics can be selected by the stakeholders; and considering that each
characteristic is mapped with a goal, it is defined by the purpose, issue, object and viewpoint per

selected characteristic.

4.2.2. Step 2.2: Specify Quality Attributes Requirements (QARs)

Bass et al. [6] explained that the requirements of a system originate from different sources and

forms, like functional, quality attributes and constants. Regarding Step 2.1, the QARs for each of
the quality characteristics are now specified by the stakeholder and the development team. These

QARs are the questions defined for each of the goals, and for example, in the context of

Availability a QAR can be defined as: “Does the system allows to display trends of vital signs? or for

Interoperability: "Does the system allows to capture and display data from wireless sensors?"
[22].

4.2.3. Step 2.3: Define Metrics and Acceptance Criteria per each Quality Attribute

Requirement (QAR)

In this sub-step, the metrics are defined, and they will provide the necessary information to
answer the questions defined in Step 2.2. By defining the limits and parameters of a user story or

functionality, and determining when a story is complete and functioning as expected, it is

possible to specify an acceptance criteria containing conditions that a software product must

satisfy in order to be accepted by the stakeholder [23].

Acceptance criteria are also discussed when defining what requirements must be met in each

incremental version of a software product [6]. In this context, we sought to extend these concepts
for each of the quality measures in order to determine if this measured value was met or not,

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

8

addressing not only functionalities, but also quality characteristics. As such, the acceptance
criteria possess a unique importance due to the fact that through its definition it is possible to

objectively know whether each QAR is present or not, as well as obtain the TOC value based on

the QARs coverage, which can be disaggregated per quality characteristic. Each quality measure

requires some acceptance criteria in order to be useful and complete.

4.3. Step 3: Measure and Test each Quality Attribute Requirement (QAR)

This step involves the measurement of each question, executing the defined quality measure, and

describing whether the acceptance criteria was met (1 as passed) or not (0 as failed). In the case

of Usability, the measurement binds the responses of the number of users who were part of the
Usability test. The final value of each test question will be obtained from the application of

Equation (6) and (7), which promote the unification of the total number of answers per

respondent, for each of the defined questions; allowing later to compute the measurement.

4.4. Step 4: Collect and Synthesize Results

Regarding the evaluation method, we have based our equations on the concept of testing

coverage to derive coverage for the different quality characteristics, and the total coverage of

QARs per iteration. Based on the foregoing, Equations (1) to (5) describe the calculations needed
to compute the quality level of a software product on each iteration.

OCqi = pqi / rqi (1)

ECqi = rqi/Ti (2)

OvCqi = pqi /Ti (3)

TECi = Σ (1 to n) ECqi (4)

TOCi = Σ (1 to n) OvCqi (5)

Where:

 q identified each quality characteristic,

 i identifies each iteration,

 n is the number of quality characteristics defined,

 OCqi is the obtained coverage per quality characteristic for each iteration,

 pqi is the number of passed QARs per quality characteristic for each iteration,

 rqi is the number of QARs per quality characteristic for each iteration,

 ECqi is the expected coverage per quality characteristic per iteration,

 Ti is the total number of QARs per iteration,

 OvCqi is the overall coverage per quality characteristic per iteration,

 TECi is the total expected coverage per iteration (which its maximum value is 1),

 TOCi is the total obtained coverage of QARs per iteration.

TOCi is a multidimensional value, because it summarizes the obtained quality level of all quality

characteristics and sub-characteristics. For each QAR corresponding to Usability, z answers will
be obtained according to the number of participants that perform the Usability test. With respect

to Usability, each QAR is analysed as follows:

A) It is necessary to unify the z answers from the Usability test that were different from 0 and 1
to become 0 or 1, for example those being a qualitative value like low, very low, medium or high

can be unified defining a criterion that all those answers with low and very low will be

considered as passed (1) and medium and high as failed (0).

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

9

B) Then, all of the values (0s and 1s) for each QAR are summarized, and it is obtained the
number that represents the passed QARs.

C) Later on, the coverage per QAR is calculated with Equation (6), where x is each QAR.

UCx = pax / rex (6)

Where:

 UCx is the Usability coverage per QAR,

 pax is the number of passed answers per QAR,

 rex is the number of respondents.

If the value obtained with Equation (6) is lower than 0.5 then it is considered as failed, passed
otherwise, obtaining the value pqi for Usability; as the sum of the passed values.

D) Finally, once pqi is calculated, it is possible to compute the coverage for Usability itself with

Equation (1) and (3); and carry on with the calculations in order to obtain the TOCi value,
through Equation (5).

4.5. Step 5: Assessment of the Product Quality Level

It is possible to perform the analysis of the quality level obtained by means of Equation (5), and

the comparison with EQLi defined by Step 3. In this line, there are two possibilities: following

Fig. 1, if TOCi is bigger or the same to the EQLi value, then it is possible to collect the TOCi
value. If there is another iteration, the elicitation step will begin. If there is no other iteration, then

the process stops. Now, if TOCi is lower to the EQLi value, then a new measurement is needed in

order to achieve at least the EQLi value.

4.5.1. Step 5.1: Collect Measurement

Once, the previously defined Equations per each iteration are computed, it is necessary to collect

the results to understand the product quality level. As such, Equation (6) allows to construct

Equation (7) which contains the list of TOCi values obtained by iteration i = (1, 2, ..., y). It is

worth mentioning that when TOCi is equal to or bigger of EQLi (Expected Quality Level) the
collection is carried out.

TOCproduct = {TOC1, TOC2, ..., TOCy} (7)

4.5.2. Step 5.2: Decision and Control

Once all the measurements from Step 4 are done, the TOCi value obtained for the current

iteration will be compared to the expected quality level (EQLi). On the one hand, if the TOCi

value is lower than the defined EQLi value, then it is necessary to return to the measurement step,
which requires solving the QARs that are not existing in development. In this step, if there is

another measurement, and it end up being equal or exceed the EQLi defined for that iteration, it is

possible to continue with the next one. On the other hand, if the obtained TOC value is greater

than the EQLi value, then the next iteration may begin, going back to Step 2.1.

5. AN ILLUSTRATIVE APPLICATION OF PQEM

We will present an illustrative application of the PQEM method, in order to help non-technical
practitioners to understand the steps and the related costs to conduct the measurement.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

10

5.1. Main Goal and Context

Our case study aims to address the implementation of the PQEM method to two iterations of a

previously developed application called HeartCare [5], whose main goal is to ensure that the
recovery of cardiac patients can take place in an environment outside hospitals.

The three iterations have three types of users and each uses the application in different
environments.

 Patients will use the mobile application during their exercise sessions, made up of the

sum of the assigned exercises. Each patient should use the application as many times as

the doctor indicates, trying to achieve rehabilitation. The patient can be indoors or
outdoors when doing the exercises.

 Clinicians use the app whenever they find it necessary to assign a patient a routine. The

doctor is probably inside his office, at a desktop computer with the patient present. The

time of use should not be very long, so as not to lengthen waits and time lost by the
doctor. Therefore, the charging system must be easy to use.

 The administrator, for his part, will not use the application on a recurring basis since it

is assumed that changes to equipment and doctors do not occur every day. Administrative

staff will use the web application from their office on a computer.

HeartCare, the first iteration included a layered architecture includes a multiagent system and a

heart-rate sensor (Polar H10) that helps the patient monitor their heart condition while he or she

is in rest position, or while performing a physical exercise, through a mobile device with
Android. The literature describes similar examples to HeartCare [24,25]. Also, HeartCare was

analysed with PQEM, and obtained a quality level of 0.775 [5].

The second iteration is called Life +, which in its mobile version displays a series of routines,

previously loaded by a medical group, which will be carried out by the patient during the course

of their rehabilitation. The system collects data on the heart rate through a cardiac sensor
administered by the patient, in order to obtain information on the physical state of the patient

during his rehabilitation.

That information can be viewed by a medical group through a web interface to obtain a report on
their health status and assign new routines. The architecture of the second iteration is based on

the layered design principle, and takes into consideration the need to develop separate modules

which can evolve independently, where one of these modules is responsible for managing the
heart rate sensor.

Regarding the back-end language, an object-oriented paradigm was chosen, using the Java

language. Spring Framework was selected because, according to the requirements of the Life +
application, it was necessary to have a sufficiently fast reading and writing speed to support data

flow from multiple sensors, to be able to maintain structured data, and it is the only one that has

fast integration with swagger for automatic generation of documentation.

Then, the technology chosen for the mobile front-end was React Native, since it allowed the

integration with Android and IOs required, while for the web version Angular was selected in
order to achieve modularization, the separation of the behaviour, the complete separation of the

back-end, and also, being developed by Google, facilitates the resolution of problems that may

arise in the future. Also, Firebase Cloud Messaging was chosen to send notifications from the

backend to the mobile application, which is developed by Google and easily integrated into the
Spring Framework.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

11

Finally, BraveHeart is the third iteration where the web version was done with Angular, while the
mobile version was used React Native to be able to measure the heart rate via Bluetooth (in this

case, an Android Wear). As far as databases are concerned, PostgreSQL was used.

5.1.1. Step 1: Product Setup

With respect to the application, three iterations were defined [5]. And, according to the

stakeholder, the first iteration called HeartCare were set with a 0.70 acceptance criteria, the
second one with 0.70 as well, and the third one and final was set with an acceptance criteria of

0.85.

5.1.2. Step 2: Elicitation of Quality Attributes Requirements (QARs)

The quality characteristics, questions, metrics and acceptance criteria as well as the results are

stored in a structured artifact (spreadsheet), as shown in Table 1. The ID column allows to
identify and quickly group each row by quality characteristic, followed by the QAR, the metric

and the acceptance criteria. Finally, the Result column contains the result of the measurement

made per row for all QARs (1 passed, 0 failed) from the second iteration.

Table 1. Artifact to store data. Example for Fault-Tolerance from the second iteration of the application.

5.1.2.1. Step 2.1: Select quality characteristics and sub-characteristics

Based on the needs of stakeholders, the following characteristics and sub-characteristics from

ISO/IEC 25010 [2] have been selected for second iteration: Availability, Fault-Tolerance,
Recoverability, Functional Suitability, Interoperability, Modifiability, Security, Usability, and

Portability. In addition to the above quality characteristics, the third iteration also included

Performance Efficiency.

In this context, only one goal will be presented to achieve the traceability of the steps, but it is

convenient to emphasize that the specific goals of all the quality characteristics have been

specified. Instantiating the GQM approach, the goal for Reliability is analyse the delivered
product and development process for the purpose of understanding, with respect to reliability and

its causes, from the viewpoint of the project manager and user, in the context of the second and

third iteration. It is important to mention that the following subsections will use Fault-Tolerance
as the quality sub-characteristic to show each step of PQEM, which is part of Reliability.

5.1.2.2. Step 2.2: Specify Quality Attributes Requirements (QARs)

Considering the goal, one of the questions that arises for Fault-Tolerance is: Are the amount of
crashes under control? as shown in Fig. 2. The full set of QARs by quality characteristic leads to

obtain the list of aspects that need to be study in the software product. It is worth mentioning that,

based on the needs of the stakeholders, the second iteration included 258 QARs while the number
of QARs in the third iteration grew to 293.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

12

5.1.2.3. Step 2.3: Define Metrics and Acceptance Criteria per each Quality Attribute Requirement

(QAR)

Based on the previous QAR and following Fig. 2, it is necessary to define the metric and the

acceptance criteria; consequently, it is possible to explicit the following metric: Number of

crashes, and acceptance criteria: Less than 10 crashes.

5.1.3. Step 3: Measure and Test each Quality Attribute Requirement (QAR)

In order to fulfil the Result column in Fig. 2, an analysis was carried out to identify whether each
QAR were part or not in the iteration under measure. For example, the row with ID 17 shown in

Fig. 2 ask whether the amount of incompatibility errors is under control in the application. As

such, some tests were carried out to count the incompatibility errors within the web version, the
mobile version and the sensor. Only one compatibility error was found, and so this QAR was set

as passed. This same procedure was performed for all the QARs.

5.1.4. Step 4: Collect and Synthesize Results

At this point, it is necessary to calculate the coverage for each of the defined quality

characteristics. Following the example, Equation (1) allows calculating the coverage value for
Fault-Tolerance which gives OCq2 = pq2/rq2 = 5/5 = 1, being i = 2 as we are considering the

second iteration of the application. It is worth mentioning that within Usability, each QAR was

answered by ten respondents, who gave their perspective of the functioning and design of the

web and mobile version of the second iteration of HeartCare.

Equation (6) and (7) allowed the unification of the Usability answers, obtaining a single value to

represent the result per each Usability QAR. Once the results from Equation (6) and pqi were
obtained; Equations (1) to (4) were calculated for all of the characteristics, and therefore

completing Table 2, obtaining by means of Equation (5) a TOC2 value of 0.90; same TOC3 value

for the third iteration as can been on Table 3.

Table 2. Summary of results from the application of PQEM to the second iteration of the web and mobile

applications.

Quality

characteristic
rq2 pq2 OCq2 ECq2 OvCq2

Availability 12 10 0.83 0.005 0.04

Fault-Tolerance 5 5 1 0.02 0.02

Recoverability 7 5 0.71 0.03 0.02

Functional

Suitability
59 56 0.95 0.23 0.22

Interoperability 6 4 0.67 0.02 0.02

Modifiability 59 59 1 0.23 0.23

Security 17 15 0.88 0.07 0.06

Usability 64 58 0.91 0.25 0.22

Portability 10 8 0.80 0.04 0.03

Total 258 233 TEC2 = 1
TOC2 =

0.90

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

13

Table 3. Summary of results from the application of PQEM to the third iteration of the web and mobile

applications.

Quality

characteristic
rq3 pq3 OCq3 ECq3 OvCq3

Availability 14 14 1.00 0.05 0.05

Fault-Tolerance 4 4 1.00 0.01 0.01

Recoverability 7 6 0.86 0.02 0.02

Functional

Suitability
57 50 0.88 0.19 0.17

Interoperability 22 12 0.55 0.08 0.04

Modifiability 67 60 0.90 0.23 0.20

Performance
Efficiency

17 16 0.94 0.06 0.05

Security 30 27 0.90 0.10 0.09

Usability 64 64 1.00 0.22 0.22

Portability 11 11 1.00 0.04 0.04

Total 293 264 TEC3 = 1
TOC3 =

0.90

5.1.5. Step 5: Assessment of the Product Quality Level

The assessment itself addresses the analysis of the value obtained by the Equation (5) based on

the previous calculation of the coverage of all quality characteristics. In this case, an acceptance

criteria was defined in 0.70; and following Table 2, the quality level TOC2 for the second
iteration was 0.90. As can be seen, the quality level TOC2 not only reached but also exceeded the

defined acceptance criteria (0.70). As such, when compared with the TOC1 value obtained for the

previous iteration, the application reached the acceptance criteria without an outstanding
difference (only with 0.075) and with a bigger technical debt [21,26].

With respect to the third iteration, there was a newer quality characteristic (Performance

Efficiency) as well as 35 more QARs to analyse (where the 50% belonged to the added quality
characteristic). Based on Table 3, the quality level obtained for this third iteration was TOC3 =

0.90, which were bigger to the 0.85 acceptance criteria defined for the iteration, and so, it was

possible to accept the iteration.

When analysing each of the quality characteristics shown in Tables 2 and 3, it is possible to

understand that none of them achieve a huge difference between the expected and the obtained
coverage.

5.1.5.1. Step 5.1: Collect Measurement

Based on Equation (5), it is possible to obtain that Equation (7) gives the following result:
TOCproduct = {0.775; 0.90; 0.90}, with the values TOCi (i = 1,2,3) from the three iterations.

5.1.5.2. Step 5.2: Decision and Control

In this context, and due to the fact that the TOCi value was bigger than the EQLi defined, then it

is possible to finish the iterations, due to the fact that all three iterations achieved (first iteration)

or surpassed (second and third iterations) the acceptance criteria previously defined.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

14

5.2. Trends analysis

Figure 2 shows the trend in the quality values achieved in each of the three iterations. It also

allows to perform a visual comparison between the Expected Quality Value (EQL) and the
quality value obtained (Total Obtained Coverage or TOC): for the first iteration (i = 1), it is

possible to see EQL1 = 0.7 and TOC1 = 0.775; for i = 2, EQL2 = 0.8 and TOC2 = 0.90; and for i =

3, EQL3 = 0.85 and TOC3 = 0.90.

Figure 2. Trend analysis from the three iterations.

From Figure 2, it is possible to understand that as the iteration progressed, the acceptance criteria

(or that expected quality value) was gradually increasing, which translates into an increase in the

expected quality level for each iteration. In other words, both stakeholders and quality leaders
agreed that, given a rate of variability of the functionalities and the requirements of the domain of

each iteration, the acceptance criteria had to grow to adapt to those needs.

Fortunately, the TOCi quality values obtained in the first measurement of each iteration did not

require a new measurement, but it was possible to continue to the next iteration. This does not

imply that there weren’t points to improve, on the contrary, those differences obtained between

EQL and TOC (technical debt) are points that should have been worked on between each
iteration as part of the revision of each defined QAR, and in a fourth, if the stakeholders decide a

new development. That review of the entire set of QARs between iteration and iteration after the

measurement, gives the ability to the product manager or the quality leader to be able to further
detail those quality needs, which will then be contrasted with the deliverable.

If the quantity of QARs per iteration (138, 258, 293) and the expected quality level (0.7, 0.8,
0.85) is considered, it is possible to understand that as there were adjustments and/or functional

requirements that impacted on the architecture or the BD model, along with the need of the

stakeholders to achieve a higher level of quality due to the demands of the domain, the quantity

of QARs per iteration was increased, also reflected in the increase in the expected level of quality
(EQLi).

The following corollaries, between iteration and iteration, were extracted:

 The requirements were adjusted and new functionalities were added.

 The required quality level (EQLi) was increased by stakeholder request.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

15

 Increased the quantity of quality attribute requirements (QARs) based on the increase in

quality required.

 Quality characteristics were added to measure.

Figure 2 also reinforces the idea that the application of PQEM allows to achieve this analysis and

comparative in a simple and intuitive way, with a single multidimensional value representing

quality; and from which, it is possible to make the decision to advance or not to iteration, based
on the coverage values obtained.

6. DISCUSSION

Recent literature shows that some authors have studied of analysing a software product, its

architecture and its quality attributes, allowing also the measurement of quality measures.

However, the main issue is if the practitioners are able to properly identify the quality level of

each defined iteration from a software product. In this context, PQEM is a five-step method that
can be used to measure the quality level of each iteration within the life cycle of a software

product, providing a multidimensional single value (TOCi) that shows how well the set of quality

characteristics are represented within the product. PQEM embedded ISO/IEC 25010 [2], the
Goal-Question-Metric approach to perform the elicitation process, and the extension of the

testing coverage for a set of quality characteristics.

The latter is another highlight, because the extension of the testing coverage allowed defining the

coverage for each quality attribute in each iteration. These coverage values have been calculated

for TOC1, the first iteration of the application, which gave a value of 0.775. The acceptance

criteria was set on 0.70, so it is possible to say that the quality level was achieved. Now, the
TOC2 value, that it was defined to be equal to or exceeds 0.80; and after applying PQEM it was

obtained a coverage of 0.90, from which it can be understood that the iteration can still improve

by about 10 percent, considered as technical debt [26]. And, the TOC3 value was equal to 0.90,
surpassing the 0.85 previously defined as acceptance criteria.

From these values it is feasible to understand the evolution of the product, where the rise of the
TOC value is due to a quality increase, by adding QARs and desegregating even more the chosen

quality characteristics and sub-characteristics. The first iteration of the application measured 7

quality characteristics with 138 QARs in total, the second iteration analysed and measured 10

quality characteristics with 258 QARs, and the third iteration measured 11 quality characteristics
with 293 QARs.

There was a need to add quality characteristics Fault-Tolerance, Recoverability, and Portability in
the second iteration and Performance Efficiency in the third iteration, in order to increase quality.

The set of QARs was updated based on changes in the architecture and functional requirements.

Subsequently, it is important to monitor the changes from one iteration to the other in order to

produce a full quality analysis.

With respect to validity threats [27], within construct validity, it is necessary to ask whether the

quality level really represents the quality of the product. In response, the quality level is an
aggregated value based on the full set of QARs, where the selection of each QAR were validated

with stakeholders, so we considered that is not necessary to validate the value obtained per se.

PQEM presents the evaluation of a system in one number. By doing so, it assumes that all quality
requirements are equally important. However, it may be the case (and in reality it is often so) that

the violation of a single requirement may result in an unusable product.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

16

This drawback will be contained in future work which includes the generalization of PQEM
where it will contain the definition of a set of weights which will allow to pondering each quality

characteristic. This generalization will be included on a software tool that represents the

automated version of the PQEM method; and it will also provide an interface to connect to

another existing quality measurement tools like SonarQube and Jenkins [28]. Likewise, not only
will the importance of quality characteristics be included in addition to weights, also addressing

the mandatory nature of certain characteristics in the software product under evaluation. Even

though it might seem small the amount of selected quality characteristics, we believe that the
community is well aware of the goodness and scientific reachability of the ISO/IEC 25010 [2].

Also, the initial definition of QARs as well as whether to include all of them or just a few may

distort the evolution of the product quality level, due to the fact that the TOC value is an
aggregated value obtained as the sum of the quality coverages of each quality characteristic. It

must not be forgotten that the QARs are almost always related to the application domain. For

example, the second and third iteration of the web and mobile application [5] are embedded

within the healthcare sector, while helping patients ensure their cardiac recovery.

This explicit relationship with the domain has an impact on the definition and selection of the

QARs because some quality characteristics can be more important than others, regarding the
viability of the product and the stakeholder’s perspective. Within healthcare, if an integration to

existing healthcare records is necessary, then the set of QARs for Interoperability might be larger

than other non-health related application.

As part of internal validity, it is possible to say that all of those QARs belonging to Usability

have a reduced subjectivity due to the number of people involved in the Usability test carried out.

Also, subjectivity included in the evaluation of the QARs, when we decided to accept or reject
them. But it is worth mentioning that all of them were defined in order for them to be easily

verifiable, testable or measurable.

Later on, some parts of PQEM might seem to be extremely dependent on the stakeholders. In its

current form without tool support, PQEM it is just a very abstract (albeit very systematic) process

that only becomes concrete when it gets to metric aggregation at the end. These conditions will

be improved by the creation of a catalogue that includes quality measures and questions in order
to decrease the dependency of stakeholders, and increase the practical applicability of PQEM.

The latter will be supported by the development of the automated tool based on the method.

Another question point is whether the TOC value is representative and useful for the

stakeholders; where that value arises from the entire previous breakdown for all quality

characteristics, when synthesizing the coverage of the quality characteristics. Therefore, if you
need to understand that multidimensional value it is possible to go through the different levels of

aggregation to understand that number in depth.

With respect to external validity, it might look like that the validation of the method is performed
on a relatively small case where the product might seem small and with no applicability to

industrial practice. But, actually, the application possesses several actual characteristics such as

concurrency, web and mobile version, use of sensors, healthcare domain, need for high
availability, among others. Also, mobile applications are becoming complex software systems

that must be developed quickly and evolve continuously to fit new user requirements and

execution contexts [29].

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

17

All of these characteristics realize the need to applied the PQEM method in order to analyse the
quality level of the second and third iterations of HeartCare, due to the need of understanding

how well was designed and implemented the application. The future implementation of a

software tool to make PQEM accessible as a web will allow to replicate the method more easily,

and even increase the external validation.

6.1. Implications for Research and Practice

Regarding the implications of putting the PQEM method into practice, it is feasible to mention

that PQEM itself takes time to apply due to the definition and specification of Steps 2 and 3.

These steps require in-depth knowledge of the software product to be developed. Therefore, it is
time and cost that it is required for its applicability. A product owner will need to understand this

scope to map the resources, time and associated costs in order to achieve an effective

implementation for each defined iteration; regardless of the type of project.

But considering that, by itself, any process of definition and measurement of quality requires the

same considerations, it is therefore necessary to approach it as part of development and not as an
aggregate. The quality must go hand in hand with the development of the iterations.

Considering the size of the projects and the teams, the illustrative case shows the feasibility of the

application in a small project with two iterations (one prior to this article [5], and the second and
third, described above) which was implemented with a team of five/six developers, a technical

leader and a project manager. Therefore, in the example we showed that measurement with

PQEM is feasible in small projects for small co-located teams when there is a need for the
domain that justifies the addition of time and cost to applied the method. Likewise, the

application of the method may not be necessary to justify the cost, if it is considered a complex

product or domain or of which it is necessary to ensure a certain level of quality.

Inside an agile environment, the use of PQEM might require more documentation and analysis to

the delivery cycle due to the fact that each iteration requires a quality measurement and

evaluation. In case a new standard is needed for example the European DGDR standard for
privacy [30], what is important to understand is that if it is possible to extract QARs, defining

goals and requirements then it is possible to apply PQEM with a different standard; achieving

adaptation and flexibility.

In this article, a method was introduced that facilitates the elicitation, measurement and

monitoring of QARs, and therefore its application is justified when this represents a company

policy, is a requirement of the complexity of the product or domain, or is has assumed to obtain a
certain level of quality.

7. CONCLUSIONS

Software engineering principles and quality goals are necessary but not sufficient for the needs of

today's marketplace; because exists the necessity of shorter and iterative cycle times, and

completed with fewer resources. Establishing the proper metrics to monitor the software project

is essential, as well as the requirement that project managers and leaders view the entire and big
picture of the development process [27-31]. Therefore, project leaders and product owners need

to understand the level and quality of a software product, intuitively; which facilitates the

decision to accept or reject a product.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

18

In this context, the PQEM method [5] is introduced which assess the quality of a product by a
single numeric value between 0 and 1. To calculate this value, it uses a GQM-motivated quality

model that refines quality goals to quality attribute requirements (question along with a metric

and acceptance criteria). The quality evaluation derived from the rate of passed quality attribute

requirements.

Also, we presented a two-fold illustrative example from the healthcare sector to demonstrate its

applicability. Knowing what to measure is a recurrent problem in a data-driven approaches, using
GQM for identifying the quality attributes ensures that the assessment of the product is adapted to

the organization applying the proposed method. To achieve the applicability, a quality model

should not only be an assessment model but also a usable and intuitive guideline to increase
quality [1].

It is possible to visualize the contribution of PQEM as it obviously helped an organization to

refine and concretize their (often abstract) quality requirements down to hard, measurable
criteria. Consequently, with PQEM the manager can know if the project has quality problems or

if the quality level is below the expected; the same as the developer who can know what the

points of failure are. In the same way, the output of PQEM, that is to say that unique and
multidimensional number, allows us to understand how the quality of the product evolves

between iteration and iteration. As future work, the authors will develop an automated tool of

PQEM, and a catalogue that include a set of suggested questions and metrics for the stakeholder
to use. to Understand the Evolution of Quality through the iterations of a Software Product

ACKNOWLEDGEMENTS

This work is supported by a research grant from Engineering School, Universidad Austral,

Argentina.

REFERENCES

[1] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and S. Ducasse. "Software quality

metrics aggregation in industry." Journal of Software: Evolution and Process 25, no. 10, pp. 1117-

1135, 2013.

[2] ISO/IEC 25010 (n.d), https://iso25000.com/index.php/en/iso-25000-standards/iso-25010, Last access:
1/7/2021.

[3] V. R. Basili, Software modeling and measurement: the Goal/Question/Metric paradigm. 1992.

[4] J. A. McCall, P. K. Richards, and G. F. Walters. Factors in software quality. Volume i. concepts and

definitions of software quality. General Electronic co. Sunnyvale, CA, 1977.

[5] M. Falco, and G. Robiolo. "A Unique Value that Synthesizes the Quality Level of a Product

Architecture: Outcome of a Quality Attributes Requirements Evaluation Method." In International

Conference on Product-Focused Software Process Improvement, pp. 649-660. Springer, Cham, 2019.

[6] L. Bass, P. Clements, and R. Kazman. Software architecture in practice. Addison-Wesley

Professional, 2003.

[7] J. J. Chilenski, and S. P. Miller. "Applicability of modified condition/decision coverage to software

testing." Software Engineering Journal 9, no. 5 (1994): 193-200.

[8] R. Kazman, M. Klein, and P. Clements. ATAM: Method for architecture evaluation. Carnegie-Mellon
Univ Pittsburgh PA Software Engineering Inst, 2000.

[9] E. Woods. "Industrial architectural assessment using TARA", Journal of Systems and Software 85,

no. 9, pp. 2034-2047, 2012.

[10] H. Koziolek, D. Domis, T. Goldschmidt, P. Vorst, and R. J. Weiss. "MORPHOSIS: A lightweight

method facilitating sustainable software architectures." In 2012 Joint Working IEEE/IFIP Conference

on Software Architecture and European Conference on Software Architecture, pp. 253-257. IEEE,

2012.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

19

[11] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet. "Architecture-level modifiability analysis

(ALMA)", Journal of Systems and Software 69, no. 1-2, pp. 129-147, 2004.

[12] S. Sarkar, G. M. Rama, and Avinash C. Kak. "API-based and information-theoretic metrics for

measuring the quality of software modularization." IEEE Transactions on Software Engineering 33,

no. 1 (2006): 14-32.
[13] A. R. Hevner, S. T. March, J. Park, and S. Ram. "Design science in information systems research."

MIS quarterly, pp. 75-105, 2004.

[14] P. Runeson, E. Engström, and M-A Storey. "The design science paradigm as a frame for empirical

software engineering." In Contemporary empirical methods in software engineering, pp. 127-147.

Springer, Cham, 2020.

[15] P. Jain, A. Sharma, and L. Ahuja. "The Impact of Agile Software Development Process on the

Quality of Software Product." In 2018 7th International Conference on Reliability, Infocom

Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 812-815. IEEE, 2018.

[16] H. R. Neri, and G. Horta Travassos. "Measuresoftgram: a future vision of software product quality."

In Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement, pp. 1-4. 2018.

[17] V. R. Caldiera, G. Basili, and H. Dieter Rombach. "The goal question metric approach."
Encyclopedia of software engineering, pp. 528-532, 1994.

[18] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E. Martínez-Perez, and C. Soubervielle-Montalvo.

"Source code metrics: A systematic mapping study." Journal of Systems and Software 128, pp. 164-

197, 2017.

[19] Segue Technologies, September 3, 2015, What Characteristics Make Good Agile Acceptance

Criteria? https://www.seguetech.com/what-characteristics-make-good-agile-acceptance-criteria/. Last

access: 1/7/2021.

[20] J. Dick, E. Hull, and K. Jackson. Requirements engineering. Springer, 2017.

[21] J. Estdale, and E. Georgiadou. "Applying the ISO/IEC 25010 quality models to software product." In

European Conference on Software Process Improvement, pp. 492-503. Springer, Cham, 2018.

[22] S. Jiménez-Fernández, P. De Toledo, and F. Del Pozo. "Usability and interoperability in wireless
sensor networks for patient telemonitoring in chronic disease management." IEEE Transactions on

Biomedical Engineering 60, no. 12 (2013): 3331-3339.

[23] R. van Solingen, D.M. Rini, and E. W. Berghout. The Goal/Question/Metric Method: a practical

guide for quality improvement of software development. McGraw-Hill, 1999.

[24] V. Gay, P. Leijdekkers, and E. Barin. "A mobile rehabilitation application for the remote monitoring

of cardiac patients after a heart attack or a coronary bypass surgery." In Proceedings of the 2nd

international conference on pervasive technologies related to assistive environments, pp. 1-7, 2009.

[25] P. Kakria, N. K. Tripathi, and P. Kitipawang. "A real-time health monitoring system for remote

cardiac patients using smartphone and wearable sensors." International journal of telemedicine and

applications, 2015.

[26] Z. Li, P. Avgeriou, and P. Liang. "A systematic mapping study on technical debt and its

management." Journal of Systems and Software 101 (2015): 193-220.
[27] V. R. Basili, R. W. Selby, and D. H. Hutchens. "Experimentation in software engineering." IEEE

Transactions on software engineering 7 (1986): 733-743.

[28] M. Falco, E. Scott, G. Robiolo, “Overview of an Automated Framework to Measure and Track the

Quality Level of a Product”, In IEEE ARGENCON 2020, V Biennal Congress of IEEE Argentina

Section.

[29] G. Hecht, R. Rouvoy, N. Moha, and L. Duchien. "Detecting antipatterns in android apps." In 2015

2nd ACM international conference on mobile software engineering and systems, pp. 148-149, IEEE,

2015.

[30] European Union, Regulartion 2016/679 of the European Parliament and of the Council. General Data

Protection Regulation.

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN, Last
access: 1/7/2021.

[31] R. T. Futrell, L. I. Shafer, and D. F. Shafer. Quality software project management. Prentice Hall PTR,

2001.

[32] M. Falco, and G. Robiolo, “Product Quality Evaluation Method (PQEM): A Comprehensive

Approach for the Software Product Life Cycle”, 7th International Conference on Software

Engineering (SOFT) 2021.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

20

AUTHORS

Mariana Falco. PhD in Engineering student. Information System Engineer. She is a

teacher within the Engineer School at Universidad Austral (UA), where she also does

her research on Software Engineering, Quality Measurement, and Quality Metrics. She

collaborates with fellow colleagues on researches related to information technologies

applied to different domains. She is part of the LIDTUA Lab (UA) as well as the

Research & Development Lab (UA), as a researcher and project manager.

Gabriela Robiolo. PhD in Information Sciences. She is currently a full-time professor

at Universidad Austral, within the Engineering School. She is a researcher on Software

Engineering, and Quality Measurement, and also she collaborates with other
researchers on related topics. She is part of the LIDTUA Lab (UA) as well as the

Research & Development Lab (UA), as one of the principal researchers.

	Abstract
	Keywords
	Quality Characteristics, Product Quality Measurement, Coverage, Quality Attributes, PQEM

