
International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.6, November 2022

DOI: 10.5121/ijsea.2022.13603 31

AN IMPROVED REPOSITORY STRUCTURE TO

IDENTIFY, SELECT AND INTEGRATE COMPONENTS

IN COMPONENT-BASED DEVELOPMENT

Muhammad Khamis Dauda, Reda M Salama and Rizwan Qureshi

Faculty of Computing and Information Technology,

King Abdulaziz University, Jeddah. Saudi Arabia

ABSTRACT

An ultimate goal of software development is to build high quality products. The customers of software

industry always demand for high-quality products quickly and cost effectively. The component-based
development (CBD) is the most suitable methodology for the software companies to meet the demands of

target market. To opt CBD, the software development teams have to customize generic components that are

available in the market and it is very difficult for the development teams to choose the suitable components

from the millions of third party and commercial off the shelf (COTS) components. On the other hand, the

development of in-house repository is tedious and time consuming. In this paper, we propose an easy and

understandable repository structure to provide helpful information about stored components like how to

identify, select, retrieve and integrate components. The proposed repository will also provide previous

assessments of developers and end-users about the selected component. The proposed repository will help

the software companies by reducing the customization effort, improving the quality of developed software

and preventing integrating unfamiliar components.

KEYWORDS

CBD, COTS, Third Party Components, Repository, Quality Attributes.

1. INTRODUCTION

Every software organization aims to produce or to acquire qualitative software, to save time, cost

and meet the market demand. During the analysis phase, suitable components are searched from

both the in house repository and third party repository. A lot of time is spent in identification,

selection, and analysis, which increases the customization and integration cost because the
component’s structure did not provide any insight to help the team with some basic information

including quality constituents or attribute and the development team has no direction [1]. A lot of

time is also spent during customization and integration of reusable components. It is highly likely
that more suitable components might not be identified resulting in wastage of time, cost, effort and

resources. There is a need to provide a structure to evaluate quality attributes of commercial off

the shelf (COTS) or in house components during the selection phase. There is also a need to
monitor the version control system, end-user feedback, quality of service (QoS) issues and

maturity of the component vendor [2].

The paper is further arranged as follows. Section II covers the related work. The problem
statement is described in section III. Section IV illustrates the proposed solution. The proposed

solution is validated in section V. The recommendations and future work are covered in section

VI.

https://airccse.org/journal/ijsea/vol13.html
https://doi.org/10.5121/ijsea.2022.13603

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.6, November 2022

32

2. RELATED WORK

The idea of component-based software engineering (CBSE) among the software community is

not new and the software development companies are practicing it from more than two decades.

Quality evaluation and metrics are required to know for every individual component before its

reuse. However, a formal direct and an indirect component coupling metrics are proposed to
measure the quality of components with respect to complexity and performance [3]. The research

investigates the risk-management activities and their correlations with the occurrences of typical

risks in the development of COTS systems [4]. It is achieved by exploring the occurrences of
typical risks in COTS systems and furtherly the effectiveness of the risk reduction activities are

compared.

The aim of the proposed research is to improve security and quality concerns of open-source
software systems [5]. The major challenges of open source development are addressed. A model

is proposed to assure quality [5]. The study explores the current state of tool building in the

reverse engineering domain intending to improve upon the practice to a predictable format [6].
The symptoms of code smells are poor design and implementation choices [7]. The high cost of

maintainability and customization is due to smelly code. A model is proposed to identify poor

quality software, bug prediction, and bug classification using F-measures. It is important to
understand the implication of choosing a suitable component from a third-party repository

because of the trade-off in quality [8]. Software Engineering taught programs do not teach how to

ensure that COTS components are not compromised from production to integration [9]. Data are

generated during component execution, which can be distilled and mined [10]. The study in
explores the challenges of DevOps including performance and quality [11]. A quality assurance

model is proposed to implement during the phases of analysis, development, certification,

customization, design, integration, testing, and maintenance [11].

Table 1. Limitations of Related Work.

The study in [12] focuses on software refactoring and quality enhancement. A pilot survey on
data analysis claimed that the construction of a new framework for healthcare COTS evaluation

and selection is necessary [13]. Most scientific software offer performance and maintainability

Paper Title Limitation

A Review of Component Coupling Metrics for

Component-Based Development [3].

The idea is proposed to establish to

measure the effectiveness of reusable

components.

A State-of-the-Practice Survey of Risk

Management in Development with Off-the-Shelf

Software Components [4].

The results show that there are still

unexplained risk-related factors in the

proposed risk-reduction activities.

A Model for Quality Assurance of OSS

Architecture [5].

The quality assurance model is very hard

to use in software engineering.

Building Reverse Engineering Tools with

Software Components: Ten Lessons Learned [6].

More case studies are needed to

conclude the results

Toward a Smell-Aware Bug Prediction Model

[7].

Only Apache data sets are used to

validate the model.

Choosing Component Origins for Software

Intensive Systems: In-House, COTS, OSS, or

Outsourcing? —A Case Survey [8].

There is a need to conduct empirical

studies to generalize the results.

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.6, November 2022

33

quality attributes at the highest priority [14]. As soon as new requirements are required to
implement in a system, the developers must identify their attributes and impact on the existing

components of respective system [15]. The study uses 18 matrices and 6 NLP techniques to

measure and identify the semantic similarities of a text. The experimental results show that the

accuracy of predicting impacted classes are increased more than 60 percent. High software
quality is mandatory in an organization to avoid costly patching [16]. There is a need of a

standardized quality check to maintain consistency and reliability among recent technologies

[17]. It is a common dilemma that increasing demand of working software and integration factors
led to forget about the quality of selected components. Table 1 illustrates the limitations of

related work [3-8].

3. PROBLEM DEFINITION

According to the proposed extended CBD in [18], ‘analysis, selection, and risk management’

phase collects detailed specifications of the system to be developed.

Software industries face difficulties in selecting suitable components that will match the

requirements of the new system. Many research studies suggest the need to find a suitable way

for component selection.

How to propose a repository structure to facilitate easy identification, selection and integration of

a reusable component?

4. THE PROPOSED SOLUTION

We propose a structure for software industries regardless of the methodology that will contribute

to solving the problem of identification, selection, and acquiring a qualitative component from
repositories as shown in figure 1.

A component possesses specific quality attribute like its domain, type of design pattern, and the

intended users. To make our structure flexible and easily adaptable to organizations, we limited
our structure to the following basic information that provides the ultimate goal needed.

Figure 1. The Proposed Structure showing Quality attributes with team rating

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.6, November 2022

34

Quality attributes of a component will serve two purposes:

 the maturity level;

 easy identification and retrieval from the repository.

A relative number will be assigned to each quality attribute by the development team during

meetings from one to ten. Customer collaboration and feedback will help to rate a component. As
a result, the proposed structure fulfills two functions related to quality:

 quality views based on the user;

 quality views based on the team.

A component always belongs to a specific design pattern and it is stored in the repository as per

its type. It is extremely helpful for the development team to know that the selected component

belongs to creational, structural or behavioral patterns. It will help to determine the architecture
and degree of customization and integration risks. Estimate the domain of a component, the

development team can reduce customization cost and time. A component can have different

versions that can have different scores and ratings. The trade-off of the quality attribute will be

visible by version control mechanism. It will help to determine, select and acquire the most
feasible component and save time, cost and effort of a team as proposed in figure 2. According to

figure 2, the proposed repository structure will save time, effort and integration cost during the

component acquisition process.

Figure 2. The Proposed Repository Structure to Perform Component Acquisition

5. VALIDATION

There are many techniques available to validate the proposed solution. We found that

questionnaire technique is more suitable to validate our research proposal as per the time
constraints. This paper is an outcome of one of master courses taught at King Abdul-Aziz

University, KSA. The duration of the course is six months and one of the benefits of

questionnaire technique is that it can examine the responses of a relatively large number of
participants in less time. To validate our proposal, we targeted only those participants who are

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.6, November 2022

35

practicing CBD through emails using embedded google sheets. The questionnaire is composed of
twenty-one questions to validate the two goals of proposed solution.

Table 2. Likert scale used to evaluate the questionnaire

Strongly Agreed 5

Agreed 4

Neither Agreed Nor Disagreed 3

Disagreed 2

Strongly Disagreed 1

Goal 1 is to identify the organizational acceptability of the proposed repository structure and it is

evaluated against eleven questions. The result of the acceptability will indicate the positive

impact and usefulness of the structure because organizations (stakeholders, investors) cannot
accept any structure without vividly seeing its positive results with respect to identify, select and

acquire a component.

Goal 2 is to inquire that how much proposed repository structure facilitates to the development

team and it is assessed using ten questions. Goal 2 will help the researchers to analyze the

effectiveness of the proposed structure to adapt and integrate a reusable component.

The questions are evaluated using likert scale as shown in Table 2.

5.1. Goal 1: Determine the Organization Acceptability of the Proposed Structure

The questions in this goal represent the acceptability of the proposed repository structure to

identify, select and retrieve the reusable components. Table 3 shows that 34% are strongly agreed

whereas 28% are agreed. Furthermore, 21% are neither agreed nor disagreed. However, 12% are
disagreed while other 5% are strongly disagreed. Figure 3 depicts the same result graphically.

Table 3. Analysis Result of Goal 1

Q. No. Strongly

Disagreed

Disagreed Neutral Agreed Strongly

Agreed

Q1. 0 1 3 7 11

Q2. 0 1 2 5 14

Q3. 2 7 7 3 3

Q4. 1 10 6 1 4

Q5 6 6 4 4 2

Q6 2 7 5 5 3

Q7 1 3 8 5 5

Q8 1 1 4 8 8

Q9 0 1 3 8 10

Q10 0 2 3 12 5

Q11 0 1 3 6 12

Total 13 30 48 64 77

Avg. in % 5 12 21 28 34

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.6, November 2022

36

Figure 3. Cumulative Frequency Results of Goal 1

5.2. Goal 2: Adaption of Proposed Structure by Development Team

According to Table 4, the analysis of the results show that 35% are agreed and 31% are strongly

agreed that the proposed structure facilitates to development teams to adapt and integrate the
reusable components. Whereas 13% are disagreed and 1% are strongly disagree with the goal 2.

Also, 20% are remained neutral. The results of Table 4 are presented graphically in figure 4.

Figure 4. Cumulative Frequency Results of Goal 2

Table 4. Analysis result of goal 2

Q. No. Strongly

Disagreed

Disagreed Neutral Agreed Strongly

Agreed

Q1. 0 3 5 4 10

Q2. 0 3 4 9 6

Q3. 1 3 7 7 4

Q4. 1 4 8 4 6

Q5 1 4 3 8 6

Q6 0 2 7 9 4

Q7 1 1 1 10 9

Q8 0 3 3 7 9

Q9 0 3 4 9 6

Q10 0 4 6 7 5

Total 4 30 44 74 65

Avg. in % 1 13 20 35 31

5

12

21

28

34

0

10

20

30

40

1 2 3 4 5F
re

q
u
en

cy
 i

n
 p

er
ce

ta
g
e

likert Scale

1

13

20

35
31

0

10

20

30

40

1 2 3 4 5

F
re

q
u

en
cy

 i
n

p
er

ce
n

ta
g

e

likert Scale

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.6, November 2022

37

5.3. Cumulative Analysis of Two Goals

Table 5 shows the cumulative analysis of two goals to evaluate the proposed research.

Table 5. Cumulative Analysis of Two Goals

Goal No. Strongly

Disagreed

Disagreed Neutral Agreed Strongly

Agreed

Goal 1 5 12 21 28 34

Goal 2 1 13 20 35 31

Total 6 25 41 63 65

Avg. in % 3 12 20 32 33

Figure 5. Cumulative Frequency Results of Two Goals

Figure 5 demonstrates the outcomes of cumulative statistical analysis of two goals. Thirty-two

percentage of the participants are agreed with the proposed repository structure will help the

software development teams during the selection and retrieval of suitable reusable components.
Thirty-three percentage of the respondents are strongly agreed and twenty percentage of the

respondents are neither agreed nor disagreed. Twelve percentage of the respondents are disagreed

and only three percentages are strongly disagreed as shown in Table 5.

6. RECOMMENDATION AND FUTURE WORK

There are many version control libraries but those repositories do not cover all the necessary or

required information to identify, select and integrate components using CBD. An improved
repository structure is proposed to solve the problem in hand. BitBucket concentrates more on

integrating and coordinating team while GitHub focuses more on component maturity and

performance. GitLab provides hybrid features by concentering more on managing, organizing
team, security and compliance but still it lacks in primary features mentioned in our proposed

repository structure. The future work is to propose an extension of improve repository to evaluate

the maturity level of each stored component. It will mitigate high cost of maintainability and
decrease time to identify, select and retrieve a component.

7. CONCLUSION

To develop a high quality software, there is a need to accomplish a successful project coping the
requirements of a customer in cost effective way and meeting the timelines. The problem is that

customers are always pushing the software development companies to deliver products fast to take

the competitive benefits. On the other hand, the software development companies want to reuse

3

12

20

32 33

1 2 3 4 5

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.6, November 2022

38

the previously development components to avoid the scratch based development to meetneeds of
demanding market. There is a need of software companies to store the reusable components in a

repository. The repository contains several versions of each reusable component and it is

extremely difficult for the software development team to select the most suitable version of a

component for the project in hand to customize it. This research proposes a repository structure to
facilitate the software development teams to choose the most appropriate component as per the

requirements of a customer. The proposed repository structure will provide ample information

about each version of reusable components so that the software development teams can easily
analyze, select and retrieve reusable components. The core focus of this research is to propose

such a repository structure that will save time, cost, efforts and resources of the software

development companies by easing the components’ identification, selection and retrieval
processes. A questionnaire is used to validate the proposed repository structure and overall sixty-

five percentage of the respondents are agreed with the effectiveness of the proposal.

REFERENCES

[1] Sommerville I., (2016) Software Engineering, Pearson Publisher.

[2] Maximus B. and Pressman R. S., (2019) Software Engineering, McGraw Hill Publisher.

[3] Chen, J., Yeap, W. K. and Bruda S. D. (2009) “A Review of Component Coupling Metrics for

Component Based Development,” WRI World Congress on Software Engineering, pp65-69.

[4] Li, J., Conradi, R., Slyngstad, O. P., Torchiano, M., Morisio, M. and Bunse, C. (2008) “A State-of-the-
Practice Survey of Risk Management in Development with Off-the-Shelf Software Components,”

IEEE Trans. Softw. Eng., Vol. 34, pp271-286.

[5] Kumar, R. and Singh, H. (2012) “A model for quality assurance of OSS architecture,” Sixth Int. Conf.

Software Engineering (CONSEG), pp1-6.

[6] Kienle, H. M. (2007) “Building Reverse Engineering Tools with Software Components: Ten Lessons

Learned,” 14th Working Conference on Reverse Engineering (WCRE 2007), pp289-292.

[7] Palomba, F., Zanoni, M., Fontana, F. A., De Lucia, A. and Oliveto, R. (2019) “Toward a Smell-Aware

Bug Prediction Model,” IEEE Trans. Softw. Eng., Vol. 45, pp194-218.

[8] Petersen, K. et al. (2018) “Choosing Component Origins for Software Intensive Systems: In-House,

COTS, OSS or Outsourcing?—A Case Survey,” IEEE Trans. Soft. Eng., Vol. 44, pp237-261.

[9] Mead, N. R., Kohnke, A. and Shoemaker, D. (2020) “Secure Sourcing of COTS Products: A Critical

Missing Element in Software Engineering Education,” 32nd Conf. Software Engineering Education
and Training (CSEE T), pp1-5.

[10] Liu, C. (2020) “Discovery and Quality Evaluation of Software Component Behavioral Models,” IEEE

Trans. Autom. Sci. Eng., Vol. 18, pp1538-1549.

[11] Mishra, A. and Otaiwi, Z. (2020) “DevOps and software quality: A systematic mapping,” Comput. Sci.

Rev., Vol. 38, pp100308.

[12] Al Dalla,l J. and Abdin, A. (2018) “Empirical Evaluation of the Impact of Object-Oriented Code

Refactoring on Quality Attributes: A Systematic Literature Review,” IEEE Trans. Soft. Eng., Vol. 44,

pp44-69.

[13] Al-Tarawneh, F. H. and Althunibat, A. (2019) “Pilot Study of Healthcare COTS Software Evaluation

and Selection,” Int. Joint Conf. Electrical Engineering and Information Technology (JEEIT), pp311-

314.
[14] Arvanitou, A., Ampatzoglou, A. C. and Carver, J. C. (2021) “Software engineering practices for

scientific software development: A systematic mapping study,” J. Syst. Soft., Vol. 172, pp110848.

[15] Falessi, D., Roll, J., Guo, J. L. C., and Cleland-Huang, J. (2020) “Leveraging Historical Associations

between Requirements and Source Code to Identify Impacted Classes,” IEEE Trans. Soft. Eng., Vol.

46, pp420-441.

[16] Poth, A., Meyer, B., Schlicht, P. and Riel. A. (2020) “Quality Assurance for Machine Learning – an

approach to function and system safeguarding,” 20th Int. Conf. Software Quality, Reliability and

Security (QRS), pp22-29.

[17] Chakraborty, A., Bagavathi, R. and Tomer, U. (2020) “A Comprehensive Decomposition towards the

Facets of Quality in IoT,” Int. Conf. Smart Electronics and Communication (ICOSEC), pp759-764.

International Journal of Software Engineering & Applications (IJSEA), Vol.13, No.6, November 2022

39

[18] Qureshi, M. R. J., Barnawi, A., and Talhi, A. A. (2013) “Component based development model for

new and customized software products,” 3rd World Conf. Information Technology,pp1384-1389.

AUTHORS

Muhammad Khamis Dauda is a certified Scrum Master and M.Sc. student at Faculty

of Computing and Information Technology, King Abdul-Aziz University, Saudi

Arabia.

Dr. Reda M Salama is working as an associate professor in King Abdul-Aziz

University, Jeddah, Saudi Arabia.

Dr. Rizwan Qureshi is currently working as a full professor in the Department of IT,

King Abdul-Aziz University, Jeddah, Saudi Arabia. This author is the best researcher

awardees from the Department of Information Technology, King Abdul-Aziz

University in 2013 and 2016.

	1. Introduction
	2. Related Work
	3. Problem Definition
	4. The Proposed Solution
	5. Validation
	6. Recommendation and Future Work
	7. Conclusion

