
International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.6, November 2021

DOI: 10.5121/ijsea.2021.12601 1

EMBEDDING PERFORMANCE TESTING IN

AGILE SOFTWARE MODEL

Suresh Kannan Duraisamy, Bryce Bass and Sai Mukkavilli

Department of Computer Science,

Georgia Southwestern State University, Americus, GA

ABSTRACT

In the last couple of decades, the software development process has evolved drastically, starting from Big
Bang to Waterfall to Agile. The primary driver for the evolution of the software was the “Speed of

Delivery” of the Software Product which has significantly accelerated from months to less than weeks and

days. For IT (Information Technology) Organizations to be successful, they inevitably need a strong

technology presence to roll out new software and features as quickly as possible to their customer base.

The current user generation tends to use technology to maximum potential and is always striving to keep

up with the new trends. The main subject is for the organizations to be ready with their Speed of Delivery

strategy adapting to all technology modernization initiatives like CICD (Continuous Integration and

Continuous Deployment), Agile, DevOps, and Cloud so that there are negligible customer friction and no

risks to their Market shares,. The aim of this paper is to compare the performance testing in every stage of

the agile model to the traditional end testing. The results of the corresponding testing phases are presented

in this paper.

KEYWORDS

Agile, CICD, Waterfall, Performance Testing.

1. INTRODUCTION

1.1. Problem Statement

Many a times while using a software product or websites during peak holiday seasons and during

ongoing high demand promotions, customers come across digital disruptions while using the

software products which impacts the end user experience. This issues are caused due to slowness

or stability concerns of the applications. That are pointed towards the volume of transactions that
the application Logic is not designed to handle or some time the capacity of the computation that

was required was not planned ahead of time.

Performance Issues usually have a high stake of all the tangent of an organization starting from

the Customer trust on using the product again, Total cost of Operations and Financial impacts and

the Overall brand reputation of the organization.

Waterfall model for software development is a well-known and was very widely used for more

than a decade for a software development process. The waterfall model has software

development phases accomplished in a sequential linear way which comprises of Requirement
Phases, Design, Implementation, Verification and Maintenance. Requirements are documented

and moving to next phase is dependent on the signoff of the prior phase. It usually takes time for

http://www.airccse.org/journal/ijsea/vol12.html
https://doi.org/10.5121/ijsea.2021.12601

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.6, November 2021

2

the end users before they can start using the software or partial features. Often time there are risks
that the requirements are deviated and considerable amount of rework has to be accomplished to

meet the end user’s needs.

Agile software development model is an iterative deliverable approach where software Product
are broken down into smaller features and are delivered incrementally in sprints [1]. Each sprint

has all the Phases incorporated starting from Design to Deployment and generally are delivered

within 2 to 4 weeks. In Agile the application is released to end users in continuously and the
feedbacks are incorporated in the upcoming sprints with the additional development of the

Product, this entire cycle of Sprint is repeated until the desired software product development is

completed.

Agile is more popular these days as the customer are more confident on the outcome as they have

a continuous feel of the product and can share feedbacks continuously to the software

development teams. One of the challenges of Agile Software development model is about
Addressing of Quality control Processes including Performance testing in the short sprint of time.

This work will be covering the problems and potential solutions that can be adapted to deliver

Performance readiness and ensure high stability of software applications in agile software
development model.

The primary Performance readiness requirement in agile is to ensure there is no disruptions to the
new features that are to be delivered in the sprint and the existing product features that the

customers are already using in the production.

1.2. Related Work

Andre et.al [1] talks about developing a common agile software development model. Also, Jun
Lin et.al [2] talk about modelling user stories in agile software development model. Marian et.al

[3] uses the agile vs traditional comparison to show the importance of the former. [6] talks about

the performance testing for developers which relates to the performance testing in agile

mentioned in this paper.

1.3. Finding Performance Issues late in the release

The Branching and Merging Strategy plays a vital role in the agile model that drives the

development velocity and the overall Release Cadence. Figure 1 has the List of typical activities

carried out in an agile development branch. Performance testing usually is pushed as much as to
the end of the sprint leaving less time to execute good test and resolve any Performance issues

that are introduced newly into that sprint. This Practice creates software application vulnerable to

new issues and instability thus causing unhappy end users that impacts the overall revenue of the
organization.

1.4. Lack of Automation in Performance Testing

Performance Testing [8] is manual driven and needs lot of human intervention in every step of

Performance test execution that includes Deployment of application code base in the Perf
environment, Smoke testing , test data preparations, Monitoring Instrumentation and running the

required type of Performance tests, and Result analysis and Tuning the Performance bottlenecks.

All these activities are time consuming and often struggle to fit within a short sprint release

cadence and causes Performance issues to be compromised in production.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.6, November 2021

3

1.5. Executing Agile Performance testing with dedicated Centralized Performance

Team

Performance Testing or any Testing practice in waterfall software model [3] used to be the final

gate before the release of the product which was easy for Centralized Performance Team to

execute. The way Performance testing was traditionally done with a dedicated Performance

testing also referred to as Center of Excellence doesn’t fits well in the rapid fast paced frequent
feedback based agile software development model.

2. POTENTIAL APPROACHES TO MITIGATE THE PROBLEMS

2.1. Shift Left Performance Testing

Let’s understand the problem deeper and for that we would need to deep dive in to The
Branching and Merging Strategy that plays a vital role in the agile strategy and drives the

development velocity and the overall Release Cadence. As seen in the below typical Agile

Delivery, throughout the development cycle there is a continuous integration of some feature
codes in to the application Master code base.

Positioning the Performance testing in Agile thus is very complicated considering

 The Application and Scope is continuously changing and

 There is a very short runway to complete the Performance testing on time

Figure 1. Agile Delivery Process

There are four possible gateways to enable the Performance testing in an agile sprint. The goal is

to push the Performance testing practice as much as left in the development sprint so that

Performance issues can be uncovered sooner to avoid pushing performance defects to backlog

and often Performance issues gets leaked in to production which has high business impacts – due
to stability concerns and end user experience dissatisfaction

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.6, November 2021

4

Figure 2. Shift Left and Right Strategy

As displayed in Figure 2, the performance testing has to be moved as much as left –“Shift Left

strategy” that is having some level of testing at the feature branch level in the developer

environment with minimum expected baseline volume. This will give an insight of the high-level
performance of the code that is developed and will uncover any major open blockers that can

show up later in the sprint. To enable Shift Left Performance strategy there should be a good self

service capability where the developers can do effective performance testing at the feature branch
level easily before the newly developed code or feature branch is merged into the Master Code

base. Usually this kind of self-service testing tool are facilitated by the Performance teams or the

Tools teams. This testing can be focused to an API Level or service level or a specific

functionality corresponding to the newly developed feature to get the first insight of the
performance and Later the Performance team will exercise the rigor performance testing cycle in

the release branch with the full volume in the Production equivalent Performance test

environment.

2.2. Automation of Performance Testing

2.2.1. Integration in the CICD Pipeline

With the Speed, Agile delivery runs it’s not only hard to complete performance testing on time
but impossible for Performance engineers to keep up with the 100s of features that is pushed

continuously into pipeline. The Primary notion to handle the Performance testing in a CICD

Pipeline is that enable the Developers to do the Performance testing at the CI part of the pipeline

i.e. at the feature branch testing , And at the Continuous deployment stage which is more
applicable later in the cycle at the release branch level have as much as automation.

Automation in the Continuous deployment pipeline can be implemented using the plugins the
performance tool provides. It’s important for Performance Testing tool to integrate in the

Automation pipeline to have a successful automation in place. Performance test tools plugin has

to be installed and configured in the Pipeline Automation solution there by calling the test suite
after the deployment is completed in to the Performance environment’s Performance test job that

triggers the performance test suite is a point based SLA driven test suite that automatically sends

signal to the pipeline about Success or failure of the Performance and enables the continuity of

the pipeline.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.6, November 2021

5

Figure. 3. Deployment Phases

2.2.2. Test Environment and Data Dependencies

For an effective test cycle wither manual or automation it’s important to have a good test data

management including the volume of the test data that is very important for the accuracy of the
Performance testing results. Below are some of the important test data best practices that needs to

be covered to have a successful automation of performance testing.

 Volume of the test data in the Performance environment should match the production
volume - A better mechanism is to have a regular refresh of production database and

have the process of export and import into perf environment automated.

 There are huge number of scenarios that are data dependent and cannot be reused

iteratively with in scripts .These scenarios has to be identified and should have a good
plan in place to retrieve test data real time before the test is executed in pipeline and

should be able to feed in to scripts to have the test suite exercised without any disruptions

On the Performance Environment, it’s important to settle on a common methodology across
organization by standardizing Test tool, Test practice and solidifying on the environment needs.

The feature branch testing that is primarily driven by the individual developers must leverage the

local dev environment or can be facilitated by an on demand Virtual environment.

Later when the application is ready and deployable after the release branch is cut, the artefacts are

deployed into the Performance environment. The Performance environment should be 100%
equivalent to production capacity with as much as end to end component and logical flow

connected. Performance monitoring should be well instrumented in the Performance environment

to drill down any performance deviations noticed in the Performance environment.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.6, November 2021

6

2.2.3. Monitoring and Engineering Analysis

The Automation Pipeline should have all the monitoring capabilities, and this is possible only if

the monitoring and the Application Performance monitoring tools (APM) is integrated with the

Performance tools. The testing tool should be configured with the right defined Service level
indicators and Service level objectives and can communicate back to the pipeline with the status

of the performance testing.

Automated report that can be shipped as an email will expedite the Performance analysis process

that highlights any performance Service level agreement (SLA) deviations and this helps

performance engineers to easily pinpoint and start the deep dive analysis quickly and engage with
the partner team and start the triage at the earliest.

Figure 4. A template of the automated report.

2.3. Performance test Engagement model

Traditionally Performance testing was a centralized team that gets request for Performance

testing across organization and the Performance team prioritizes there task and report out the

execution results and any Performance issues that needs to be tuned back to the application
engineering teams. This approach may turn out a bottleneck for the entire agile delivery timelines

and Performance testing should be treated as a team sport with active collaboration between

Performance team and Application development team.

Usually to address this challenge it’s good to have Performance SME’s identified for each of the

scrum teams and they participate in the daily stand-ups and sprint planning to understand any

Performance impacts with the new stories that are planned for the upcoming release. This enables
the Performance team to plan of time and keep up the test suite when the release branch is cut.

Also, this identified performance engineers enables performance testing for each of the Scrum

team by facilitating the self-service performance test options to the developers.
In general, One to One Performance engineers mapped for each developer is not a cost efficient

model and transition of Performance team from an enterprise center of Excellence to center of

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.6, November 2021

7

Enablement team can make the Performance testing in Agile scrum team more productive as
depicted in Figure 5. There will be a representative identified for each scrum team that will be

driving all the end to end perf needs including enabling shift left and preparation of Automating

Performance test execution in the pipeline.

Now that some of the general underlying problems are discussed about agile software

development model with incorporating Performance testing is discussed and potential solution

has been laid out. There are many pros and cons that comes up with the discussed solutions,
however the defined approach must be tailored based on the development ecosystem and the

system architecture considering the details that are discussed below.

3. MERITS AND RISKS OF THE PROPOSED APPROACH

3.1. Time to Market

Having a shift left Performance testing enables Performance issues to be uncovered at the

featured branch level and resolve earlier in the life cycle, this save lot of time and operational

expenses to the overall software development program. With the automated Performance testing

in the Continuous deployment pipeline enables the Performance findings to be shared quickly and
wrap up the Performance readiness signoff process sooner in the release sprints. Overall, these

two practices enable the speed of delivery in the agile software development model thus

increasing the time to market that the business can take benefit. Another important aspect where
the software can be delivered to the end users more.

3.2. End to End and Integration Gaps

Often Shift Left Performance testing are executed in a low scale environment with low

transaction volume and virtualized integration end points of transactions though this uncovers
high level performance issues and gives opportunity to developers to resolve performance issues

earlier before the code is committed to master. The Performance delays and issues that are tied to

the integration points or asynchronous services are not in scope of this testing. One of the
practices to mitigate to some extend is have a realistic delays with the virtualized endpoints and

to know about the latency patterns it needs some level of Production monitoring trend analysis

about the latency of these end points.

As discussed on the different merits and drawbacks about bringing in continuous performance

testing in the DevOPS practices, we also wanted to try out if this concept can be proven in a lab

setup where on demand environments can be spun and Performance testing process be automated
in the pipeline.

4. RESULTS

Following were the objectives that was defined for the proof of concept.

 Terraform scripts that will be used to spin up a instance will be retrieved from GIT HUB

 Jenkins Terraform job will spin a mock App instance on Amazon cloud (AWS) on

demand.

 Same pipeline job will initiate another freestyle Jenkins job, which will run a test (test

suite) and hit the sample app instance created by the first JOB.

 As soon as the test job is complete, there will be a performance test report that will be
shipped out as an email

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.6, November 2021

8

 Created instance will be destroyed by the Jenkins job after test suite is complete.

Figure 5. Tests being performed

Figure 6. Performance testing using CAVISSON

Below is the summary of the data that was captured about the time duration usually they spent to

complete a full end to end performance testing cycle. This data clearly depicts that it easily takes
about 2 to 4 days to get the performance findings out and these are matured technology

organizations with experts driving the performance testing with decades of experience.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.6, November 2021

9

Domain

Application -Tech stacks

Policy Apps

Java Oracle Tibco

EIS Tomcat

Claims Apps

Java /Oracle/GW/Some

AWS App components and

.net apps

Supply chain -Order

Management

Java Weblogic

Mainframe DB2

F5

Store Operations

Datapower

Json Rest services

Oracle Java

Internal Contact

Center App

.Net Thick Client

Apps , SQL Server

Consumer Banking -

React /Open shift/AWS

API Gateway

Java OCP ,Oracle ,

MDM -IBM ,

Release Deployment

*Coordination and Ticket creation 4 to 5 Hrs. 2 to 4 Hrs. 1 day 1 day 2 to 4 Hrs. 2 to 3 Hrs.

Smoke Testing and issue resolution

*Environment , functional and Data issues 2 days 1 Hr. 4 Hrs. 3 Hrs. 3 Hrs. 1 day

Performance Testing

*including Dat prep 2.5 Hrs. 3 Hrs. 2 Hrs. 8 Hrs. 2 Hrs. 2 Hrs.

Result Preparation 2 Hrs. 2 Hrs. 3 Hrs. 3 Hrs. 1 Hr. 2 Hrs.

Analysis 4 Hrs. 2 Hrs. 1 day 3 Hrs. 1 Hr. 2 Hrs.

Number of issues 6 issues 4 issues 1 to 2 issue 2 to 4 issue 1 Issue 2 to 4 issues

% of new issues are related to new development ~ 50% ~25% ~50% ~50% ~50% ~50%

Feature branch testing No No No No No No

Total Time for 1 Performance Testing Cycle ~4 Days ~2 Days ~2 Days ~3 days ` 2 Days ` 3 Days

Insurance Retail Banking

Figure 7. Performance testing cycle results

With the proposed Automation solution proposed, this testing result can be shipped out to the
stakeholders within an hour of deployment into performance environment. This includes spin up

of an on-demand environment using Terraform scripts in the AWS EC2 Instance followed by

running the Performance test suite and then shipping out the test report and finally tearing down

the OnDemand server

ALEXA APP JSON SCRIPT:

{

 "manifest": {

 "publishingInformation": {

 "locales": {

 "en-US": {

 "summary": "Quiz for GSW",

 "examplePhrases": [

 "Alexa, open georgia southwestern quiz"

],

 "keywords": [],

 "name": "GSW Quiz",

 "description": "This is a simple Quiz that tests your knowledge on Georgia

Southwestern University and Americus. To start, open the skill by saying,

\u0027Alexa, open georgia southwestern quiz\u0027, and then after the welcome

message you will be prompted to say \u0027start quiz\u0027. Enjoy.",

 "smallIconUri": "file://assets/images/en-US_smallIconUri.png",

 "largeIconUri": "file://assets/images/en-US_largeIconUri.png"

 }

 },

 "automaticDistribution": {

 "isActive": false

 },

 "isAvailableWorldwide": true,

 "testingInstructions": "Say \u0027open georgia southwestern quiz\u0027 to start the

skill and then \u0027start quiz\u0027 to start the quiz. It\u0027s just a

simple quiz.",

 "category": "KNOWLEDGE_AND_TRIVIA",

 "distributionMode": "PUBLIC",

 "distributionCountries": []

 },

 "apis": {

 "custom": {

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.6, November 2021

10

 "endpoint": {

 "uri": "arn:aws:lambda:us-east-1:289211917748:function:0903e819-07d9-49bd-9ea3-

0b44e6f8dd5c:Release_1"

 },

 "interfaces": [],

 "regions": {

 "EU": {

 "endpoint": {

 "uri": "arn:aws:lambda:eu-west-1:289211917748:function:0903e819-07d9-49bd-

9ea3-0b44e6f8dd5c:Release_1"

 }

 },

 "NA": {

 "endpoint": {

 "uri": "arn:aws:lambda:us-east-1:289211917748:function:0903e819-07d9-49bd-

9ea3-0b44e6f8dd5c:Release_1"

 }

 },

 "FE": {

 "endpoint": {

 "uri": "arn:aws:lambda:us-west-2:289211917748:function:0903e819-07d9-49bd-

9ea3-0b44e6f8dd5c:Release_1"

 }

 }

 }

 }

 },

 "manifestVersion": "1.0",

 "privacyAndCompliance": {

 "allowsPurchases": false,

 "locales": {

 "en-US": {}

 },

 "containsAds": false,

 "isExportCompliant": true,

 "isChildDirected": false,

 "usesPersonalInfo": false

 }

 }

}

5. CONCLUSION AND FUTURE WORK

With this study the oncoming demand of Speed of delivery in software development lifecycle is
important that performance testing practice must be automated in the pipeline with automated

reports that can provide realtime feedback. I think the future of Automating performance testing

will be around Shift Left Automation. There are multiple ways the industry itself is looking at
this topic however the more automation in the left to enable the performance testing process as

early as in the software development lifecycle will be true success of this study. Also, some

limitations include lacking a proper testbed and software development process. Testing this

feature on a small environment versus a true software development may cause some results to
vary. Testing also takes up a significant amount of time in each and every phase which might

lead to the delay in production for larger software. This study can be deployed in testing small

projects and if successful, can be extrapolated on much bigger ones. This can be even used in app
development from a small scale app to much bigger and most downloaded ones like the one built

on Alexa by author 2 mentioned above.

6. ACKNOWLEDGEMENTS

We would like to thank the professors from the CS department at GSW for their continuous

support on this project. We would also like to thank AWS for allowing us to rent their instance,

the results of which were shown in this paper.

International Journal of Software Engineering & Applications (IJSEA), Vol.12, No.6, November 2021

11

REFERENCES

[1] André Janus (2018), “Towards a common Agile Software Development Model”, ACM SIGSOFT,

July 2012 Volume 37 Number 4.

[2] Jun Lin, Han Yu, Zhiqi Shen, Chunyan Miao (2014), “Using goal net to model user stories in agile

software development”, ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing (SNPD).

[3] Marian Stoica, Marinela Mircea, Bogdan Ghilic-micu (2013), “Software Development: Agile vs.

Traditional”, Informatica Economică vol. 17, no. 4/2013.
[4] Srdjana Dragicevic, Stipe Celar, MiliTuric (2017), “Bayesian network model for task effort

estimation in agile software development”, Journal of Systems and Software Volume 127, May 2017,

Pages 109-119

[5] https://f.hubspotusercontent30.net/hubfs/7652530/10-best-practices-app-performance-testing-

071918.pdf

[6] https://softcrylic.com/blogs/performance-testing-for-devops/

[7] https://www.synopsys.com/blogs/software-security/continuous-testing-cicd/

[8] https://ieeexplore.ieee.org/abstract/document/4293621

AUTHORS

Suresh Kannan Duraisamy: Suresh is a Master’s student in the department of

Computer Science at GSW. Along with pursuing Masters, he is a full time IT

professional. SK also has more than 15 years of IT professional experience and is

Specialized in transforming QA teams to adapt to the Technology modernization

initiatives including Agile transformation, Cloud, Microservices, and Enabling

Performance and Functional testing processes in DevOps -SRE culture by instrumenting

Automation frameworks in the CI-CD pipeline.

Bryce Bass: Bryce is an undergraduate student in the department of Computer Science

and IT Analyst/Programmer at GSW. Along with his studies, he works at the University

IT office. He also developed the “GSW Trivia” Alexa app.

Sai Mukkavilli: Sai Mukkavilli is an Asst. Professor in the CS department at GSW. His

area of interest and research are Cloud computing and security. Bryce and Suresh are Dr.
Mukkavilli’s former students.

https://f.hubspotusercontent30.net/hubfs/7652530/10-best-practices-app-performance-
https://www.synopsys.com/blogs/software-security/continuous-testing-cicd/
https://ieeexplore.ieee.org/abstract/document/4293621

	Abstract
	In the last couple of decades, the software development process has evolved drastically, starting from Big Bang to Waterfall to Agile. The primary driver for the evolution of the software was the “Speed of Delivery” of the Software Product which has s...
	Keywords
	Agile, CICD, Waterfall, Performance Testing.

