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ABSTRACT 
 

Model-Driven Development and the Model-Driven Architecture paradigm have in the recent past been 

emphasizing on the importance of good models. In the Object-Oriented paradigm one of the key artefacts 

are the Statechart diagrams. Statechart diagrams have inherent complexity which keeps increasing every 

time the diagrams are modified, and this complexity poses problems when it comes to comprehending the 

diagrams. Statechart diagrams provide a foundation for analysing the dynamic behaviour of systems, and 

therefore, their quality should be maintained. The aim of this study is to develop and validate metrics for 

measuring the complexity of UML Statechart diagrams. This study used design science which involved the 

definition of metrics, development of a metrics tool, and theoretical and empirical validation of the metrics. 

For the measurement of the cognitive complexity of statechart diagrams, this study proposes three metrics. 

The defined metrics were further used to calculate the complexity of two sample statechart diagrams and 
found relevant. Also, theoretical validation of the defined metrics was done using the Weyuker’s nine 

properties and revealed they are mathematically sound. Empirical validations were performed on the 

metrics and results indicate that all the three metrics are good for the measurement of the cognitive 

complexity of statecharts. 
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1. INTRODUCTION 
 

Software quality is defined as the magnitude to which a given software adheres to the required 

specifications [5, 18]. Software quality evaluation should be carried out to reduce the effort, time, 

and cost put in a software product [3, 2]. Software quality is controlled by use of metrics. These 
metrics assess various aspects of software complexity and therefore help in improving software 

quality. Additionally, software metrics provide a way of estimating efforts needed for testing.  

 
The Unified Modeling Language (UML) is a software modelling language that is composed of 

both text and graphical elements [24, 30]. The language is in a broad sense used for modelling of 

systems using object-oriented technology [7]. UML diagrams have notations that give various 
context of the system being analysed [26], and they also convey the dynamic and the static views 

of a software structure [8, 14]. The Statechart diagram is one of the core diagrams of UML used 

to model the dynamic aspects of a system. Statecharts define various states of an object during its 
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lifespan [8,14]. Formally, a Statechart diagram S may be described as a 3-tuple <S, T, E>. S 
represents a state, T means a transition, and E is an event which triggers state changes. 

 

The problem with Statechart diagrams is that they have inherent complexity that keeps growing 

with age whenever the diagrams are enhanced. The size and complexity of UML diagrams affect 
their cognition [6].  Some known causes of complexity include symbol redundancy, symbol 

overload and lack of utilization of dual coding [1]. Researchers have showed that inadequacy of 

UML diagrams, UML semantics that are not precisely defined and the large number of UML 
constructs affect the cognitive effectiveness of UML diagrams [28]. 

 

High complexity is undesirable because it affects the overall quality of software. Researchers 
have proposed metrics to ensure quality of statecharts. However, metrics that can assess the 

cognitive complexity of UML Statechart diagrams are lacking.  This paper presents three metrics 

for measuring and controlling the cognitive complexity of statechart diagrams. 

 
 The rest of this paper is organised as follows; Section 2 presents related work; section 3 presents 

the measurable attributes; section 4 presents the newly defined metrics; section 5 illustrates 

computation of values from two real life scenarios. Section 6 explains the results and the paper 
ends with some conclusions and future works.  

 

2. RELATED WORKS 
 

Several cognitive complexity metrics for Object Oriented design have been proposed [17,20, 21, 
27]. However, these metrics are not suitable for the measurement of cognitive complexity of 

statechart diagrams due to their limitations. 

 
Shao & Wang [27] proposed Cognitive Functional Size (CFS). The measure was based on 

internal architectural control-flows, output data and input data. The CFS has drawbacks. For 

example, it does not consider essential factors such as inheritance and excludes the details found 
in operators and operands thus cannot be used to measure the cognitive complexity of UML 

behavioral diagrams [13, 16]. 

 

In [20] Misra & Akman proposed a type of metric using cognitive weights to determine the class 
complexity in object-oriented system. The measure functions by associating a particular weight 

with each method. After assigning weight it adds the weights of all methods. Thus, complexity of 

a whole class is determined. The calculation of class complexity is very easy; however, it 
excludes the internal structure of the Method [25]. 

 

Kushwaha & Misra, [17] proposed Cognitive Information Complexity Measure (CICM) to aid in 

understanding the cognitive information complexity and the information coding efficiency of a 
program. The CICM relies on the cognitive weight of internal BCSs, identifiers, operators and 

lines of code (LOC) [17].   The measure has been criticized for being difficult to calculate if a 

software contains many lines of code [16, 19]. 
 

Misra [21] proposed the modified cognitive complexity measure (MCCM) which was a 

modification of cognitive functional size (CFS). The measure was based on the cognitive weights 
caused by the basic control structures, number of operators and operands. The measure is 

practicable as stated by the cognitive informatics works. However, the measure gives high 

complexity values [13,19]. 
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3. IDENTIFICATION OF MEASUREMENT ATTRIBUTES 
 
Statechart diagram complexity is caused by its building components such as states, transitions, 

events. Therefore, different metrics are required to assess each of its component [9]. Based on 

this argument, three base metrics will be defined for these identified attributes states, transitions 

and events. 
 

3.1. States  
 

A state models the circumstance when the object’s behaviour will be stable. The object remains 

in a state until it is provoked to change by an event. A state is the environment during which an 

object fulfils some condition [26]. Also, a state model dynamic circumstances such as the process 
of executing some activity   

 

3.2. Events 
 

An event is a trigger that cause change of state. Events represents demands from the objects. An 

event can be defined as the conditions of noteworthy occurrence that has time and space [14, 26]. 
Events activate transitions in state machines.  

 

3.3. Transitions 
 

Transition is a directed connection joining a source state vertex and a target state vertex. It may 

take the state machine from one state to another, representing the complete reaction of the state 
machine to a particular Stimuli [14, 26]. A transition is composed of a trigger, a guard and 

actions to be executed upon entry into a state [14, 26] 

 

4. METRICS DEFINITION 
 

4.1. Base Metrics 
 
The base metrics for UML statechart diagrams include: Number of States (NS) which is a count 

of the total number of states in a statechart diagram taking into considerations the simple states, 

composite state, orthogonal state, submachine state, initial state and final state.  Number of Entry 

Actions (NEA) which is a count of the total number of entry actions performed upon entry to the 
state (entry actions are tasks that occur when an object is in a particular state), Number of 

Activities (NA) which is a count of the total number of do activities that is performed while the 

element is in this state (activities are behaviours performed while the element is in that state) and 
Number of Transitions (NT) a size attribute that counts the total number of transitions in the 

statechart diagram. In addition, Number of Guard (NG) which is the count of the total number of 

guard conditions in the statechart diagram (a guard is a Boolean condition that must be true for a 
transition to occur) and Number of Events (NE) which is the count of the total number of events 

in the statechart diagram. An event is a noteworthy occurrence that cause the transition from one 

state to another. 

 

4.2. Derived Metrics 
 

4.2.1. Weighted Number of States (WNS) 

 

Weighted Number of States (WNS) is a function of a type of state and the weight assigned to the 

state as shown in Table 1. To calculate WNS, a weighted sum is obtained from the product of 
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each type of state by its corresponding weight. Therefore, Weighted Number of State (WNS) is 
calculated as follows:  

 
 

Where X represents number of types of states, and i means the start of the first x value. 

 
W is the weighted assigned to a state and n is the number of states in the statechart diagram. 

 

∑  is the summation of the products of states and their corresponding weight. 

 
Table 1. Weights to categories of states 

 
Category Weight (Wi) 

Simple state 1.5 

Composite state 2.5 

Orthogonal state 3 

Initial state 1 

Final state 1 

Submachine state 2.5 

History 2 

 

The initial and final state are assigned a weight of 1 because they have no objects. A simple state 

is assigned a weight of 1.5 because it has no substructure. A composite and orthogonal states are 
assigned a weight of 2.5 because they are semantically equivalent. A weight of 2 is assigned to a 

history state and an orthogonal state is assigned a weight of 3 because it has more than one 

region. 

 

4.2.2. Weighted Number of Transitions (WNT) 
 
Weighted Number of Transitions (WNT) metric is a statechart adaptation of the Cognitive 

Functional Size (CFS) measure [31]. WNT is the function of types of transitions in the statechart 

diagram and the cognitive weights (Wj) shown in Table 2. To calculate WNT, a weighted sum is 

obtained from the product of each type of transition by its corresponding weight. Therefore, 
Weighted Number of Transitions (WNT) is calculated as follows: 

 

 
 

Where T represents number of types of transitions, and j means the start of the first T value. 
 

W is the weighted assigned to a transition and n is the number of transitions in the statechart 

diagram. 
 

∑  is the summation of the product of transitions and their corresponding weight. 
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Table 2. Weights to categories of events 

 
Category Activity Wj 

Sequence Sequence 1 

Branch If, Pick 2 

Loop While, for each, report until 3 

 

A transition following one path in a statechart diagram is represented by a sequence with a 

weight of 1 while a choice in a statechart diagram is represented by a branch with a weight of 2. 
Transitions that link one state to another and back to the prior state is represented by a loop with a 

weight of 3. 

 

4.2.3. Weighted Number of Events (WNE) 
 

Weighted Number of Events (WNE) is a function types of events in the statechart diagram and 
the weight assigned to the type of event (We). An active event (AE) that triggers any transition in 

the current state is given a weight of 2. A deferred event (DE) that does not trigger any transition 

in the current state is given a weight of 1. To calculate WNE, a weighted sum is obtained from 
the product of each type of event by its corresponding weight. Therefore, Weighted Number of 

Event (WNE) is calculated as follows:  

 

 
 
Where E represents number of types of events, and k means the start of the first E value. 

 

W is the weighted assigned to an event and n is the number of events in the statechart diagram. 
 

∑  is the summation of the products of transitions and their corresponding weight. 

 

5. REAL LIFE SCENARIOS  
 

5.1. Scenario I: Statechart Diagram for Interrupt Handling 
 

This state diagram in Figure 1 shows the process of resuming to an activity that was suspended 

due to an occurrence of an interrupt. The composite state is made up of substates and a history 
state that will lead to resume of the activity. The computed values for WNS, WNT and WNE are 

shown in Table 3, 4 and 5 respectively. 
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Figure 1. Interrupt handling Statechart diagram 

 
Table 3. WNS Values 

 
Category Weight (Wi) Xi Wi Xi 

Simple state 1.5 4 6 

Composite state 2.5 1 2.5 

Orthogonal state 3 0 0 

Initial state 1 1 

 

1 

Final state 1 1 1 

Submachine state 2.5 1 2.5 

History State 2 1 2 

 

WNS=6+2.5+0+1+1+2.5+2=15 

 

The state diagram has 4 simple states which is multiplied by its corresponding weight of 1.5, the 
initial state is one is multiplied by 1, the final state is 1 is multiplied by its corresponding weight 

of 1, the history state is 1 is multiplied by 2 and the submachine state is 1 which is multiplied by 

2.5. The summation of the product is 15. 
 

Table 4.  WNT Values 

 
 
 

 

 
 

WNT=9+2+12=23 

Category Activity Wj Tj Wj Tj 

Sequence Sequence 1 9 9 

Branch If, Pick 2 1 2 

Loop While, for each, report until 3 4 12 
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The state diagram has 9 sequences (one path transition) which is multiplied by its corresponding 
weight of 1, 1 branch multiplied by its corresponding weight of 2 and 4 loop which is multiplied 

by its corresponding weight 3. The summation of the product is 23. 

 
Table 5. WNE Values 

 
 

 
 

 

WNE=18+0=18 
 

The toaster has 9 active triggers which is multiplied by its corresponding weight of 2 and 0 

deferrable triggers. The summation of the product is 18. 
 

5.2. Scenario II: Toaster Statechart Diagram 
 
This state diagram shows the process of heating a sliced bread in a toaster. The simple state 

“power on” has two deferrable triggers i.e “upTemp” and “lwrTemp”. At any given time, the 

toaster is either power on or power off. The computed values for WNS, WNT and WNE are 
shown in Table 6, 7 and 8 respectively. 

 
 

Figure 2. Toaster statechart diagram 

 
Table 6. WNS Values 

 
Category Weight (Wi) Xi Wi Xi 

Simple state 1.5 4 6 

Composite state 2.5 0 0 

Orthogonal state 3 0 0 

Initial state 1 1 1 

Final state 1 1 1 

Submachine state 2.5 0 0 

History State 2 0 0 

Event type Wk Ek Wk Ek    

AE 2 9 18 

DE 1 0 0 



International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022 

62 

WNS=6+1+1=8 
 

The toaster has 4 simple states which is multiplied by its corresponding weight of 1.5, the initial 

state is one is multiplied by 1 and the final state is one is multiplied by its corresponding weight 

of 1. The summation of the product is obtained which is 8. 
 

Table 7. WNT Values 

 
 

 

 

WNT=6+0+3=9 

 

The toaster has 6 sequences (one path transition) which is multiplied by its corresponding weight 
of 1and 1 loop which is multiplied by its corresponding weight 3. The summation of the product 

is obtained which is 9. 

 
Table 8. WNE Values 

 

 

 

 
 

WNE=12+2=14 
 

The toaster has 6 active triggers which is multiplied by its corresponding weight of 2 and 2 

deferrable triggers which is multiplied by its corresponding weight 1. The summation of the 

product is obtained which is 14. 
 

6. RESULTS 
 

6.1. Theoretical Validations using Weyukers’ Properties 
 

Weyuker [33] proposed nine properties for validating complexity metrics. Weyuker’s second and 

eighth property are applicable to all object-oriented metrics. The seventh property is not required 
for object -oriented programming. Weyuker did not address non- complexity metrics such as size 

or lengthy metrics. However, Weyuker’s properties are one of the most widely referred 

frameworks for theoretical validations of object-oriented metrics. Weyuker’s properties can be 
useful for statechart diagrams metrics validations because they are complexity metrics. Table 9 

shows a summary of Weyuker’s properties of measures. 

 

Property 1: This property states that a measure should not rank all statechart diagrams as equally 
complex if they are non-identical.  

 

All the proposed metrics return a different complexity value for any two non-identical statechart 
diagrams.  For example, all the three metrics return different complexity values for Scenario I and 

II since the diagrams are non-identical.  Therefore, the metrics WNE, WNS and WNT satisfy this 

property. 
 

Category Activity Wj Tj Wj Tj 

Sequence Sequence 1 6 6 

Branch If, Pick 2 0 0 

Loop While, for each, report until 3 1 3 

Event type Wk Ek Wk Ek    

AE 2 6 12 

DE 1 2 2 
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Property 2: Let c be a non-negative number. Then there are only finite number of diagrams of 
complexity c. This property asserts that a changing diagram must also cause a change to its 

complexity.  

 

The metrics WNS, WNE and WNT can detect changes in complexity when the number of types 
of states, events and transition is changed. Therefore, all these metrics satisfy property 2. 

 

Property 3: There are distinct statechart diagrams P and Q for which |P| = |Q|. This property 
asserts that there exist two different statechart diagrams whose effect is identical i.e. two different 

statechart diagrams with identical values. The metrics WNS, WNE and WNT can detect changes 

in complexity when the number of types of states, events and transitions is changed. Therefore, 
WNS, WNE and WNT satisfy this property.  

 

Property 4: (∃P) (∃Q) (P ≡ Q & |P| ≠ |Q|). There exist statechart diagrams P and Q such that the 

external effect of P and Q are identical, but |P| is not equal to |Q|. This property asserts that two 
statechart diagrams P and Q could look identical in terms of the fact that they contain the same 

number of states, events and transitions, but could have different complexities if the types of 

these states, events and transitions are different.  
 

The metrics WNS, WNE and WNT can detect changes in complexity when the types of states, 

events and transitions is changed. Therefore, all the proposed metrics satisfy this property. 

 
Property 5: For all statechart diagrams P and Q, considering also the diagram P; Q obtained by 

combining P and Q, |P| + Q| is less than or equal to |P; Q|. Monotonicity asserts that if a 

compound statechart diagram is developed by merging two simple statechart diagrams, the 
complexity of the compound statechart diagram is greater than the complexities of the two-initial 

simple statechart diagrams calculated separately. The metrics WNE, WNS and WNT satisfy 

property 5 since they all return numeric results. 
 

Property 6: There exist statechart diagrams P, Q and R such that |P| is equal to |Q| but |P; R| is 

not equal to |Q; R|. Nonequivalence of interaction asserts that if two equivalent statechart 

diagrams are combined with a separate but statechart diagram, then their new complexities will 
differ from the original complexities. This shows that there is some complexity that arises as a 

result of interaction which is distinct from the interacting diagrams.  

 
The WNS, WNT and WNE allocated constant weights to each of their types thus concatenation 

of two statechart diagrams does not result to arise of external complexity. The WNS, WNT and 

WNE metrics do not satisfy Weyuker’s property 6.  
 

Property 7: The permutation property asserts that the order of elements within a statechart 

diagram can affect its complexity. The metrics WNS, WNT and WNE allocated constant weights 

to each of their types thus permutation does not cause change of their complexity values. 
Therefore, the metrics do not satisfy property 7. 

 

Property 8: If two statechart diagrams P and Q differ only in the choice of names for different 
states, events and transitions, then |P| is equal to |Q|. This property asserts that two diagrams are 

equal if their only difference is the choice of names.  

 

All proposed metrics return numeric values. This means that renaming a diagram cannot affect its 
cognitive complexities. Therefore, all proposed metrics satisfied this property. 
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Property 9: There exist statechart diagrams P and Q for which |P|+|Q| is less than |P; Q): This 
property implies that adding two statechart diagrams results in extra complexity. Since growth in 

diagram complexity occurs when new states, events and transitions are added, which have non 

negative values, then the complexity of the new diagram is always equal to or greater than the 

sum of the original diagrams. Consequently, WNS, WNT and WNE metrics satisfied property 9.  
A summary of these results is shown in Table 9. 

 
Table 9. Theoretical validation results 

 
Property 1 2 3 4 5 6 7 8 9 

WNS YES YES YES YES YES No No YES YES 

WNT YES YES YES YES YES No No YES YES 

WNE YES YES YES YES YES No No YES YES 

 
Key: Yes, satisfies property; No, does not satisfy property.  

 

6.2. Experiment Validations 
 

Experimentation is usually used due to its formal qualities [22, 23, 32]. Theoretical validation is 

not sufficient to reveal the soundness of a metric [4, 10, 11, 15, 29], because by means of 
experimental validation reveal evidence on the usefulness of proposed metrics is confirmed. 
 

In this section, empirical results are presented as evidence that UML statechart diagram 

complexity metrics are related to cognition of UML statechart diagram, and cognition time of 
Statechart diagram. The variables in the experiment were statechart metrics as the independent 

variable while subjects’ rating of cognition of statechart diagram and cognition time of statechart 

diagram are the dependent variables. A static analyser tool was developed by the researcher to 

automatically compute metrics from statechart diagrams. A within-subject design was used for 

the experiment where each subject analysed 34 statechart diagrams independently.  

 
The hypotheses under investigation in the empirical studies were for the purpose of establishing 

if there exist a relationship between statechart metrics and the subjects rating of cognition of 

statechart diagram, and subjects’ cognition time of a statechart diagram. This hypothesis 

includes: 

 

i. Null Hypothesis (H0-c): There exists no significant correlation between the 
statechart metrics and subjects rating of cognition of a statechart diagram. 

ii. Alternative Hypothesis (H1-c): There exists significant correlation between the 

statechart metrics and subjects rating of cognition of statechart diagram. 
iii. Null Hypothesis (H0-ct): There exists no significant correlation between the 

statechart metrics and cognition time of a statechart diagram. 

iv. Alternative Hypothesis (H1-ct): There exists significant correlation between the 
statechart metric and cognition time of a statechart diagram. 

 

The complexity metrics of each diagram computed by the static analyzer tool are shown in Table 

10. The metrics were applied to 34 different statechart diagrams. Table 11 shows subjects’ rating 
of statechart diagrams while Table 12 shows cognition time of statechart diagrams. 
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Table 10. Statechart Metric Values 

 
STATECHART 

DIAGRAM NO 

WNS WNT WNE 

1 9 12 12 

2 15 20 22 

3 9 14 10 

4 21 39 36 

5 20.5 19 22 

6 10.5 7 14 

7 12.5 8 16 

8 27 14 28 

9 6.5 6 12 

10 16.5 21 30 

11 22 19 32 

12 12.5 12 18 

13 6.5 16 14 

14 8 11 12 

15 11 12 18 

16 14 22 20 

17 14 18 24 

18 12.5 17 18 

19 10.5 7 14 

20 19 24 30 

21 11 11 16 

22 23 43 44 

23 3.5 8 6 

24 11 16 20 

25 9 9 18 

26 16.5 6 12 

27 25 10 20 

28 17.5 15 30 

29 14 29 28 

30 17 26 22 

31 21.5 27 42 

32 11 13 16 

33 14 18 18 

34 8 9 14 
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Table 11. Subjects’ cognition rating 

 

STATECHART 

DIAGRAM NO 

SUBJECTS’ 

RATING 

1 2.49 

2 3.35 

3 2.39 

4 3.70 

5 3 

6 1.42 

7 2.56 

8 3.46 

9 2.18 

10 3.16 

11 4 

12 2.81 

13 2.46 

14 1.46 

15 2.78 

16 3.42 

17 2.95 

18 4.14 

19 1.76 

20 3.37 

21 1.71 

22 3.53 

23 2.25 

24 2.71 

25 2.46 

26 2.45 

27 2.73 

28 3.67 

29 3.02 

30 3.76 

31 3.40 

32 2.66 

33 3.18 

34 1.85 
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Table 12.  Subjects cognition time 

 
STATECHART 

DIAGRAM NO 

SUBJECTS’ 

COGNITION TIME 

(SECS) 

1 197.91 

2 168.31 

3 96.11 

4 197.05 

5 90.54 

6 28.67 

7 79.09 

8 108.84 

9 80.2 

10 172.08 

11 178.65 

12 96 

13 133.74 

14 62.12 

15 105.07 

16 109.98 

17 89.04 

18 147.10 

19 59.59 

20 119.59 

21 84.84 

22 143.24 

23 82.06 

24 108.49 

25 102.37 

26 80.32 

27 76.65 

28 151.25 

29 122.44 

30 149.16 

31 168.45 

32 72.95 

33 135.73 

34 57.02 

 

Spearman’s correlation coefficient was used to correlate each of the defined metrics with 
subject’s rating of cognition and cognition time of UML statechart diagrams. The correlation 

coefficients are shown in Table 13 and 14. 

 
Table 13.  Correlation for metrics and cognition of statechart diagram 

 

Statechart Metrics Correlation 

Coefficients 

p-value (2-tailed) 

WNS 0.771** 0.000 

WNT 0.791** 0.000 

WNE 0.825** 0.000 

**=99% confidence 
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The correlation coefficients in Table 13 show that there exists a high positive correlation between 
statechart metrics and subjects’ rating of cognition of UML statechart diagram. This is due to the 

fact that all the coefficient values are greater than 0.7. 

 

From the results, the null hypothesis that there exists no significant correlation between the 
metrics and subjects’ cognition of a statechart diagram is rejected and the alternative hypothesis 

accepted. These results indicate that the proposed metrics are indicators of the ease with which 

the subject comprehends a UML statechart diagram. 
 

Table 14. Correlation for metrics and cognition time 

 
Statechart Metrics Correlation 

Coefficients 

p-value (2-

tailed) 

WNS 0.463** 0.006 

WNT 0.750** 0.000 

WNE 0.617** 0.000 

**=99% confidence 

 
Analysis of the spearman’s correlation in Table 14, leads to conclusion that there exists a positive 

correlation between the statechart metrics and cognition time of statechart diagram. This leads to 

the rejection of the null Hypothesis there exists no significant correlation between the statechart 

metrics and cognition time of a statechart diagram and the alternative Hypothesis there exists 
significant correlation between the statechart metric and cognition time of a statechart diagram is 

accepted. 

 
Regression model strengthens the correlation results. Regression helps to understand the 

relationship between the dependent variable and independent variable. Table 15 shows the p-

values of the regression model based on metric values and cognition while Table 16 displays the 

p-values based on metric values and cognition time. 
 

Table 15. Regression model based on metric values and cognition 

 
Metric R-square P-Value 

WNS 0.432 0.000 

WNT 0.445 0.000 

WNE  0.480 0.000 

*P< 0.05 

 

From the regression model, the p-values are less than 0.05 indicating that the linear regression 
model can be used to predict the subjects’ cognition of statechart diagram.  
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Table 16. Regression model based on metric values and cognition time 

 

Metric R-square P-value 

WNS 0.151 0.023 

WNT 0.413 0.000 

WNE  0.350 0.000 

*P< 0.05 

 
The p-values of the regression model based on metric values and cognition time are less than 

0.05. This indicates that the proposed metrics can be used to predict the cognition time of a 

statechart diagram.  
 

7. CONCLUSIONS AND FUTURE WORKS 
 

In this paper, three metrics namely, WNS, WNT and WNE were proposed in a methodological 

way. The metrics assess the cognitive complexity of UML statechart diagram. The theoretical 
validity of the defined metrics which indicate that the proposed metrics measure the characteristic 

they intend to measure was demonstrated through the validation through the Weyuker’s 

properties. With the objective of confirming that there exists a great correlation between the 
metric values and the subject’s cognition and cognition time of a statechart diagram, a controlled 

experiment was carried out. Spearman’s correlation results led to the conclusion that the 

statechart metrics were directly related with cognition and cognition time of Statechart diagrams. 
In addition, the linear regression models imply that the proposed metrics can be used to predict 

the cognition of a statechart diagram and cognition time of a statechart diagram. 

 

The literature conducted during the period of this study reveal that metrics for the measurement 
of statechart diagrams are scarce. Thus, one future work is to further investigate all factors that 

could possibly affect the structural complexity of UML dynamic models and then come up with 

new ways of measuring them. Another future work would be to validate the metrics using the 
DISTANCE framework as proposed by Poels and Dedene and conduct replica experiments with 

industry experts for further validation of the presented metrics. 
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