
International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

DOI: 10.5121/ijsea.2022.13305 55

COMPLEXITY METRICS FOR

STATECHART DIAGRAMS

Ann Wambui King’ori1, 2, Geoffrey Muchiri Muketha3

and Elyjoy Muthoni Micheni4

1Department of Information Technology, Murang’a University, Kenya
2Department of Information Technology, Nkabune Technical Training Institute, Kenya

3Department of Computer Science, Murang’a University, Kenya
 4Department of Management Sciences & Technology,

Technical University of Kenya

ABSTRACT

Model-Driven Development and the Model-Driven Architecture paradigm have in the recent past been

emphasizing on the importance of good models. In the Object-Oriented paradigm one of the key artefacts

are the Statechart diagrams. Statechart diagrams have inherent complexity which keeps increasing every

time the diagrams are modified, and this complexity poses problems when it comes to comprehending the

diagrams. Statechart diagrams provide a foundation for analysing the dynamic behaviour of systems, and

therefore, their quality should be maintained. The aim of this study is to develop and validate metrics for

measuring the complexity of UML Statechart diagrams. This study used design science which involved the

definition of metrics, development of a metrics tool, and theoretical and empirical validation of the metrics.

For the measurement of the cognitive complexity of statechart diagrams, this study proposes three metrics.

The defined metrics were further used to calculate the complexity of two sample statechart diagrams and
found relevant. Also, theoretical validation of the defined metrics was done using the Weyuker’s nine

properties and revealed they are mathematically sound. Empirical validations were performed on the

metrics and results indicate that all the three metrics are good for the measurement of the cognitive

complexity of statecharts.

KEYWORDS

UML Diagrams, Statechart diagrams, Software metrics, complexity measures, Theoretical validations,

Empirical validations.

1. INTRODUCTION

Software quality is defined as the magnitude to which a given software adheres to the required

specifications [5, 18]. Software quality evaluation should be carried out to reduce the effort, time,

and cost put in a software product [3, 2]. Software quality is controlled by use of metrics. These
metrics assess various aspects of software complexity and therefore help in improving software

quality. Additionally, software metrics provide a way of estimating efforts needed for testing.

The Unified Modeling Language (UML) is a software modelling language that is composed of

both text and graphical elements [24, 30]. The language is in a broad sense used for modelling of

systems using object-oriented technology [7]. UML diagrams have notations that give various
context of the system being analysed [26], and they also convey the dynamic and the static views

of a software structure [8, 14]. The Statechart diagram is one of the core diagrams of UML used

to model the dynamic aspects of a system. Statecharts define various states of an object during its

https://airccse.org/journal/ijsea/vol13.html
https://doi.org/10.5121/ijsea.2022.13305

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

56

lifespan [8,14]. Formally, a Statechart diagram S may be described as a 3-tuple <S, T, E>. S
represents a state, T means a transition, and E is an event which triggers state changes.

The problem with Statechart diagrams is that they have inherent complexity that keeps growing

with age whenever the diagrams are enhanced. The size and complexity of UML diagrams affect
their cognition [6]. Some known causes of complexity include symbol redundancy, symbol

overload and lack of utilization of dual coding [1]. Researchers have showed that inadequacy of

UML diagrams, UML semantics that are not precisely defined and the large number of UML
constructs affect the cognitive effectiveness of UML diagrams [28].

High complexity is undesirable because it affects the overall quality of software. Researchers
have proposed metrics to ensure quality of statecharts. However, metrics that can assess the

cognitive complexity of UML Statechart diagrams are lacking. This paper presents three metrics

for measuring and controlling the cognitive complexity of statechart diagrams.

 The rest of this paper is organised as follows; Section 2 presents related work; section 3 presents

the measurable attributes; section 4 presents the newly defined metrics; section 5 illustrates

computation of values from two real life scenarios. Section 6 explains the results and the paper
ends with some conclusions and future works.

2. RELATED WORKS

Several cognitive complexity metrics for Object Oriented design have been proposed [17,20, 21,
27]. However, these metrics are not suitable for the measurement of cognitive complexity of

statechart diagrams due to their limitations.

Shao & Wang [27] proposed Cognitive Functional Size (CFS). The measure was based on

internal architectural control-flows, output data and input data. The CFS has drawbacks. For

example, it does not consider essential factors such as inheritance and excludes the details found
in operators and operands thus cannot be used to measure the cognitive complexity of UML

behavioral diagrams [13, 16].

In [20] Misra & Akman proposed a type of metric using cognitive weights to determine the class
complexity in object-oriented system. The measure functions by associating a particular weight

with each method. After assigning weight it adds the weights of all methods. Thus, complexity of

a whole class is determined. The calculation of class complexity is very easy; however, it
excludes the internal structure of the Method [25].

Kushwaha & Misra, [17] proposed Cognitive Information Complexity Measure (CICM) to aid in

understanding the cognitive information complexity and the information coding efficiency of a
program. The CICM relies on the cognitive weight of internal BCSs, identifiers, operators and

lines of code (LOC) [17]. The measure has been criticized for being difficult to calculate if a

software contains many lines of code [16, 19].

Misra [21] proposed the modified cognitive complexity measure (MCCM) which was a

modification of cognitive functional size (CFS). The measure was based on the cognitive weights
caused by the basic control structures, number of operators and operands. The measure is

practicable as stated by the cognitive informatics works. However, the measure gives high

complexity values [13,19].

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

57

3. IDENTIFICATION OF MEASUREMENT ATTRIBUTES

Statechart diagram complexity is caused by its building components such as states, transitions,

events. Therefore, different metrics are required to assess each of its component [9]. Based on

this argument, three base metrics will be defined for these identified attributes states, transitions

and events.

3.1. States

A state models the circumstance when the object’s behaviour will be stable. The object remains

in a state until it is provoked to change by an event. A state is the environment during which an

object fulfils some condition [26]. Also, a state model dynamic circumstances such as the process
of executing some activity

3.2. Events

An event is a trigger that cause change of state. Events represents demands from the objects. An

event can be defined as the conditions of noteworthy occurrence that has time and space [14, 26].
Events activate transitions in state machines.

3.3. Transitions

Transition is a directed connection joining a source state vertex and a target state vertex. It may

take the state machine from one state to another, representing the complete reaction of the state
machine to a particular Stimuli [14, 26]. A transition is composed of a trigger, a guard and

actions to be executed upon entry into a state [14, 26]

4. METRICS DEFINITION

4.1. Base Metrics

The base metrics for UML statechart diagrams include: Number of States (NS) which is a count

of the total number of states in a statechart diagram taking into considerations the simple states,

composite state, orthogonal state, submachine state, initial state and final state. Number of Entry

Actions (NEA) which is a count of the total number of entry actions performed upon entry to the
state (entry actions are tasks that occur when an object is in a particular state), Number of

Activities (NA) which is a count of the total number of do activities that is performed while the

element is in this state (activities are behaviours performed while the element is in that state) and
Number of Transitions (NT) a size attribute that counts the total number of transitions in the

statechart diagram. In addition, Number of Guard (NG) which is the count of the total number of

guard conditions in the statechart diagram (a guard is a Boolean condition that must be true for a
transition to occur) and Number of Events (NE) which is the count of the total number of events

in the statechart diagram. An event is a noteworthy occurrence that cause the transition from one

state to another.

4.2. Derived Metrics

4.2.1. Weighted Number of States (WNS)

Weighted Number of States (WNS) is a function of a type of state and the weight assigned to the

state as shown in Table 1. To calculate WNS, a weighted sum is obtained from the product of

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

58

each type of state by its corresponding weight. Therefore, Weighted Number of State (WNS) is
calculated as follows:

Where X represents number of types of states, and i means the start of the first x value.

W is the weighted assigned to a state and n is the number of states in the statechart diagram.

∑ is the summation of the products of states and their corresponding weight.

Table 1. Weights to categories of states

Category Weight (Wi)

Simple state 1.5

Composite state 2.5

Orthogonal state 3

Initial state 1

Final state 1

Submachine state 2.5

History 2

The initial and final state are assigned a weight of 1 because they have no objects. A simple state

is assigned a weight of 1.5 because it has no substructure. A composite and orthogonal states are
assigned a weight of 2.5 because they are semantically equivalent. A weight of 2 is assigned to a

history state and an orthogonal state is assigned a weight of 3 because it has more than one

region.

4.2.2. Weighted Number of Transitions (WNT)

Weighted Number of Transitions (WNT) metric is a statechart adaptation of the Cognitive

Functional Size (CFS) measure [31]. WNT is the function of types of transitions in the statechart

diagram and the cognitive weights (Wj) shown in Table 2. To calculate WNT, a weighted sum is

obtained from the product of each type of transition by its corresponding weight. Therefore,
Weighted Number of Transitions (WNT) is calculated as follows:

Where T represents number of types of transitions, and j means the start of the first T value.

W is the weighted assigned to a transition and n is the number of transitions in the statechart

diagram.

∑ is the summation of the product of transitions and their corresponding weight.

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

59

Table 2. Weights to categories of events

Category Activity Wj

Sequence Sequence 1

Branch If, Pick 2

Loop While, for each, report until 3

A transition following one path in a statechart diagram is represented by a sequence with a

weight of 1 while a choice in a statechart diagram is represented by a branch with a weight of 2.
Transitions that link one state to another and back to the prior state is represented by a loop with a

weight of 3.

4.2.3. Weighted Number of Events (WNE)

Weighted Number of Events (WNE) is a function types of events in the statechart diagram and
the weight assigned to the type of event (We). An active event (AE) that triggers any transition in

the current state is given a weight of 2. A deferred event (DE) that does not trigger any transition

in the current state is given a weight of 1. To calculate WNE, a weighted sum is obtained from
the product of each type of event by its corresponding weight. Therefore, Weighted Number of

Event (WNE) is calculated as follows:

Where E represents number of types of events, and k means the start of the first E value.

W is the weighted assigned to an event and n is the number of events in the statechart diagram.

∑ is the summation of the products of transitions and their corresponding weight.

5. REAL LIFE SCENARIOS

5.1. Scenario I: Statechart Diagram for Interrupt Handling

This state diagram in Figure 1 shows the process of resuming to an activity that was suspended

due to an occurrence of an interrupt. The composite state is made up of substates and a history
state that will lead to resume of the activity. The computed values for WNS, WNT and WNE are

shown in Table 3, 4 and 5 respectively.

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

60

Figure 1. Interrupt handling Statechart diagram

Table 3. WNS Values

Category Weight (Wi) Xi Wi Xi

Simple state 1.5 4 6

Composite state 2.5 1 2.5

Orthogonal state 3 0 0

Initial state 1 1

1

Final state 1 1 1

Submachine state 2.5 1 2.5

History State 2 1 2

WNS=6+2.5+0+1+1+2.5+2=15

The state diagram has 4 simple states which is multiplied by its corresponding weight of 1.5, the
initial state is one is multiplied by 1, the final state is 1 is multiplied by its corresponding weight

of 1, the history state is 1 is multiplied by 2 and the submachine state is 1 which is multiplied by

2.5. The summation of the product is 15.

Table 4. WNT Values

WNT=9+2+12=23

Category Activity Wj Tj Wj Tj

Sequence Sequence 1 9 9

Branch If, Pick 2 1 2

Loop While, for each, report until 3 4 12

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

61

The state diagram has 9 sequences (one path transition) which is multiplied by its corresponding
weight of 1, 1 branch multiplied by its corresponding weight of 2 and 4 loop which is multiplied

by its corresponding weight 3. The summation of the product is 23.

Table 5. WNE Values

WNE=18+0=18

The toaster has 9 active triggers which is multiplied by its corresponding weight of 2 and 0

deferrable triggers. The summation of the product is 18.

5.2. Scenario II: Toaster Statechart Diagram

This state diagram shows the process of heating a sliced bread in a toaster. The simple state

“power on” has two deferrable triggers i.e “upTemp” and “lwrTemp”. At any given time, the

toaster is either power on or power off. The computed values for WNS, WNT and WNE are
shown in Table 6, 7 and 8 respectively.

Figure 2. Toaster statechart diagram

Table 6. WNS Values

Category Weight (Wi) Xi Wi Xi

Simple state 1.5 4 6

Composite state 2.5 0 0

Orthogonal state 3 0 0

Initial state 1 1 1

Final state 1 1 1

Submachine state 2.5 0 0

History State 2 0 0

Event type Wk Ek Wk Ek

AE 2 9 18

DE 1 0 0

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

62

WNS=6+1+1=8

The toaster has 4 simple states which is multiplied by its corresponding weight of 1.5, the initial

state is one is multiplied by 1 and the final state is one is multiplied by its corresponding weight

of 1. The summation of the product is obtained which is 8.

Table 7. WNT Values

WNT=6+0+3=9

The toaster has 6 sequences (one path transition) which is multiplied by its corresponding weight
of 1and 1 loop which is multiplied by its corresponding weight 3. The summation of the product

is obtained which is 9.

Table 8. WNE Values

WNE=12+2=14

The toaster has 6 active triggers which is multiplied by its corresponding weight of 2 and 2

deferrable triggers which is multiplied by its corresponding weight 1. The summation of the

product is obtained which is 14.

6. RESULTS

6.1. Theoretical Validations using Weyukers’ Properties

Weyuker [33] proposed nine properties for validating complexity metrics. Weyuker’s second and

eighth property are applicable to all object-oriented metrics. The seventh property is not required
for object -oriented programming. Weyuker did not address non- complexity metrics such as size

or lengthy metrics. However, Weyuker’s properties are one of the most widely referred

frameworks for theoretical validations of object-oriented metrics. Weyuker’s properties can be
useful for statechart diagrams metrics validations because they are complexity metrics. Table 9

shows a summary of Weyuker’s properties of measures.

Property 1: This property states that a measure should not rank all statechart diagrams as equally
complex if they are non-identical.

All the proposed metrics return a different complexity value for any two non-identical statechart
diagrams. For example, all the three metrics return different complexity values for Scenario I and

II since the diagrams are non-identical. Therefore, the metrics WNE, WNS and WNT satisfy this

property.

Category Activity Wj Tj Wj Tj

Sequence Sequence 1 6 6

Branch If, Pick 2 0 0

Loop While, for each, report until 3 1 3

Event type Wk Ek Wk Ek

AE 2 6 12

DE 1 2 2

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

63

Property 2: Let c be a non-negative number. Then there are only finite number of diagrams of
complexity c. This property asserts that a changing diagram must also cause a change to its

complexity.

The metrics WNS, WNE and WNT can detect changes in complexity when the number of types
of states, events and transition is changed. Therefore, all these metrics satisfy property 2.

Property 3: There are distinct statechart diagrams P and Q for which |P| = |Q|. This property
asserts that there exist two different statechart diagrams whose effect is identical i.e. two different

statechart diagrams with identical values. The metrics WNS, WNE and WNT can detect changes

in complexity when the number of types of states, events and transitions is changed. Therefore,
WNS, WNE and WNT satisfy this property.

Property 4: (∃P) (∃Q) (P ≡ Q & |P| ≠ |Q|). There exist statechart diagrams P and Q such that the

external effect of P and Q are identical, but |P| is not equal to |Q|. This property asserts that two
statechart diagrams P and Q could look identical in terms of the fact that they contain the same

number of states, events and transitions, but could have different complexities if the types of

these states, events and transitions are different.

The metrics WNS, WNE and WNT can detect changes in complexity when the types of states,

events and transitions is changed. Therefore, all the proposed metrics satisfy this property.

Property 5: For all statechart diagrams P and Q, considering also the diagram P; Q obtained by

combining P and Q, |P| + Q| is less than or equal to |P; Q|. Monotonicity asserts that if a

compound statechart diagram is developed by merging two simple statechart diagrams, the
complexity of the compound statechart diagram is greater than the complexities of the two-initial

simple statechart diagrams calculated separately. The metrics WNE, WNS and WNT satisfy

property 5 since they all return numeric results.

Property 6: There exist statechart diagrams P, Q and R such that |P| is equal to |Q| but |P; R| is

not equal to |Q; R|. Nonequivalence of interaction asserts that if two equivalent statechart

diagrams are combined with a separate but statechart diagram, then their new complexities will
differ from the original complexities. This shows that there is some complexity that arises as a

result of interaction which is distinct from the interacting diagrams.

The WNS, WNT and WNE allocated constant weights to each of their types thus concatenation

of two statechart diagrams does not result to arise of external complexity. The WNS, WNT and

WNE metrics do not satisfy Weyuker’s property 6.

Property 7: The permutation property asserts that the order of elements within a statechart

diagram can affect its complexity. The metrics WNS, WNT and WNE allocated constant weights

to each of their types thus permutation does not cause change of their complexity values.
Therefore, the metrics do not satisfy property 7.

Property 8: If two statechart diagrams P and Q differ only in the choice of names for different
states, events and transitions, then |P| is equal to |Q|. This property asserts that two diagrams are

equal if their only difference is the choice of names.

All proposed metrics return numeric values. This means that renaming a diagram cannot affect its
cognitive complexities. Therefore, all proposed metrics satisfied this property.

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

64

Property 9: There exist statechart diagrams P and Q for which |P|+|Q| is less than |P; Q): This
property implies that adding two statechart diagrams results in extra complexity. Since growth in

diagram complexity occurs when new states, events and transitions are added, which have non

negative values, then the complexity of the new diagram is always equal to or greater than the

sum of the original diagrams. Consequently, WNS, WNT and WNE metrics satisfied property 9.
A summary of these results is shown in Table 9.

Table 9. Theoretical validation results

Property 1 2 3 4 5 6 7 8 9

WNS YES YES YES YES YES No No YES YES

WNT YES YES YES YES YES No No YES YES

WNE YES YES YES YES YES No No YES YES

Key: Yes, satisfies property; No, does not satisfy property.

6.2. Experiment Validations

Experimentation is usually used due to its formal qualities [22, 23, 32]. Theoretical validation is

not sufficient to reveal the soundness of a metric [4, 10, 11, 15, 29], because by means of
experimental validation reveal evidence on the usefulness of proposed metrics is confirmed.

In this section, empirical results are presented as evidence that UML statechart diagram

complexity metrics are related to cognition of UML statechart diagram, and cognition time of
Statechart diagram. The variables in the experiment were statechart metrics as the independent

variable while subjects’ rating of cognition of statechart diagram and cognition time of statechart

diagram are the dependent variables. A static analyser tool was developed by the researcher to

automatically compute metrics from statechart diagrams. A within-subject design was used for

the experiment where each subject analysed 34 statechart diagrams independently.

The hypotheses under investigation in the empirical studies were for the purpose of establishing

if there exist a relationship between statechart metrics and the subjects rating of cognition of

statechart diagram, and subjects’ cognition time of a statechart diagram. This hypothesis

includes:

i. Null Hypothesis (H0-c): There exists no significant correlation between the
statechart metrics and subjects rating of cognition of a statechart diagram.

ii. Alternative Hypothesis (H1-c): There exists significant correlation between the

statechart metrics and subjects rating of cognition of statechart diagram.
iii. Null Hypothesis (H0-ct): There exists no significant correlation between the

statechart metrics and cognition time of a statechart diagram.

iv. Alternative Hypothesis (H1-ct): There exists significant correlation between the
statechart metric and cognition time of a statechart diagram.

The complexity metrics of each diagram computed by the static analyzer tool are shown in Table

10. The metrics were applied to 34 different statechart diagrams. Table 11 shows subjects’ rating
of statechart diagrams while Table 12 shows cognition time of statechart diagrams.

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

65

Table 10. Statechart Metric Values

STATECHART

DIAGRAM NO

WNS WNT WNE

1 9 12 12

2 15 20 22

3 9 14 10

4 21 39 36

5 20.5 19 22

6 10.5 7 14

7 12.5 8 16

8 27 14 28

9 6.5 6 12

10 16.5 21 30

11 22 19 32

12 12.5 12 18

13 6.5 16 14

14 8 11 12

15 11 12 18

16 14 22 20

17 14 18 24

18 12.5 17 18

19 10.5 7 14

20 19 24 30

21 11 11 16

22 23 43 44

23 3.5 8 6

24 11 16 20

25 9 9 18

26 16.5 6 12

27 25 10 20

28 17.5 15 30

29 14 29 28

30 17 26 22

31 21.5 27 42

32 11 13 16

33 14 18 18

34 8 9 14

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

66

Table 11. Subjects’ cognition rating

STATECHART

DIAGRAM NO

SUBJECTS’

RATING

1 2.49

2 3.35

3 2.39

4 3.70

5 3

6 1.42

7 2.56

8 3.46

9 2.18

10 3.16

11 4

12 2.81

13 2.46

14 1.46

15 2.78

16 3.42

17 2.95

18 4.14

19 1.76

20 3.37

21 1.71

22 3.53

23 2.25

24 2.71

25 2.46

26 2.45

27 2.73

28 3.67

29 3.02

30 3.76

31 3.40

32 2.66

33 3.18

34 1.85

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

67

Table 12. Subjects cognition time

STATECHART

DIAGRAM NO

SUBJECTS’

COGNITION TIME

(SECS)

1 197.91

2 168.31

3 96.11

4 197.05

5 90.54

6 28.67

7 79.09

8 108.84

9 80.2

10 172.08

11 178.65

12 96

13 133.74

14 62.12

15 105.07

16 109.98

17 89.04

18 147.10

19 59.59

20 119.59

21 84.84

22 143.24

23 82.06

24 108.49

25 102.37

26 80.32

27 76.65

28 151.25

29 122.44

30 149.16

31 168.45

32 72.95

33 135.73

34 57.02

Spearman’s correlation coefficient was used to correlate each of the defined metrics with
subject’s rating of cognition and cognition time of UML statechart diagrams. The correlation

coefficients are shown in Table 13 and 14.

Table 13. Correlation for metrics and cognition of statechart diagram

Statechart Metrics Correlation

Coefficients

p-value (2-tailed)

WNS 0.771** 0.000

WNT 0.791** 0.000

WNE 0.825** 0.000

**=99% confidence

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

68

The correlation coefficients in Table 13 show that there exists a high positive correlation between
statechart metrics and subjects’ rating of cognition of UML statechart diagram. This is due to the

fact that all the coefficient values are greater than 0.7.

From the results, the null hypothesis that there exists no significant correlation between the
metrics and subjects’ cognition of a statechart diagram is rejected and the alternative hypothesis

accepted. These results indicate that the proposed metrics are indicators of the ease with which

the subject comprehends a UML statechart diagram.

Table 14. Correlation for metrics and cognition time

Statechart Metrics Correlation

Coefficients

p-value (2-

tailed)

WNS 0.463** 0.006

WNT 0.750** 0.000

WNE 0.617** 0.000

**=99% confidence

Analysis of the spearman’s correlation in Table 14, leads to conclusion that there exists a positive

correlation between the statechart metrics and cognition time of statechart diagram. This leads to

the rejection of the null Hypothesis there exists no significant correlation between the statechart

metrics and cognition time of a statechart diagram and the alternative Hypothesis there exists
significant correlation between the statechart metric and cognition time of a statechart diagram is

accepted.

Regression model strengthens the correlation results. Regression helps to understand the

relationship between the dependent variable and independent variable. Table 15 shows the p-

values of the regression model based on metric values and cognition while Table 16 displays the

p-values based on metric values and cognition time.

Table 15. Regression model based on metric values and cognition

Metric R-square P-Value

WNS 0.432 0.000

WNT 0.445 0.000

WNE 0.480 0.000

*P< 0.05

From the regression model, the p-values are less than 0.05 indicating that the linear regression
model can be used to predict the subjects’ cognition of statechart diagram.

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

69

Table 16. Regression model based on metric values and cognition time

Metric R-square P-value

WNS 0.151 0.023

WNT 0.413 0.000

WNE 0.350 0.000

*P< 0.05

The p-values of the regression model based on metric values and cognition time are less than

0.05. This indicates that the proposed metrics can be used to predict the cognition time of a

statechart diagram.

7. CONCLUSIONS AND FUTURE WORKS

In this paper, three metrics namely, WNS, WNT and WNE were proposed in a methodological

way. The metrics assess the cognitive complexity of UML statechart diagram. The theoretical
validity of the defined metrics which indicate that the proposed metrics measure the characteristic

they intend to measure was demonstrated through the validation through the Weyuker’s

properties. With the objective of confirming that there exists a great correlation between the
metric values and the subject’s cognition and cognition time of a statechart diagram, a controlled

experiment was carried out. Spearman’s correlation results led to the conclusion that the

statechart metrics were directly related with cognition and cognition time of Statechart diagrams.
In addition, the linear regression models imply that the proposed metrics can be used to predict

the cognition of a statechart diagram and cognition time of a statechart diagram.

The literature conducted during the period of this study reveal that metrics for the measurement
of statechart diagrams are scarce. Thus, one future work is to further investigate all factors that

could possibly affect the structural complexity of UML dynamic models and then come up with

new ways of measuring them. Another future work would be to validate the metrics using the
DISTANCE framework as proposed by Poels and Dedene and conduct replica experiments with

industry experts for further validation of the presented metrics.

REFERENCES

[1] Anwer, S., & El-Attar, M. (2014). An evaluation of the statechart diagrams visual syntax. In

Information Science and Applications (ICISA), 2014 International Conference on (pp. 1-4). IEEE.

[2] Al Obisat, F. M., Alhalhouli, Z. T., Alrawashdeh, T. I., & Alshabatat, T. E. (2018). Review of

Literature on Software Quality. World Comput. Sci. Inf. Technol. J, 8(5), 32-42.

[3] Azar, D., Harmanani, H., & Korkmaz, R. (2009). A hybrid heuristic approach to optimize rule-based

software quality estimation models. Information and Software Technology, 51(9), 1365-1376.

[4] Basili V., Shull F. and Lanubille F. (1999). Building Knowledge through families of

experiments. IEEE Transactions on Software Engineering, 25(4), 456-473

[5] Chandrasekar, A., Rajesh, S., & Rajesh, P. (2014). A research study on software quality

attributes. International Journal of Scientific and Research Publications, 4(1), 14-19.
[6] Dori, D., Wengrowicz, N., & Dori, Y. J. (2014). A comparative study of languages for model-based

systems-of-systems engineering (MBSSE). In 2014 World Automation Congress (WAC) (pp. 790-

796). IEEE.

[7] Fahad A. (2012). State Based Static and Dynamic Formal Analysis of UML State Diagrams. Journal

of Software Engineering and Applications, 5, 483-491.

[8] Fitsilis, P., Gerogiannis, V. C., & Anthopoulos, L. (2013). Role of Unified Modelling Language in

Software Development in Greece-results from an exploratory study. IET software, 8(4), pp. 143-153.

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

70

[9] Fenton, N. (1994). Software measurement: a necessary scientific basis. IEEE Transactions on

Software Engineering, 199-206.

[10] Fenton N. and Pfleeger S. (1997). Software Metrics: A Rigorous Approach. 2nd.

edition. London, Chapman & Hall.

[11] Genero, M., Miranda, D., & Piattini, M. (2002). Defining and validating metrics for UML statechart
diagrams. Proceedings of QAOOSE, 2002.

[12] Jain, L., & Singh, S. (2019). Designing the Code Snippets for Experiments on Code Comprehension

of Different Software Constructs. and outputs. International Journal of Computer Sciences and

Engineering, Vol.7, Issue.3, pp.310-318. https://doi.org/10.26438/ijcse/v7i3.310318

[13] Jakhar, A.K & Rajnish, K. (2014). A New Cognitive Approach to Measure the Complexity of

Software's. International Journal of Software Engineering & its Applications, vol. 8, no. 7, pp. 185-

198.

 [14] Jama, O.M., (2009). A Case Study on Evaluating UML Modelling in Software Testing (Master’s

thesis, University of OSLO).
[15] Kitchenham B., Pflegger S. and Fenton N. (1995). Towards a Framework for Software Measurement

Validation. IEEE Transactions of Software Engineering, 21(12), 929-

943.

[16] King’ori, A. W., Muketha, G. M., & Micheni, E. M. (2019). A literature survey of cognitive

complexity metrics for statechart diagrams. International Journal of Software Engineering &

Applications (IJSEA), 10(4).

[17] Kushwaha, D. S., & Misra, A. K. (2006). Cognitive complexity metrics and its impact on software

reliability based on cognitive software development model. ACM SIGSOFT Software Engineering

Notes, 31(2), 1-6.

 [18] Maurya L.S et al. (2010). Comparison of Software Architecture Evaluation Methods for Software

Quality Attributes, Journal of Global Research in Computer Science, 1 (4).

[19] Misra, S., Adewumi, A., Fernandez-Sanz, L., & Damasevicius, R. (2018). A Suite of Object Oriented
Cognitive Complexity Metrics. IEEE Access, 6, 8782–8796.

[20] Misra, S., & Akman, I. (2008, May). A new complexity metric based on cognitive informatics. In

International Conference on Rough Sets and Knowledge Technology (pp. 620-627). Springer, Berlin,

Heidelberg.

[21] Misra, S. (2006). Modified Cognitive Complexity Measure. Lecture Notes in Computer Science

4263: 1050-1059. https:// doi:10.1007/11902140_109.

[22] Muketha, G. M., Ghani, A. A. A., Selamat, M. H., & Atan, R, (2010b) A Survey of Business Process

Complexity Metrics. Information Technology Journal, Vol 9, No. 7, pp1336-1344.

[23] Ndia, J. G. (2019). Structural Complexity Framework and Metrics for Analyzing the Maintainability

OF Sassy Cascading Style Sheets (Doctoral dissertation, MMUST).

[24] Padmanabhan, B. (2012). Unified modeling language (UML) overview. EECS810–Principles of
Software Engineering.

[25] Rabani, S. T., & Maheswaran, K. (2017). Software Cognitive Complexity Metrics for OO Design: A

Survey. International Journal of Scientific Research in Science, Engineering and Technology, 3, 691-

698.90–101.

[26] Rambaugh, J., Jacobsen, I. & Booch, G. (2005). The Unified Modelling Language Reference

Manual, second Edition. Pearson Higher Education

[27] Shao, J., & Wang, Y. (2003). A new measure of software complexity based on cognitive weights.

Canadian Journal of Electrical and Computer Engineering, 28(2), 69-74.

[28] Siau, K., & Loo, P.P. (2006). Identifying difficulties in learning UML. Information Systems

Management, 23(3), 43-51.

[29] Schneidewind N. (1992). Methodology for Validating Software Metrics. IEEE

Transactions of Software Engineering, 18 (5), 410-422.

[30] UML, O. (2012a). Information technology-Object Management Group Unified Modelling Language

(OMG UML), Infrastructure.

[31] Wang, Y. & Shao J., (2003). A new Measure of Software Complexity Based on Cognitive weights.

Journal of Electrical and Computer Engineering,28(2),69-74.

[32] Wohlin, C., P. Runeson, M. Host, M. C. Ohlsson, and B. Regnell. "Experimentation in Software

Engineering-An Introduction. Kluwer Academic Publishers." Doedrecht the Netherlands (2000).
 [33] Weyuker, E.J. (1988). Evaluating software complexity measures. IEEE Transactions on Software on

Software Engineering 14: 1357-1365.

https://doi.org/10.26438/ijcse/v7i3.310318

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.3, May 2022

71

AUTHORS

Ann Wambui King’ori is an ICT Lecturer at the Department of Information

Communication Technology at Nkabune Technical Training Institute, Kenya. She

earned her Bachelor of Technology Education (Computer Studies) from the

University of Eldoret, Kenya in 2014, and her MSc. In Information Technology from

Murang’a University of Technology, Kenya, 2021. She is currently pursuing her

PhD. in Information Technology at Murang’a University of Technology, Kenya.

Her research interests include software metrics, software quality, and business

intelligence.

Geoffrey Muchiri Muketha is Professor of Computer Science and Director of

Postgraduate Studies at Murang' a University of Technology, Kenya. He received his

BSc. in Information Science from Moi University in 1995, his MSc. in Computer

Science from Periyar University, India in 2004, and his PhD in Software Engineering

from Universiti Putra Malaysia in 2011. He has wide experience in teaching and

supervision of postgraduate students. His research interests include software and

business process metrics, software quality, verification and validation, empirical methods in

software engineering, and component-based software engineering. He is a member of the
International Association of Engineers (IAENG).

Elyjoy Muthoni Micheni is a Senior Lecturer in Information Systems in the Department

of Management Science and Technology at The Technical University of Kenya. She

holds a Ph.D. (Information Technology) from Masinde Muliro University of Science and

Technology, Master of Science (Computer Based Information Systems) from Sunderland
University, (UK); Bachelor of Education from Kenyatta University; Post Graduate

Diploma in Project Management from Kenya Institute of Management. She has taught

Management Information System courses for many years at the University level. She has presented papers

in scientific conferences and has many publications in refereed journals. She has also co-authored a book

for Middle-level colleges entitled: “Computerized Document Processing”. Her career objective is to tap

computer-based knowledge as a tool to advance business activities, promote research in ICT and enhance

quality service.

	Abstract
	Model-Driven Development and the Model-Driven Architecture paradigm have in the recent past been emphasizing on the importance of good models. In the Object-Oriented paradigm one of the key artefacts are the Statechart diagrams. Statechart diagrams ha...
	Keywords
	Several cognitive complexity metrics for Object Oriented design have been proposed [17,20, 21, 27]. However, these metrics are not suitable for the measurement of cognitive complexity of statechart diagrams due to their limitations.
	Shao & Wang [27] proposed Cognitive Functional Size (CFS). The measure was based on internal architectural control-flows, output data and input data. The CFS has drawbacks. For example, it does not consider essential factors such as inheritance and ex...

