
International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

DOI: 10.5121/ijsea.2021.12503 41

PROPERTIES OF A FEATURE IN CODE-ASSETS: AN

EXPLORATORY STUDY

Armaya’u Zango Umar1 and Jaejoon Lee2

1Department of Mathematical Sciences, Al-Qalam University Katsina
2School of Computing Science, University of East Anglia

ABSTRACT

Software product line engineering is a paradigm for developing a family of software products from a

repository of reusable assets rather than developing each individual product from scratch. In feature-

oriented software product line engineering, the common and the variable characteristics of the products

are expressed in terms of features. Using software product line engineering approach, software products

are produced en masse by means of two engineering phases: (i) Domain Engineering and, (ii) Application

Engineering. At the domain engineering phase, reusable assets are developed with variation points where

variant features may be bound for each of the diverse products. At the application engineering phase,

individual and customized products are developed from the reusable assets. Ideally, the reusable assets

should be adaptable with less effort to support additional variations (features) that were not planned

beforehand in order to increase the usage context of SPL as a result of expanding markets or when a new
usage context of software product line emerges. This paper presents an exploration research to investigate

the properties of features, in the code-asset implemented using Object-Oriented Programming Style. In the

exploration, we observed that program elements of disparate features formed unions as well as

intersections that may affect modifiability of the code-assets. The implication of this research to practice is

that an unstable product line and with the tendency of emerging variations should aim for techniques that

limit the number of intersections between program elements of different features. Similarly, the implication

of the observation to research is that there should be subsequent investigations using multiple case studies

in different software domains and programming styles to improve the understanding of the findings.

KEYWORDS

Software product line, Feature in the code-asset, Exploratory study, Adaptability of reusable code-assets

1. INTRODUCTION

Software product line engineering (SPLE) is a paradigm for developing a family of software
products from the repository of reusable assets rather than developing each individual product

from scratch. The driver of SPLE is pre-planned software reuse and within a specific problem

area known as a domain. In the feature-oriented SPLE[1]–[3], the common and the variable
characteristics of the products are expressed in terms of features. Thus, a feature is used as the

key abstraction to distinguish between the members of the family. Consequently, the sets of

products in the product line are said to have ’common’ features and differ in ’variable’ features.

http://www.airccse.org/journal/ijsea/vol12.html
https://doi.org/10.5121/ijsea.2021.12503

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

42

1.1. Feature Model

A feature model [2] is a graphical tree structure in which product features of a product line are

identified and organized with their types and their relationships. Feature type is one of the

following broad categories:

 A mandatory type: a common feature that is manifested in all the products of a product

line.

 A variable type: a feature of this type is either optional, is part of an alternative group

(only one feature in the group can be selected), or is part of an inclusive OR group feature (more
than one feature can be selected from the group). Unlike the alternative group, the OR group

features are not mutually exclusive and can either contain all optional features or at least one of

the features must be selected.

Figure 1: Feature Model of Automotive Product Line

Figure 1 depicts a hypothetical feature model of an automotive product line adapted from Kang et
al. [3]. In the feature model, the Powertrain and Transmission features are mandatory because

they must be available in every car. Comfort and Advanced Driver Assistance (ADAS) are

optional features because they do not have to be in every vehicle produced. The Automatic and
Manual are alternative features since the two cannot co-exist in the same car. The Air

Conditioning and Sunroof are OR group features because a car can have zero or more of the

features.

A selection of a valid combination of features is known as product configuration. For example,

the following is a valid configuration of features from Figure 1: Horsepower 150, Powertrain,

Automatic, Air conditioning

Using software product line engineering approach, software products are produced en masse by

means of two engineering phases:

(i) Domain Engineering (DE) and, (ii) Application Engineering (AE)

At the domain engineering phase, reusable assets are developed with variation points where
variant features may be bound for each of the diverse products. At the application engineering

phase, individual and customized products are developed from the reusable assets[4].

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

43

Figure 2 summarizes the relationship between feature space and the outputs of both domain

engineering and application engineering activities. As shown in Figure 2, features in the feature
space are mapped to the reusable assets (deliverable of the domain engineering activities).

Similarly, each product or partial product, as the case may be, is derived from the reusable asset

based on feature configurations from the feature space (i.e. valid selection of features). Lastly, a
product-specific artefact may be fed back into the reusable assets in the form of feedback.

Figure 2: Relationship between feature space (top left) on one hand and the deliverables of both domain

engineering (top right) and application engineering (bottom) on the other hand

1.2. Justification for the study

Modifiable assets are needed to support additional variations that were not planned beforehand to

increase the usage context of the software product line (SPL) as a result of expanding markets.

For example, Kastner [5] observed that, in Berkeley Database Engine (BDE) product line[6],
features such as Statistics and Transactions were implemented as mandatory. However, such

features will have to be made optional to make BDE configurable to other usage-contexts such as

smartcard products because the product cannot afford the footprint of the extraneous feature.
Therefore, to increase the usage context of BDE, its code-assets must be modified to make the

Statistics and the Transactions optional. Failure to inject additional variations may lead to the

delivery of product with extraneous code-assets - which is not desirable for lean memory

applications and may also cause a problem especially if the product is to be integrated within
other software products[7].

The objective of this paper is to explore the properties of features, in the code-asset, that may
affect modifiability of injecting additional variations. Thus, the paper attempted to answer the

following research question:

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

44

RQ. What are the characteristics of a feature in the code-asset that may potentially affect the

modifiability of injecting additional variations?

The contribution of this paper is the exploration of properties of features at the implementation

level and contributed with the description of the properties that may affect the flexibility of
reusable assets.

2. STUDY DESIGN

This section provides explanations of the key design decisions for this study. The section begins
with clarifications of the key terms that appear repeatedly in the paper.

Definition 1 (Code-asset, program element)

Code-asset (CA) is a pair <E; R> where E represents the set of program elements of CA, and R

is the set of relationships between the program elements. A program element e can be an

attribute, an operation, or a declaration. Let Att be the set of attributes of CA, Op be the set of
operations of CA and Dec be the set of declarations of CA. The set E of program elements of CA

is defined as E = Att ꓴOp ꓴ Dec

Definition 2 (Feature module)

A feature module f1 consists of a set of program elements, Ef1, such that Ef1⸦ E.

2.1. Case Study: Oracle Berkeley Database Engine

Oracle Berkeley Database Engine (BDE), Java Edition [6], is an embedded storage engine

designed to support integrating application logic and storage requirements of a software product

in a single binary installation. It is specific for applications targeting Java Virtual Machine (JVM)
and where no separate installation of a database server is required. Hence, the BDE runs in the

same memory address space with the integrated application logic and thereby eliminating the

overhead of process switching. Thus, a BDE can be embedded in a wide range of applications.

BDE has many features that are extraneous to the requirements of some applications in the

domain. For example, features for concurrent access and atomic transaction are not required in an

application with single access and simple data requirements. Similarly, by default, BDE gathers
statistics of almost every operation of the database such as tree traversal and memory usage. The

implementation of the statistics collection adds a significant footprint that may become a burden

to some applications that do not require the collection of statistics. Therefore, those features

should be optional and the code-asset should reflect their variability.

We selected the BDE as a case study because its legacy code-asset requires additional variations

to derive customized products for the different applications and has been used in previous related
researchers[5], [8].

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

45

Figure 3: Selected BDE variations transformed into features.

Fig.3 depicts the partial feature model of BDE in which 11 features hitherto not optional but will

have to be made so, to increase its usage-context. All the features were identified from previous
studies[5], [8]and vary in size of lines of codes. We limited our selection to 11 features because

the retrofitting of variations into features is tediously repetitive. Table 1 presents a brief

explanation of the selected features.

Table 1: List of 11 features selected for the exploration

Feature name Explanation

Checksum

Feature for calculating checksum for every database entry to be written to the log file

and using the same for validation while reading back the entry

Delete Feature implementing delete operation of the database.

Environment Lock Feature responsible for locking the database to preserve its integrity on concurrent
access.

Evictor Feature responsible for maintaining memory consumption within a certain threshold

specified in the database configuration.

Incompressor Removes deleted entries and empty nodes from the tree

IO Variant implementation of database input and output operation

Look ahead cache Feature for maintaining cache on log files that are line-up for cleaning.

Memory Budget Feature for monitoring overall memory usage of the database.

NIO Variant implementation of database input and output operation.

Truncate Feature for deleting the database and creating a new one.

Statistics Feature responsible for gathering statistics about several operations of the database.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

46

2.2. Case study exploration

Figure 4: Iterative process for the exploration

As program elements of a specific feature are often scattered across the code-assets[9], to explore
the properties of features in the code-asset, we followed an iterative process depicted in Fig.4. We

started with consulting BDE documentation[6] to have reasonable domain knowledge. We

checked the features already identified from the previous studies[5], [8]. We searched through the
code-asset to trace the implementation of the identified features.

Statistics feature is one of the features that spread all over the code-assets. For example, Fig.5

illustrates the code-asset in which the program elements of the Statistics feature tangled with
other program elements. In the figure, there are four Java classes: Cleaner, LongStat,

FileSelector, and DatabaseImpl. Within the classes, the program elements of Statistics are shaded

in grey.

In the Cleaner class at the top-left of Fig.5, there are two attributes, stats and nCleanerRuns (line

4-5) for the Statistics feature. In addition, there is another program element within the class

constructor (line 9). The entire LongStat class, at the middle-left of Fig.5, is for the Statistics
feature. In the FileSelector class, at the bottom-left of Fig.5, the method loadStat() (line 7-9) is

also for the Statistics feature.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

47

Figure 5: Part of BDE code-assets; code-assets for Statistics (shaded in grey) feature are tangled with

other program elements

In the DatabaseImpl class at the right hand side of Fig.5, the attribute, stats (line 7), the method,

getEmptyStat()(line 9-11), and the static inner class StatsAccumulator(line 35-36) are for the

Statistics feature. In addition, program elements of The Statistics feature can be seen within the
walkDatabaseTree method (line 25-26, line 31-32, and even within its parameters on line 20).

With the support of a tool, we marked program elements of the traced features with annotations.

Annotation is the most popular means of enforcing variations in code-assets[10]. Fig.6, illustrates
the use of the annotation to mark program elements of the Statistics feature in the four (classes)

discussed earlier. In the figure, program elements of Statistics are annotated with //#ifdef

Statistics.... //#endif. For the annotations, we used Antenna, a non-native annotation facility
introduced in Java and integrated with a SPL implementation tool-suite[11].

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

48

3. OBSERVATION AND DISCUSSION

3.1. Observation

In the process of marking the implementation of the eleven (11) features, we observed that the
code-asset is a union of feature modules and the program elements in the feature modules

intersect with each other. Fig.7 depicts this observation in a Venn diagram.

Figure 6: Annotated code of Statistics feature

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

49

.

Figure 7: Union and intersection of feature modules in code-asset

In Fig.7, each of the feature modules, represented by F1...Fn internally contains program
elements (attributes, declarations, and operations) that are only for the containing feature as well

as program elements that are shared with other features. We refer to the program elements that

are not shared with any other feature as exclusive elements to the given feature and the shared
part as an intersection between features. Thus, we defined the exclusivity and intersection (semi-

formally) in definition 3 and definition 4 respectively:

Definition 3 (Exclusivity)

Program element ef1 is said to be exclusive to a feature f1 if it satisfies a disjoint union

relationship with other features in the code-asset CA. i.e.ef1 ꓵef2 ꓵef3 ꓵef3ꓵ….. efn =ø

Definition 4 (Intersection)

An intersection between programs elements of different features ef1 and ef2 is defined as ef1#ef2,

which is a modification and or integration of ef1 and ef2 so that they work correctly

together[12].1

Table 2: Intersecting features

Feature Intersections

Delete Transaction, Cleaner

Environmental Lock IO, NIO

Evictor Incompressor

Memory Budget Transaction, Evictor

Statistics

Transaction, Evictor, Incompressor, Cleaner, Log, Cache,

Checkpointer

1 Batory and Kim [12] refer to this as feature interaction in the original definition. We use the term
intersection to distinguish it from the interaction as a problem of unexpected side effects when two or more

features are combined to work together [30]

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

50

Figure 8: Illustration of intersecting features

For the 11 features explored in the study, Table 2 shows the summary of intersecting features.

Note that, some of the intersecting features in Table 2 are not among the 11 selected features but
were picked while annotating the 11 features. Also, note that the intersection is reflexive, i.e. if

feature A intersects feature B, implies feature B also intersects feature A. Fig.8 depicts an

illustration of 7 features intersecting the Statistics feature.

3.2. Discussion

The consequence of observation is that injection of additional variations requires decoupling of

features in the code-asset: The program elements of the feature to be made optional have to be

traced in the code-asset; Both the exclusive and the intersection program elements have to be
separated; The separated program elements should be added to a product configuration only if the

variant feature is selected.

We noticed this observation to be true within the context of Object-Oriented Development. For
example, using various design patterns in OOP[13], a designer should be able to encapsulate

features to some extent. For example, Keypad, Fingerprint, Remote control as OR group sub-

features of Access Control feature in a smart home can be implemented using Strategy pattern. In
that case, a programmer implements each feature as a separate strategy for accessing the smart

home, and each of the strategies only contains program elements exclusive to one of the features.

At the point of invocation, however, a request to access the smart home has to be resolved to one

of the concrete strategies, and that is the point of intersection.

Similarly, when using class inheritance, as a form of polymorphism, to implement an optional

feature as a subclass of one of the mandatory classes, the sub-class is the exclusive program
element to the optional feature. In that case, intersection points are places where references are

made to the subclass.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

51

Thus, thinking in terms of exclusiveness and intersection can be beneficial. Intuitively, limiting

the number of intersections may be better for a product line that is not stable and with the
tendency of the emergence of new usage-contexts. Of particular note, the Factory pattern

encapsulates a specific form of intersection- a point to create one of the variant objects.

4. RELATED WORK

In this section, we present similar studies from the literature to highlight the novelty of our

approach. There is an approach of taking existing software assets and transforming them into

reusable assets of a software product line. It is called extractive and there have been positive
arguments and studies for it [14]–[16]. For example,[16] proposed a semi-automated and step-

wise process to identify, map, and visualize features in the code-assets of a legacy system that is

being transformed into software product line following the extractive approach. However, the
focus was mostly on the benefits of the approach in easing the transition from single software

product development to the software product line.

There are studies aimed at visualizing features in the code-assets[16], [17]. For example, [18]
developed a tool for interactive visualization of features. It provided very easy support for

visualising and locating features in the code-assets. The tool can also be used to answer questions

such as which feature has the highest line of codes or which feature has the highest spread in the
code-assets. However, the aim was to aid feature comprehension and not properties of features

that may affect modifiability. Our description of properties of feature in the code-assets as well as

the visualization is meant to give an insight of modifiability of the product line code-assets to
introduce additional variations.

Tracing features in the code-assets is one of the common activities in software product line

engineering[19] and tools[20]–[23] were developed to facilitate the activity. Nonetheless, less
attention was paid to the actual properties of features that have the potential to affect the

modifiability of the code-asset. Rather, studies on the exploration of features in the code-assets

focused on getting insights that will improve feature traceability[24], the influence of varying
project scope on the feature traceability, as well as effect of feature traceability on program

comprehension[25].

May et al [26] conducted an exploration of features in the code-assets of micro-service-based
implementation of a webshop. They even took a step further and re-engineered the code-assets

and produced product line architecture; introduced variations using the principles of delta-

oriented software product line[27]. In another exploratory study, Murphy et al [28] investigated
the flexibility of three language-based techniques when used to untangle features from a code-

asset. All the three techniques, Hyper/J, AspectJ[29], and the authors’ own technique, were

designed for advanced separation of concern. The authors qualitatively characterized the effect
the different techniques had on the structure of the code-asset and also characterized how to

restructure the code-asset to untangle features with each of the techniques. Nevertheless, these

studies did not describe the properties of features, in the code-assets, that may affect the

modifiability of code-assets.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

52

In summary, this study attempted to provide insights into properties of features that may affect

modifiability of code-assets to pave way for researches on comparable software product line
implementation techniques that can be used to decouple features in the code-assets to introduce

new variations.

5. FUTURE WORK AND CONCLUSION

In future researches, properties of feature in other domains and programming styles shall be

explored and then compare newer software product line implementation techniques with respect

to modifiability of existing code-assets to introduce variations that were not planned beforehand.

In this paper, we explored properties features in the code-asset using Berkeley Database Engine

(Java edition), as a case study. In the exploration, we observed that program elements of disparate
features formed unions as well as intersections that may affect the modifiability of the code-

assets. The implication of this research to practice is that an unstable product line and with the

tendency of emerging variations, should aim for programming style that limits the number of

intersections between program elements of different features. Similarly, the implication of the
observation to research is that, there should be subsequent investigations using multiple case

studies in different software domains and programming styles in order to improve the

understanding of the findings.

REFERENCES

[1] K. C. Kang, J. Lee, and P. Donohoe, “Feature-oriented product line engineering,” IEEE Softw., vol.

19, no. 4, pp. 58–65, Jul. 2002.

[2] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “FORM: A feature-oriented reuse method

with domain-specific reference architectures,” Ann. Softw. Eng., vol. 5, no. 1, pp. 143–168, 1998.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-oriented domain analysis (FODA)

feasibility study,” 1990.

[4] K. Kang, S. Kim, J. Lee, K. Kim, and E. Shin, “FORM: A feature-; oriented reuse method with

domain-; specific reference architectures,” Ann. Softw., 1998, Accessed: Oct. 03, 2016. [Online].

Available: http://link.springer.com/article/10.1023/A:1018980625587.

[5] C. Kastner, S. Apel, and D. Batory, “A case study implementing features using AspectJ,” in 11th

International Software Product Line Conference (SPLC 2007), 2007, pp. 223–232.

[6] Oracle Corporation, “Berkeley DB Java Edition Architecture,” 2006.
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/learnmore/bdb-je-

architecture-whitepaper-366830.pdf (accessed Aug. 13, 2021).

[7] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mismatch: Why reuse is still so hard,” IEEE

Softw., vol. 26, no. 4, pp. 66–69, 2009, doi: 10.1109/MS.2009.86.

[8] R. Andrade, M. Ribeiro, H. Rebêlo, P. Borba, V. Gasiunas, and L. Satabin, “Assessing idioms for a

flexible feature binding time,” Comput. J., vol. 59, no. 1, pp. 1–32, 2015.

[9] L. Passos et al., “A Study of Feature Scattering in the Linux Kernel,” IEEE Trans. Softw. Eng., vol.

47, no. 1, pp. 146–164, Jan. 2021, doi: 10.1109/TSE.2018.2884911.

[10] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, An analysis of the variability in forty

preprocessor-based software product lines, vol. 1. New York, New York, USA: ACM Press, 2010, p.

105.
[11] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich, “FeatureIDE: An extensible

framework for feature-oriented software development,” Sci. Comput. Program., vol. 79, pp. 70–85,

2014, doi: 10.1016/j.scico.2012.06.002.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.5, September 2021

53

[12] D. Batory, P. Höfner, J. Kim, D. Batory, P. Höfner, and J. Kim, “Feature interactions, products, and

composition,” in Proceedings of the 10th ACM international conference on Generative programming

and component engineering - GPCE ’11, 2011, vol. 47, no. 3, p. 13, doi: 10.1145/2047862.2047867.

[13] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented Software. - Google Scholar.

Pearson Education, 1995.

[14] P. Clements and C. Krueger, “Being Proactive Pays Off/Eliminating the Adoption Barrier. Point-

Counterpoint article in,” IEEE Softw., 2002.

[15] J. Krüger, S. Krieter, G. Saake, and T. Leich, “Extracting product lines from variants (explant),” in In
Proceedings of the 14th International Working Conference on Variability Modelling of Software-

Intensive Systems, 2020, pp. 1–2, doi: 10.1145/3377024.3377046.

[16] J. Krüger, L. Nell, W. Fenske, G. Saake, and T. Leich, “Finding lost features in cloned systems,”

ACM Int. Conf. Proceeding Ser., vol. 2, pp. 65–72, Sep. 2017, doi: 10.1145/3109729.3109736.

[17] S. Entekhabi, A. Solback, … J. S.-P. of the 23rd, and U. 2019, “Visualization of feature locations

with the tool featuredashboard,” in 23rd International Systems and Software Product Line

Conference, Sep. 2019, vol. B, pp. 1–4, doi: 10.1145/3307630.3342392.

[18] A. Bergel, T. Berger, and M. R. V Chaudron, “FeatureVista : Interactive Feature Visualization,” in

25th ACM International Systems and Software Product Line Conference, 2021, no. 21, doi:

10.1145/3461001.3471154.

[19] J. Krüger, T. Berger, T. L.-S. E. for Variability, and U. 2019, “Features and how to find them: a
survey of manual feature location,” Softw. Eng. Var. Intensive Syst., pp. 153–172, 2019.

[20] H. Jansson and J. Martinson, “HAnS: IDE-based editing support for embedded feature annotations,”

2021.

[21] J. Pleumann, O. Yadan, and E. Wetterberg, “Antenna,” 2010.

 http://antenna.sourceforge.net/wtkpreprocess.php.

[22] H. Abukwaik, A. Burger, B. K. Andam, and T. Berger, “Semi-automated feature traceability with

embedded annotations,” Proc. - 2018 IEEE Int. Conf. Softw. Maint. Evol. ICSME 2018, pp. 529–533,

Nov. 2018, doi: 10.1109/ICSME.2018.00049.

[23] T. Schwarz, W. Mahmood, and T. Berger, “A Common Notation and Tool Support for Embedded

Feature Annotations,” ACM Int. Conf. Proceeding Ser., vol. Part F164402-B, pp. 5–8, Oct. 2020, doi:

10.1145/3382026.3431253.
[24] A. SOLBACK, “Visualization of feature-traceability in variant-rich systems,” 2019.

[25] J. Krüger, G. Alkl, T. Berger, T. Leich, and G. Saake, “Effects of explicit feature traceability on

program comprehension,” ESEC/FSE 2019 - Proc. 2019 27th ACM Jt. Meet. Eur. Softw. Eng. Conf.

Symp. Found. Softw. Eng., pp. 338–349, Aug. 2019, doi: 10.1145/3338906.3338968.

[26] M. R. A. Setyautami, H. S. Fadhlillah, D. Adianto, I. Affan, and A. Azurat, “Variability management:

re-engineering microservices with delta-oriented software product lines,” ACM Int. Conf. Proceeding

Ser., vol. Part F164267-A, p. 301, Oct. 2020, doi: 10.1145/3382025.3414981.

[27] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella, “Delta-Oriented Programming of

Software Product Lines,” Springer Berlin Heidelberg, 2010, pp. 77–91.

[28] G. Murphy, A. Lai, and R. Walker, “Separating features in source code: An exploratory study,” in In

Proceedings of the 23rd International Conference on Software Engineering. ICSE 2001, 2001, pp.

275–284.
[29] P. A. R. C. Xerox Corporation, “The AspectJtm Development Environment Guide,” 2005.

http://www.eclipse.org/aspectj/doc/released/devguide/index.html (accessed Aug. 13, 2021).

[30] S. Apel, J. Atlee, L. Baresi, P. Z.-D. Reports, and U. 2014, “Feature interactions: the next generation

(dagstuhl seminar 14281),” 2014. doi: 10.4230/DagRep.4.7.1.

	Abstract
	Keywords
	1. Introduction
	1.1. Feature Model
	1.2. Justification for the study

	2. Study Design
	2.1. Case Study: Oracle Berkeley Database Engine
	2.2. Case study exploration

	3. Observation and Discussion
	3.1. Observation
	3.2. Discussion

	4. Related Work
	5. Future Work and Conclusion
	References

